
Operators
and

Matrices

Volume 8, Number 1 (2014), 139–156 doi:10.7153/oam-08-07

ON DIFFERENT CONCEPTS OF CLOSEDNESS OF LINEAR OPERATORS
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(Communicated by S. McCullough)

Abstract. The purpose of this paper is to introduce, by means of the extensions of almost closed
operators, the notion of almost closable linear operator acting in a Hilbert or Banach space. This
class of operators is strictly included in the class of all unbounded linear operators, it contains the
set of all closable operators and that of all almost closed operators and is invariant under finite
and countable sums, finite products, limits and integrals. We also present some fundamental
properties relative to almost closability and we define a locally convex Hausdorff topology in the
set of all almost closable operators.

1. Introduction

Let H be an infinite dimensional complex Hilbert space. 〈., .〉H denote the inner
product on H and ‖x‖H =

√〈x,x〉H the associated norm. If M is a subset of H,

M⊥ is the orthogonal complement of M with respect to the inner product of H. For a
linear operator A defined on H, the domain, null space and the range space of A are
denoted respectively by D(A) , N(A) and R(A). A∗ is the adjoint operator of A . The
graph G(A) of A is the subset of H×H defined by G(A) = {(x,Ax) ; x ∈D(A)}. The
operator A is said to be closed if its graph G(A) is a closed subspace of H ×H. We
denote by B(H,K) the Banach space of bounded linear operators from H to another
Hilbert space K and we put B(H,H) = B(H) . Let C(H) denote the set of all closed,
densely defined linear operators in H . If A ∈ C(H) , then A∗ is closed. In particular,
selfadjoint operators are closed. We write A ⊂ B when B is an extension of A, in the
sense that D(A) ⊂ D(B) and the restriction of B to D(A) agrees with A. In particular,
A⊂ B is equivalent to G(A)⊂G(B). It is interesting to recall in the beginning the well-
known procedure of making a closed linear operator A bounded on H by renorming it
domain with the graph norm ‖x‖G(A) = (‖x‖2

H +‖Ax‖2
H)1/2 defined by the graph inner

product 〈x,y〉G(A) = 〈x,y〉H + 〈Ax,Ay〉H for all x,y ∈ D(A). Indeed, A is closed if and
only if (D(A),〈., .〉G(A)) is a Hilbert space. Note that by closed graph theorem we have
B(H) ⊂C(H).

The notion of closability is an important generalisation of that of closedness, in
that closable operators may, in many respects, be treated similarly to closed ones. A
is closable if the closure G(A) of G(A) in H ×H is the graph of a linear operator
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A. It follows immediately that the closure A of A is the smallest closed extension of
A. Every closed operator is closable on H , but the converse is not true. If A is not
closable then the closure G(A) is not a graph (it may contain some (0,y) , y 	= 0),
and A has no closed extension. Let us remind the reader that a densely defined linear
operator A is closable if and only if A∗ is densely defined, in which case A = A∗∗. In
the mathematical literature there are many typical examples of closed operators, and
examples of operators with nondensely defined adjoint. Thus, a linear operator A loses
its closability as soon as D(A∗) being rather small, and it can happen that D(A∗) = {0}.
Indeed, we have for example the following result:

LEMMA 1. If A is an arbitrary linear operator and N(A) is dense, then D(A∗) =
N(A∗). If R(A) is also dense, then D(A∗) = {0}.

The natural operations sum, product and limits are well defined on B(H), however,
one has to be careful with those manipulations when dealing with unbounded operators,
this is essentially due to the domains: D(A+B)= D(A)∩D(B) or D(AB)= B−1(D(A))
can be trivial, that is, equals to zero set. On the other hand if A,B ∈C(H), then A+B
and AB are not generally closed on H even if strong conditions are imposed on A and
B [3]. To avoid the problems with closures of sums, products and limits, some authors
have tried to weaken the closedness of operators ([5], [6], [23]), other authors gave
sufficient topological conditions on the graph of two operators of C(H) so that their
sums and products remain in C(H) ([21], [22], [3]). Nevertheless, the sums, products
and limits of closed operators are necessarely almost closed operators or quotient of
bounded linear operators, these notions will be defined in the next paragraph (for more
details, the interested reader can consult [16], [23]). The class of almost closed opera-
tors contains C(H), but there exists almost closed operators which are not closable and
closable operators which are not almost closed [23].

