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C*-ALGEBRAS GENERATED BY THREE PROJECTIONS

SHANWEN HU AND YIFENG XUE

(Communicated by B. Magajna)

Abstract. In this short note, we prove that for a C*-algebra &/ generated by n elements,

My (<7) is generated by k mutually unitarily equivalent and almost mutually orthogonal pro-
jections for any k > &(n) = min {k € N|(k— 1)(k—2) > 2n}. Then combining this result with
recent works of Nagisa, Thiel and Winter on the generators of C* —algebras, we show that for

a C*—algebra 7 generated by finite number of elements, there is d > 3 such that My(A) is
generated by three mutually unitarily equivalent and almost mutually orthogonal projections.
Furthermore, for certain separable purely infinite simple unital C* —algebras and AF —algebras,
we give some conditions that make them be generated by three mutually unitarily equivalent and
almost mutually orthogonal projections.

1. Introduction

Let H be a separable complex Hilbert space with dimH = . Let P and Q be
two (orthogonal) projections on H. Put M = PH and N = QH . Due to Halmos [5], P
and Q are in generic position if

MNN = {0}, MNN+ = {0}, M- NN = {0}, M NN* = {0}.

Then the unital C* —algebra generated by two projections P and Q, which are in generic
position, is *—isomorphic to {f € My(C(o((P — Q)?))| £(0), (1) are diagonal} (cf.
[18, Theorem 1.1]). Furthermore, by [13, Theorem 1.3], the the universal C*—algebra
C*(p,q) generated by two projections p and ¢ is x—isomorphic to the C*—algebra

{f € Mr(C([0,1]))] £(0), f(1) are diagonal}

which is of Type I. But in the general case of the C* —algebra generated by a finite set of
orthogonal projections (at least three projections), the situation becomes unpredictable.
For example, Davis showed in [4] that there exist three projections P;, P, and P;
on H such that the von Neumann algebra W*(P}, P, P3) generated by Py, P, and P3
coincides with B(H) of all bounded linear operators acting on H . Furthermore, Sunder
proved in [16] that for each n > 3, there exist n projections Pj,---,P, on H such
that the von Neumann algebra W*(Py,---,B,) generated by Py,---,P, is B(H) and
W*(#) S B(H), whenever .# G {Py,---,P,}, where W*(.) is the von Neumann
algebra generated by all elements in .Z .
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Therefore investigating the C*—algebra generated by n (n > 3) projections is an
interesting topic. Shulman studied the universal C*—algebras generated by n projec-
tions py,---, pn subject to the relation p;+---+p, = Al, L € R in [15]. She gave
some conditions to make these C*—algebras type I, nuclear or exact and proved that
among these C*-algebras, there is a continuum of mutually non—isomorphic ones.
Meanwhile, Vasilevski considered the problem in [18] that given finite set of (orthogo-

nal) projections P, Qy,---,0, on H with the conditions
Qij:(st{ka j»kzlv"'vnv Ql++Qn:I7 (l)
PHN(QuH)" ={0}, QHN(PH)" ={0}, k=1,"-,n. )

Then what is the C*—algebra C*(Q,P,,---,P,) generated Q,P,---,P,? One of inter-
esting results concerning this problem is Corollary 4.5 of [18], which can be described
as follows.

Let <7 be a finitely generated Cx—algebra with identity in B(H) and let ny be
a minimal number of self-adjoint elements generating <. Then for each n > ng,
there exist projections P, Qy,---,0, on H satisfying (1) and (2) such that M, (<) is
«—isomorphic to C*(P,Q1, -+, 0p).

Inspired by above works, we study the problem: find least number of projections in
the matrix algebra of a given finitely generated C*—algebra such that these projections
generates this C*—algebra in this short note. The main results of the paper are the
following:

Let &7 = C*(ay,---,a,) be the C*—algebra generated by elements ay,- - . Let
4/ denote the C*—algebra obtained by adding the unit 1 to </ (if < is non—umtal)
and let M (.7) denote the algebra of all n x n matrices with entries in <7 . Then

(1) for any k > 8(n) = min{k € N|(k—1)(k—2) >2n}, My(&/) is generated
by k mutually unitarily equivalent and almost mutually orthogonal projections (see
Theorem 2.3).

(2) forevery [ > {\/n—1} and k >3, My, (/) is generated by k mutually unitar-
ily equivalent and almost mutually orthogonal projections (see Proposition 3.4), where
{x} stands for the least natural number that is greater than or equal to the positive
number x.