On one hand, C(H) equiped with the metric g called “gap” metric becomes a non
complete metric space

g(A,B) =
∥∥PG(A)−PG(B)

∥∥
B(H×H) , A,B ∈C(H)

PG(A) and PG(B) denote respectively the orthogonal projection in H ×H on the graph
G(A) of A and the graph G(B) of B. Fernandez Miranda and Labrousse [9] have
shown that the completion of C(H) for the topology defined by the metric g intersects
the set of closed linear relations on H (ie the set of closed linear subspaces of H ×H
of infinite dimension and codimension), where closed linear operators are identified
as linear relations via their graphs. The topology induced by g on C(H) has good
properties concerning the stability of the index of operators with index, but the results
are not as good as regards the stability of the spectrum of an operator. For application,
it is shown that it is necessary to have other metrics on C(H), which are more practical.
Indeed, to be able to refine the completion of C(H) from g , several metrics strictly
stronger than the gap metric were defined on the space of almost closed operators on H
by using in particular the quotient representation of bounded operators [15]. It becomes
interesting to compare the completion of C(H) for these metrics with the space of
almost closed operators on H . In other words, is it possible to determine a metric on
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C(H) such as the completion of C(H) with respect to this metric coincide with the
space of almost closed operaors on H ?.

On the other hand, some boundary and initial value problems in the partial dif-
ferential equations theory lead to an abstract Cauchy problem of type du

dt = Au(t) ,
t ∈ [0,T [, T � ∞, u(0)= x in function spaces on [0,T [×Ω (Ω⊆Rn ), u(t)= u(t, .)∈E
a complex Banach space, such that the operator A with domain D(A) is not closable
on E (see e.g. [4] for Feedback control equations and [2, 8, 12, 20]). It is known that
a lot of information on the abstract Cauchy problem is contained in E and in particular
in the domain of A, so it means that the change of the structure of E or that of D(A)
can strongly influence the character of the study of these problems. It is rather suitable
to consider the graph of A in an auxiliary Banach space EB ×E, where A ⊂ B, B is
bounded from the Banach space EB into E and D(A) ⊂ EB ↪→ E (EB is continuously
embedded in E ).

Another way of treating these questions consists in defining a space of unbounded
linear operators on H (or E ) containing the set of all closable linear operators on H. We
introduce in this paper the notion of almost closable linear operators on Hilbert and Ba-
nach spaces by almost closed extensions. This new class of operators is strictly included
in the set of all unbounded linear operators, it is closed under addition, composition,
inversion, restriction, limits and integrals. We give some interesting characterizations
of these operators and we represent them by means of the products of linear opera-
tors. Finally we introduce a locally convex Hausdorff topology in the set of all almost
closable operators and investigate the topological structure by using the decomposition
method of almost closable operators. This topology on C(H) is strictly stronger than
that induced from the gap metric g and it coincide with the uniform operator topology
on B(H).

Our paper is organized as follows:
In section 2, we recall the concept of almost closed linear operators.
In section 3, we give some preliminary results on almost closed extensions in

which our investigation will be done. Afterward, we define and characterize almost
closable linear operators on a Hilbert space.

In section 4, we generalize the concept of almost closable linear operators to Ba-
nach spaces. Here it is shown that the class of almost closable linear operators with
respect to a fixed Banach space is invariant under restriction, finite compositions, finite
and infinite sums, limits and integrals.

In section 5, we introduce a locally convex Hausdorff topology on the set of al-
most closable linear operators. The sum and the product are particularly continuous
mappings on the set of almost closable operators.

2. Almost closed operators

In this section, we mention the basic results about almost closed operators. These
operators were studied by several authors, they were often called by different names.
Dixmier uses in [6] the term “Julia operators”, Agmon and Nirenberg introduce them in
[1] under the name “relatively closed operators”, they are called respectively “operator
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ranges” by Fillmore and Williams in [10], “paracomplete operators” by Labrousse in
[17] and “semiclosed operators” by Foias [11], Caradus [5] and Kaufman [16]. Kauf-
man uses also the term “quotient of bounded operators”, finally Messirdi and al. named
them “almost closed operators” in [23].

DEFINITION 1. A linear operator A with domain D(A) is called almost closed on
H if there exists an inner product [., .]A on D(A) such that the auxiliary space HA =
(D(A), [., .]A) is complete and that the inclusion mapping i : HA → H is continuous
with respect to the norm ‖.‖A induced by [., .]A (we write HA ↪→H ) and A∈ B(HA,H).

Obviously, if HA is a Hilbert space, then A is almost closed if and only if the
graph G(A) of A is closed in HA ×H, thus if (xn)n converges to x in HA and (Axn)n

converges to y in H , then x ∈ D(A) and y = Ax.
An almost closed operator can be also characterized by means of the almost closed

subspaces or operator ranges. Let M be a subspace of H , M is said to be an al-
most closed subspace in H, if there exists an inner product 〈., .〉M on M such that
M is complete with respect to 〈., .〉M and that (M,〈., .〉M) is continuously embedded in
(H,〈., .〉H). Fillmore and Williams established the relationship between almost closed
subspaces and operator ranges, they showed in [10] that M is almost closed in H if and
only if M is the range of a member of B(H). Hence we have the following result:

THEOREM 1. Let A: D(A) → H be a linear operator with a domain D(A) ⊆ H.
Then the following conditions are equivalent.

1) A is almost closed operator on H.
2) D(A) is an almost closed subspace of H such that A is bounded with respect

to some Hilbert space norm on D(A).
3) The graph G(A) of A is an almost closed subspace in H ×H.

Let AC(H) be the set of all almost closed operators on H. It is known that AC(H)
is the smallest family containing the closed operators on H that is closed under prod-
ucts, limits, and at most countable sums. Each almost closed operator on H with closed
domain is bounded, this is the almost closed theorem. Furthermore, if A ∈ AC(H),
then N(A) is a closed linear subspace of the auxiliary Hilbert space HA ; in particular,
if R(A) = H and A is invertible then A−1 ∈ B(H).

Nevertheless, Messirdi and al. showed in [23], by means of typical examples, that
there is no link between closable operators and those almost closed. Effectively, there
exists almost closed operators which are not closable and closable operators which are
not almost closed.

By using the following lemma of Mac Nearney [19],

LEMMA 2. ([19]) Let A∈ AC(H). Then, there exist a unique linear bounded and
positive operator B on H and a inner product 〈., .〉′ on the domain D(A) of A for which
(D(A),〈., .〉′) is complete and continuously included in H , such that R(B) = D(A) and
〈x,y〉′ = 〈B−1x,B−1y

〉
H , for all x,y ∈ D(A).

Kaufman obtained in [15] a quotient representation of almost closed operators.
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THEOREM 2. Let A be a linear operator in H with domain D(A). Then A ∈
AC(H) if and only if there is a member (B,C) of B(H)× B(H) such that A is the
quotient C/B on H (in other words, under the kernel condition N(B) ⊂ N(C), C/B is
the unbounded linear operator defined on R(B) by the mapping Bx →Cx, x ∈ H ).

Note that AC(H) is not a vector space because the uniqueness of the zero element
as quotient operator does not hold. Almost closedness is invariant under sums, products
and limits, and this characteristic persists in other useful ways as follows (see [5], [16],
and [23]):

THEOREM 3. Let A ∈ AC(H). Then,
1) R(A) is almost closed subspace of H.
2) The image and the inverse image under A of every almost closed subspace of

H is an almost closed subspace of H .
3) The restriction of A to every almost closed subspace of H included in D(A) is

an almost closed operator on H.
4) (A+B)∈AC(H) if and only if B is A-relatively bounded with A-bound smaller

than 1.
5) If A is invertible its inverse A−1 is in AC(H).
6) There is B,C ∈ B(H) such that R(B) = R(C) = D(A) and A = B−1 +C−1

7) If B is a closed operator on H with D(B)⊂D(A) , B+λA is an analytic family
of closed operators on H for sufficiently small complex number λ .