2. The main result

In this section, we will give our main result (1) mentioned in §1. Firstly, we have

LEMMA 2.1. Let o/ be a C*—algebra with unit 1 and Bjj € 4, forany 1 <i
< k. Suppose that n = max{||B;;|| |1 <i<j<k} <5 5Ty then

1 By Bk
B, 1 - By
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is invertible and positive, and
IT =1 < (k=1)m, 772 =14 <2(k—1)n,

where 1y is the unit of My (/).

Proof. By the definition of the norm of Mi(.<7), [|A|l = |[[%(Aij)]kxx ], for A =
[Aijlixk € My (), where 7 is any faithful representation of 4/ on a Hilbert space K
(see [10]), we may assume that .o/ C B(K) and the identity operator on K is the unit of
o .So T cB(K;),where Ky =K&---®K.

————

k
Forany A <1—(k—1)n, set

1= —[Biaf -+ —[|Bull
—[[Bua|| 1—=24 -+ —||Bl
—||Bixl| =||Bax| --- 1=2

Since for any i, 2 ||Bijll < 1—A4, it follows from Levy—Dedplanques Theorem in

Matrix Analysis (see [7]) that A is positive and invertible. So the quadratic form

f(x17x27"'a Zx -2 2 HBIJ”‘X'XI
1<i<j<k
is positive definite and consequently, there exits 6 > 0 such that for any (xj,---,x;) €

k
Rn? f(xlf"axk) 2 6(21)C12)
=
Now forany & = (&;,---,&,) € Ki, we have

(T=A1)E,8) zuauu Y ((BGE)+(BEE)

1<i<j<k
: 2
> lG1P =2 X IBilIENIE]
i=1 1<i<j<k

= SISl 16l = leézll

by above argument. Thus, T — A1, is invertible. Similarly, for any A > 14 (k— 1)n,
T — A1y is also invertible.
Let o(T) denote the spectrum of T. Then we have

o(T)C[1—(k—1)n,14 (k—1)n]c (0,2),
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This indicates that T is positive and invertible. Finally, by the Spectrum Mapping
Theorem, (1, —7) C [—(k—1)n,(k—1)n] and

o(li—T ) cl—(1—(k—1)n) 21— 1+ (k—1)n)~"/7
C[-2(k—1)n,2(k—1)n].
So |IT— 1l < (k— 1) and [[T=12 — 1] < 2(k— 1)n.

DEFINITION 2.2. We say that a unital C*—algebra & is generated by n (n > 2)
mutually unitarily equivalent and almost mutually orthogonal projections if for any
given € > 0, there exist projections p1,---,p, in & satisfying following conditions:

(1) pi+---+ py isinvertiblein &,
(2) ¢*(p1,,pn)=¢& and
(3) forany i# j, p; is unitarily equivalent to p; in & and |p;p;|| < €.
Now we present one of our main results as follows.
THEOREM 2.3. Suppose that the C* —algebra <7 is generated n elements aj,- -,

an. Then for each k > 8(n) = min{k € N|(k—1)(k—2) > 2n}, My(&/) is generated
by k mutually unitarily equivalent and almost mutually orthogonal projections.

Proof. We assume that o7 is non—unital. If . is unital, ./ = /. Without loss

generality, we may assume that ||a;|| =1, i = 1,---,n. Furthermore, we can assume
n= W Otherwise, for any n < i < W, put a@; = 1, where 1 is the unit
of o/ .
Rewrite {ai,---,a,} = {Bjj: 1 <i< j<k—2} (for §(n) > 3) and define
1 eB - gBl,k—l el
SBikz 1 8327](_1 el
T: = , Vee(0,1/8(k—1)).
eBy,_€B5, -~ 1 €l
el el - el 1

Using the canonical matrix units {e;;} for M(C), we have

k k—1
=2 (10e)+ Y (el@est+el@ey)+ Y, (eBij®ej+eBj;@ej).
i=1 i=1 1<i<j<k—1

By Lemma 2.1, T is positive and invertible with ||1; — T¢|| < (k—1)e and ||1; —
T2 <20k e,

Define p;(e) = Tgl/z(l ®eii)Tgl/ . i=1,---,k. Itis easy to verify that p;(¢)
is a projection and C*(p;(€),--,pr(€)) C Mi(«7). In the following, we will show

My () C C*(pi(g),---, pi(€)).