We recall that the operator B is A-relatively bounded if D(A) ⊂ D(B) and there
are nonnegative constants a and b so that

‖Bx‖H � a‖Ax‖H +b‖x‖H for all x ∈ D(A) (2.1)

We call the greatest lower bound a0 of all possible a for which (2.1) holds the
A-bound of B . We say that B is directly A-bounded if (2.1) is satisfied with b = 0.

To end this section we recall the topological structure defined on AC(H) by Caradus
[5], we examine in particular this structure on the space C(H) . We know that if
A ∈ AC(H) then A is represented by a quotient B/A+ of bounded operators on H
where A+ is unique and positive on H and ‖A‖B(HA,H) = ‖B‖B(H) , HA is the auxiliary
space of A .

Consider α be the correpondence between almost closed operators A and the
associated positive bounded operators A+. Such operator A ∈ AC(H) is uniquely rep-
resented up to α by a quotient B/A+, so that we denote A

α= B/A+. Let’s define a
δ−neighborhood for δ > 0 of an almost closed operator A

α= B/A+ on H by:

V (A,α,δ ) = {T ∈ AC(H) ; T
α= C/A+ , ‖B−C‖B(H) < δ}

= {T ∈ AC(H) ; D(A) = D(T ) , ‖A−T‖B(HA,H) < δ} (2.2)

and consider the topology τ induced from the neighborhood system as above. τ is
a locally convex Hausdorff topology in the set AC(H) and is independent from the
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correspondence α . In fact, AC(H) becomes metrizable by means of the metric

m(A,T ) =

{
1 if D(A) 	= D(T )
‖A−T‖B(HA ,H)

1+‖A−T‖B(HA ,H)
if D(A) = D(T ) (2.3)

A sequence (An)n converges to A in AC(H) for the metric m if and only if the
domain of An coincides with the domain of A for sufficiently large n and

lim
n→∞

‖An−A‖B(HA,H) = 0,

HA is the auxiliary space concerning the common domain.

THEOREM 4. ([7]) In C(H), the topology induced from the metric m is strictly
stronger than that induced from the gap metric g. B(H) is a connected component of
AC(H) and C(H) is open in AC(H).

In particular, the addition and the scalar multiplication in the set AC(H) are con-
tinuous, and that the multiplication from the left side is continuous.

Let A ∈C(H). In [15] Kaufman showed that A = Γ(B) = B/(I−B∗B)1/2 with a
unique positive pure contraction B ∈C0(H) = {S ∈ B(H) : ‖S‖� 1 and N(I−B∗B) =
{0}}, where Γ is a reversible function from C0(H) onto C(H) with inverse function
defined by Γ−1(A) = A(I + A∗A)−1/2 . The related convergence in the space C(H) ,
called quotient-convergence, is defined as follows: An = Bn/(I −B∗

nBn)1/2 converges
to A = B/(I−B∗B)1/2 if Bn converges to B in B(H) where Bn,B ∈C0(H).

The orthogonal projection PG(A) : H ×H → H ×H on the graph G(A) of the

quotient operator A = B/(I−B∗B)1/2 can be described through the following matrix:

PG(A) =
(

(I−B∗B) (I−B∗B)1/2B∗

B(I−B∗B)1/2 BB∗

)
(2.4)

Consequently, if Bn converges to B in B(H), then we have

(I−B∗
nBn)1/2B∗

n → (I−B∗B)1/2B∗,

and this assures the convergence PG(An) → PG(A) as n → ∞ , or lim
n→∞

g(A,An) = 0.