2
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k
Forall 1 <i<k, pi(e) € C*(pi(€),---,pr(€)) implies T, = > p;(€) is contained
i=1

in C*(p1(g),---,pr(e)). Then Tg_l/2 € C*(pi(€),---,px(€)) by Gelfand’s Theorem
(cf. [19, Theorem 1.5.10]), which implies that for any 1 <i <k,

1@ei=T; Ppi(e)Ts '* € C*(pie), -, pile)).
It follows that forany 1 <i< j<k—1,
Bij®ej=(1®e)Te(1®ej;) € C(pi(€), -, pr(€))
and forany 1 <i<k—1,
l@ep=(1®ei)Te(1@ew) € C*(p1(€),-+, pi(€))-
So 1®ep=(1®ey) €C*(pi(€), -+, pr(€)) and hence, forany 1 <i< j<k—1,
1@ej=(1®ei)(1@ex)(1®er)) € C*(p1(g),---, pr(€))

and 1®eji = (1®e;5)* € C*(pi(g),---,px(g)). Consequently, forany 1 <i< j<k
and 1 <m <k,

Bij ® emm = (1 @ €i)(Bij @ eij) (1 @ ejm) € C*(pi(€),- -, pr(€)).

Since for i =1,---,k, g @ e;; is a C*"—algebra, we get for 1 <i <k, g @ eii C
C*(pi(€),---,pr(€)) and for 1 < i,j <k,

o @eij= (o @ei)(1®ei) CC*(pi(€),- -, pi(€)).

At last, we obtain that My (.27) C C*(pi(€),---, pi(€)).

Put [ = 1@e; =T, *pi(e)T. "%, i=1,--- k. Then {I},---,I;} is a family of
mutually equivalent and mutually orthogonal projections in C*(p;(€),---, pr(€)). Now
for 1 <i,j<k,i#],

Ipi(e) — Ll < 1L =T P)pje)ll + Ipi(e)Te (L~ T ') < 8(k— e < 1
Ipi(e)pi(e)ll < Ipie)(ps(e) — L)l + | (pi(e) — 1] < 16(k— ).

So pj(e) is unitarily equivalent to I; by Lemma 6.5.9 of [19], then to p;(e) and
p1(€),--+, pr(€) are almost mutually orthogonalm C*(pi(e),---,pr(e)). O

EXAMPLE 2.4. (1) Since C is generated by {1}, it follows from Theorem 2.3
that for any k > 3, My (C) is generated by k£ mutually unitarily equivalent and almost
mutually orthogonal projections.

(2) Let Z be a separable unital C*—algebra and %~ be the C*—algebra of compact
operators on the separable complex Hilbert space /H\/T hen #® % is generated by a
single element (cf. [12, Theorem 8]). So M3(# ® %) is generated by 3 mutually
unitarily equivalent and almost mutually orthogonal projections.
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REMARK 2.5. Suppose that the C*—algebra & with the unit 1 is generated by
mutually unitarily equivalent and almost mutually orthogonal projections. Then by Def-
k

inition 2.2, there are projections py,---, px such that Y, p; isinvertiblein &, py,---, px
i=1

are mutually unitarily equivalent in & and ||p;p;|| < 1/2(k—1). Then by Corollary

3.8 of [6] and its proof, there exist mutually orthogonal projections p/,---,p} in &

such that ||p; — p}|| < 1 and Z pi=1g. Consequently, p; is unitarily equivalent to

p in & by [19, Lemma 6.5. 9 (2)] and so that pl is unitarily equivalent to p/, f in &,
i,j=1,--- k.

Now we use the K-Theory of & to describe above situations. The notations and
properties of K—Theory of C*—algebras can be found in references [10] and [19]. Let
[pi] (resp [p1]) be the class of p; (resp. [p!]) in Ko(&), i =1,---,k. Then we have

k
[le] = [ZP} X [pil =klpi].-

i=1

3. Some applications

Let o/ be a C*—algebra and let M be a subset of .7, . We call M a generator of .«
if &7 is equal to the C* —algebra C*(M) generated by elementsin M. If M is finite, then
we call <7 finitely generated and we define the number of generators gen(A) by the
minimum cardinality of M which generates <7 . We denote gen(</) = oo unless < is
finitely generated (cf. [11]). We call a C*—algebra <7 singly generated if gen(«/) <2.
Indeed, if &7 = C*({x,y}) for x,y € oZ,, then C*(x+iy) = & .

LEMMA 3.1. [11, Theorem 3] Let </ be a unital C*—algebra with gen(</) <
n’>+1 (neN). Then we have gen(M,(<7)) < 2.

Similar to the definition of gen(<), we have following definition:

DEFINITION 3.2. Let </ be a finitely generated unital C* —algebra. We define the
number Pgen(«/) to be least integer k > 2 such that <7 is generated by k mutually
unitarily equivalent and almost mutually orthogonal projections.

If no such k exists, we set Pgen(&/) = .

REMARK 3.3. (1) There is a finitely generated unital C*—algebra </ such that
Pgen(«/) = 2. For example, take &7 = M,(C) and projections

|10 _ € e(l—eg)
pl—|:00:|» pz—{ d=e l-¢ , Ve e (0,1).

Clearly, p; and p, are unitarily equivalent, p; + ps is invertible and ||p;p,|| < &'/2.
Moreover, it is easy to check that C*(p;,p2) = <7 . Thus, Pgen(«/) = 2.

(2) If the unital C*-algebra <7 is infinite—dimensional and simple, then Pgen(.«7) >
3. In fact, if o7 is generated by two mutually unitarily equivalent and almost mutually
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orthogonal projections p; and p;, then there is a x—homomorphism 7: C*(p,q) — &/
such that (p) = p; and n(g) = p,. Thus, &/ = n(C*(p,q)) and hence <7 is of Type
I. But it is impossible since .« is infinite—dimensional and simple.

Now we present main result (2) mentioned in the end of §1.

PROPOSITION 3.4. Assume that the unital C*—algebra </ is generated by n self—
adjoint elements. Then for any | = {/n— 1} and k >3, Pgen(My (7)) < k.

Proof. Since I > +/n—1 and I +1 > n > gen(</), it follow from Lemma 3.1
that M; (<) is singly generated. In this case, 6(1) = 3. So forany k > 3, My(&/) =
My (M, (7)) is generated by k mutually unitarily equivalent and almost mutually or-
thogonal projections Theorem 2.3. [J

Since simple AF C*—algebra and the irrational rotation algebra are all singly gen-
erated by [1 1], we have by Proposition 3.4:

COROLLARY 3.5. If o is a simple unital AF C*—algebra or an irrational rota-
tion algebra, then Pgen(M3 (7)) < 3.

COROLLARY 3.6. Let X be a compact metric space with dimX < m. If X can be
embedded into C™, then Pgen(M3;(C(X))) < 3, where k= {~/2m—1}. In general,
Pgen(M34(C(X))) < 3, where s = {+/2m}.

Proof. By [11, Proposition 2],
gen(C(X)) = min{m € N|there is an embedding of X into R"}.

Therefore, if X can be embedded into C™, then gen(C(X)) < 2m and in general, X can
be embedded into R>"*! by [1, Theorem II1.4.2]. In this case, gen(C(X)) <2m+1.
So the assertions follow from Proposition 3.4. [

Recall that a projection p in a C*—algebra </ is infinite if there is a projection ¢
in &/ with ¢ < p such that p and ¢ are equivalent (denoted by p ~ ¢) in the sense of
Murray—von Neumann. .7 is called to be purely infinite if the closure of a.<7a contains
an infinite projection for every non—zero positive element a in 7 (cf. [3]).

PROPOSITION 3.7. Let &7 be a separable purely infinite simple C*—algebra with
the unit 1,,. Suppose the class [1.] in Ko(</) has torsion. Let m be the order of
[1o/]. Then 3 < Pgen(«/) < min{k € N|k >3, (k,m) = 1}.

In particular, when m has the form m =3n—1 or m = 3n—2 for some n € N,
Pgen(«/) = 3.

Proof. According to Remark 3.3 (2), Pgen(«/) > 3.

Since (k,m) =1, s,t € Z such that ks —mr = 1 (cf. [8]). Let c=s+ml and d =
t+kI. Then kc—md =1, VI € N. So we can choose ¢, d € N such that kc —md = 1.
Set r=kc.
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Since r =1 mod m, it follows from [20, Lemma 1] that there exist isometries
S1,--+,8, in 2/ such that

p

sisp=0, i#j, i,j=1,--,r and Y sisf = 1. (1)
i=1

Define a linear map ¢ : &/ — My (/) by ¢(a) = [sas;],«,. Itis easy to check that ¢ is

a *—homomorphism and injective by using (1). Now let A = [a;;],», € M,(/) and put

a= 3 sia;js; € /. Then ¢(a) =A interms of (1). Therefore, ¢ is a x~isomorphism

ij=1 :

and &7 is x—isomorphic to M,(.&7).