On the other hand, let us remind the reader that if A∈C(H) then RA = (1+A∗A)−1

exists as a bounded self-adjoint positive operator with domain D(RA) = H , ARAx =
RA∗Ax for all x ∈ D(A), ‖RA‖B(H) � 1 and ‖ARA‖B(H) � 1. PG(A) is also represented
by the matrix (see Proposition 1.3, [18]):

PG(A) =
(

RA A∗RA∗
ARA I−RA∗

)
(2.5)

Let us define the operators An on the space l2 of square-summable complex se-
quences by:

[An(x)]k =
{

kxk if k < n
−kxk if k � n

(2.6)
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and
[A(x)]k = kxk , k ∈ N (2.7)

on the natural domain D(A) = {x ∈ l2 :
∞
∑

k=0
k2 |xk|2 < +∞}. Then, A,An ∈C(l2), A∗ =

A, A∗
n = An and [RA(x)]k = [RA∗(x)]k = [RAn(x)]k = [RA∗

n(x)]k = (1 + k2)−1xk for all
n ∈ N .

[AnRAn(x)]k = [A∗
nRA∗

n(x)]k =
{

k(1+ k2)−1xk if k < n
−k(1+ k2)−1xk if k � n

We see from (2.5) that g(A,An) = ‖ARA−AnRAn‖B(H) � 2n(1+n2)−1. Thus, the
sequence (An)n converges to A for g but does not converge to the same limit for the
quotient-convergence. Indeed, An = Γ(Bn) and A = Γ(B), where Bn = Γ−1(An) =
An
√

RAn and B = Γ−1(A) = A
√

RA are contractions corresponding to An and A re-
spectively. Let us notice that ‖Bn‖B(H) � 1, ‖B‖B(H) � 1, N(I − B∗

nBn) = N(I −
A∗

n
√

RA∗
n
An
√

RAn)= N(RAn)= {0} and N(I−B∗B)= N(I−A∗√RA∗A
√

RA)= N(RA)=
{0}. Thus, B,Bn ∈C0(l2), for all n ∈ N.

[Bn(x)]k = [B∗
n(x)]k =

{
k(1+ k2)−1/2xk if k < n
−k(1+ k2)−1/2xk if k � n

and
[B(x)]k = k(1+ k2)−1/2xk , k ∈ N

As, ‖Bn−B‖B(H) =
∥∥An

√
RAn −A

√
RA
∥∥

B(H) � 2n(1+ n2)−1/2 → 2, then (An)n

does not converge to the same limit for quotient-convergence.
We have then shown the following fundamental result:

THEOREM 5. The topology induced on C(H) by quotient-convergence is strictly
stronger than the topolgy induced from the gap metric g.

3. Almost closable operators

Let A be an unbounded operator on H . Is it possible to extend A to an almost
closed linear operator on H ? This question was essentially raised by Caradus [5]
when the Hilbert space H is supposed separable, it was afterward studied by Kaufman
[16] in a more general situation.

THEOREM 6. ([5]) If A is almost closed on a separable Hilbert space H , then A
has a densely defined almost closed extension.

If H is not necessarily separable Hilbert space, Kaufman claimed that with ade-
quate assumptions on A the above question is affirmative.

THEOREM 7. ([16]) Let A be an operator on H. Then the following conditions
are equivalent.

1) A has an almost closed extension on H.
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2) A is directly B−1 -bounded where B ∈ B(H).
3) A is directly B-bounded where B is a selfadjoint operator on H.
4) A is directly B-bounded where B is a closed operator on H.
5) A is directly B-bounded where B ∈ AC(H).

Technically, Kaufman proved that given any countable linearly independent subset
M of H and any linear operator A defined from the subspace spanM of H, spanned
by M , to H there is an extension of A which is in AC(H). This last result is a conse-
quence of the following more general theorem of existence of almost closed extensions
of linear operators.

THEOREM 8. ([16]) Let A be an unbounded linear operator on H with domain
D(A). Suppose that there exists a monotonic collection M of closed subspaces of H
such that M covers D(A) and for each M in M , the restriction of A to M∩D(A) is
bounded. Then A has an almost closed extension on H.