Now by Theorem 2.3 of [17], gen(<7) < 2. Thus, by Proposition 3.4, for above
k>=06(1)=3, c>1, M () is generated by k mutually unitarily equivalent and
almost mutually orthogonal projections and consequently, Pgen(.«/) < k.

When m has the form m =3n—1 or m=3n—2 forsome n € N, (3,m)=1.1In
this case, Pgen(«/) = 3 by above argument. [J

EXAMPLE 3.8. Let 0, (2 <n < +o0) be the Cuntz algebra. &, is a separable
Z/(n—1)Z, 2< oo
purely infinite simple unital C*—algebra with Ky(0,) = { / én )z, :_< +
s n= (o)

and the generator [14,] (cf. [3]). Then we have
(1) Pgen(0.,) = +eo by Remark 2.5.
(2) Pgen(0,) =3 if n=3m or n=3m— 1 for some m € N by Proposition 3.7.

(3) Pgen(0,) = min{k € N|k >3, (k,n—1) = 1}. In fact, Proposition 3.7 shows
that Pgen(&,) < min{k € N|k >3, (k,n—1)=1}. Now, Pgen(&,) = m implies
that there is a projection e € &), such that mfe] =1 in Ko(&,) by Remark 2.5.
So there exists s € N such that [¢] = s[l,]. Then ms—1=0 mod (n—1) and
hence (m,n—1)=1.

For example: Pgen(0,) =4, Pgen(03) =5, Pgen(0sy1) = 11, etc..

According to [2], a unital separable C*—algebra .« with the unit 1,/ is approxi-
mately divisible if, for every xj,---,x, € A and any € > 0, there is a finite—dimensional
C* —subalgebra % with unit 1, of &/ such that % has no Abelian central projections
and [Jx;y —yxi|| <e|lyll, VI<i<nand y € B.

PROPOSITION 3.9. Suppose that two separable and unital C*—algebras </ and
A satisfies following conditions:
(1) o or A isnuclear;
(2) there is an integer k >3 and a unital C*—algebra € such that 8 = M (€ );
(3) o @ P is approximately divisible.
Then Pgen(of @ B) < k. Furthermore, if k=0 mod 3, then Pgen(« @ X) < 3.
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Proof. If A is nuclear, applying [10, Proposition 2.3.8] to My (%) , we get that
% is also nuclear since % is a hereditary C*—subalgebra of M (%).

Now from &7 @ =M (o @€ ), we get that o7 @ € is approximately divisible
by [2, Corollary 2.9]. Since every unital separable approximately divisible C*—algebra
is singly generated by [9, Theorem 3.1], we obtain that &/ ® # is generated by k
mutually unitarily equivalent and almost mutually orthogonal projections, by applying
Proposition 3.4 to & @ % .

If k =3t for some t € N, then Pgen(M3 (<7 ® €’)) < 3 by Proposition 3.4. Thus,
Pgen(o/ @ B) <3 for & QB=My (o @€). O

Which type of C*—algebras satisfy Condition (2) and (3) of Proposition 3.9? For
AF —algebras, we have the following:

PROPOSITION 3.10. Let o = | <, be a AF —algebra with unit 1., where <,
n=1
is a finite—dimensional C*—algebra with the unit 1, such that <, C <, Vm < n,

m,n=1,2,---. Assume that </ satisfies following conditions:

(1) no quotient of </ has an abelian projection, especially, < is infinite dimensional
simple;

(2) there is an integer n >3 and an element a in Ko(</) such that na = [1] in
Ko(<7).

If there is k > 3 such that n =0 mod k, then <f is generated by k mutually unitarily
equivalent and almost mutually orthogonal projections.

Proof. By [10, Proposition 3.4.5], a € Ko(%7 )+ (the positive cone of Ky(<7)). So
we can find a projection p in My(.7,) for some s, m € N such that [p] = a in Ko(<).
Consequently, there are projections py,---, py in <7, such that p is unitarily equivalent
to diag(py,---,ps) in M(e,). This indicates that

[dlag(phaphap\aap\)}:[lef] anO(bQ{) (2)
———— ——
n n
Since M, (/) has the cancellation property of projections for all ¢ € N, we have
dlag(phapl;ap\a7pS>Nd1ag(19.770770) lnMnS(JZ{) (3)
———— —— ——
n n ns—1

by (2). Applying [10, Lemma 3.4.2] to (3), we can find mutually orthogonal projections
g1, qns in &/ such that g(;_1)sy1,- -, qis are all unitarily equivalentto p;, 1 <i<n
in & .
N
Put ri= Y q(i—1)s+; €<, i=1,---,n. Then ryrj =0, ri ~r; and [r;] = [p] in
j=1

Ko(), i#j, i,j=1,---,n. So from [rj +---+ry] = [l,] in Ko(</), we obtain

s
Yri=1g.
=1

1
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Let v; be partial isometries in &/ such that vi = r; and r| = Vviv;, r; = vy},
rivi = vir; when 2 < i < n. Define a linear mapping y: &7 — M, (r1</r;) by y(a) =
n

[viavjluxn. Interms of viv; =0,i# j, i,j=1,---,n and .ZIV"V? = 1., itis easy to

check that v is a x—isomorphism, that is, ./’ satisfies Condition (2) of Proposition 3.9.
By [2, Proposition 4.1], Condition (1) implies that < is approximately divisible.
So the assertion follows from Proposition 3.9. [l

EXAMPLE 3.11. Let & be a UHF —algebra. It is in one—one correspondence with

oo

a generalized integer, formal products ¢ = [ p?" for some {n;}7 | C Zy U{+eo},
j=1 ‘

where {p1,p2,---} is the set of all positive prime numbers listed in increasing order.
According to [14, 7.4], Ko(9B) is isomorphic to {%\x €Z,yeN,g=0 mody} = L)

with [14] in correspondence with 1, where ¢ =0 mody means that y = T] p’?'/ for
=1
some m; € Zy with mj <nj, j=1,---,00 and m; > 0 for only finitely many ;.

Put k = min{n € N|n > 3,4 =0 modn}. Clearly, there is a € Ko(#) such that
ka={1,/]. Thus there is a unital C*—algebra ¢ such that Z = M;(¢) (see the proof of
Proposition 3.10). Since # and &7 ® % are all approximately divisible for any unital
separable C*—algebra < by [2], it follows from Proposition 3.9 that & and &/ ® £
are all generated by k mutually unitarily equivalent and almost mutually orthogonal
projections, i.e., Pgen(#) < k and Pgen(«&/ @ B) < k.

Moreover, we have Pgen(#) = min{n € N|n>3,¢=0 mod n}. In fact, since A
is simple and infinite—dimensional, it follows from Remark 3.3 that Pgen(%#) > 3. Let
m = Pgen(%). Then there is a projection e in A such that m[e] = [15]. Thus, there
are x,y € Z+ with ¢ =0 mod y such that m% =1 and consequently, g =0 mod m.
So Pgen(#) =2 min{n € N|n >3,g=0 modn}.

For example, if % is a UHF algebra of Type 2% or 3, respectively, then Pgen(%)
=4 or Pgen(#) =3.

Finally, similar to Davis’ result in [4] and Sunder’ work in [16], We have

PROPOSITION 3.12. Let H be a separable infinite dimensional Hilbert space.
Then for any k > 3 there are k mutually unitarily equivalent and almost mutually
orthogonal projections Py,---, P, such that

H C C*(Pl,---,Pk) C W*(Pl,“',Pk) ZB(H).

Proof. Take H = [? and let S be the unilateral shift on H. It’s well-known that
H CC*(S) CW*(S) = B(H) (cf. [10]). Then there are k mutually unitarily equiv-
alent and almost mutually orthogonal projections Qj,---, 0y in My (C*(S)) such that
C*(Q1,++,0k) = M (C*(S)) by Theorem 2.3.
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Choose isometry operators Sy,---,S; on H such that S§iS;=0,i#j,i,j=

-,k and Z S;iS§ =1. Define a unitary operator W: H — @H by Wx = (Six,---,8x),
Vx€eH. Then W*(Mk(%))W =% and W*(Mk(B(H)))W %’( ). Put P,=W*Q,W
i=1,---,k. Then Py,---,P, are mutually unitarily equivalent and almost mutually or-

thogonal and W* (M (C*(S)))W = C*(Py,--,P;). So from

My () CC*(Q1,-+-,0k) CW(Q1,---,0k) = Mi(B(H)),

we obtain the assertion. [
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