Let us observe now that the linear span of a countable linearly independent subset
(ek)k∈N of H is the union of monotonically increasing sequence of the finite dimen-
sional spaces Mk = span{e j : j � k}, k ∈ N. As immediate consequence of the Theo-
rem 8, we deduct that each linear operator from the linear span of a countable linearly
independent subset of H into H has an extension in AC(H).

REMARK 1. It is an interesting problem to construct an operator on H with no
almost closed extension on H. We shall treat this question in the following section by
using the well-known fact that there is an unbounded linear functional defined on each
infinite dimensional Hilbert space. The construction of such a linear functional may use
a Hamel basis for the infinite dimensional Hilbert space. The existence of Hamel bases
uses a Zorn’s Lemma argument.

The idea developed now consists in defining, by means of the extensions of almost
closed operators, another class of unbounded linear operators on H called almost clos-
able operators, containing the class AC(H) and the set of all closable operators on H.
This new class of operators is closed under restriction, addition and composition. We
give some interesting characterizations of almost closable operators and we represent
them by means of the product of closable operators.

DEFINITION 2. Let A : D(A) −→ H be a linear operator with a domain D(A) ⊆
H. A is said to be almost closable operator on H if A admits an almost closed extension
on H.

Thus, A is almost closable on H if and only if there exists B ∈ AC(H) such that
A ⊂ B or equivalently G(A) ⊂ G(B). As G(B) is almost closed in H ×H, we can
say in this case that G(A) is almost closable subspace of H ×H. In other words, A is
almost closable on H if and only if A ⊂ B such that there exists an inner product [., .]B
on D(B) for which the auxiliary space HB = (D(B), [., .]B) is complete, HB ↪→ H and
B ∈ B(HB,H). In particular if (D(A), [., .]B) is complete then A is almost closed on
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H. Consequently, if A is almost closable with an extension B in AC(H) and auxiliary
space HB such that (D(A), [., .]B) is complete in HB, then for every sequence (xn)n∈N

of elements in D(A) such that xn → x in HB and Axn → y in HB , we have x ∈ D(A)
and Ax = y. As the topology induced by HB is finer than that induced by that of H,
one can see that every set of HB closed for the topology of H is also closed in HB for

the topology of HB and G(A)
HB×H ⊂ G(A)

H×H
. Thus, almost closability consists of

refining the closure of the graph G(A) of A by renorming D(A) using the Hilbertian
structure of the auxiliary space. This change of topology makes it possible to extract

from G(A)
H×H

all singular vectors (0,v) , v ∈ H and v 	= 0.
Almost closable operators are unbounded operators A on H on which one imposes

a topological condition that is finer than that in H, inspired from almost closed opera-
tors. This condition allows these operators to have bounded extensions on intermediate
Hilbert spaces between the domain D(A) of A and H.

Since every closed operator is almost closed, it is clear that all closable operators
are almost closable but there exists almost closable operators A on H which are not
closable if, for example, the graph G(A) of A is dense in H ⊕H. As an example of
almost closable operator but not closable, we can consider a separable infinite dimen-
sional Hilbert space with an orthonormal basis (en)n∈N and

D = {x ∈ H ;
∞

∑
n=1

n4 |〈x,en〉|2 < +∞} , y =
∞

∑
n=2

n−1en

Define the operators B in B(H) by Bx = 〈x,y〉y ; and A with the domain D, which
is dense in H, by

Ax =
∞

∑
n=2

n2 〈x,en〉en (x ∈ D)

Then A is a closed densely defined linear operator in H , BA isn’t closable (cf.
Problem 2.8.43 of [13]) but BA is almost closable in H . As mentioned above, we
can also construct closable (then almost closable) linear operators which are not almost
closed [23].

We denote by ACl(H) (resp. Cl(H)) the set of all almost closable (resp. the set of
all closable) operators on H . We have by definition the following inclusions:

B(H) ⊂C(H) ⊂ AC(H) ⊂ ACl(H) and B(H) ⊂C(H) ⊂Cl(H) ⊂ ACl(H)

An important class of almost closable operators are sums and products of closable
operators on a Hilbert space. In general, the sum A+B and the product AB of closable
operators need not be closable in H. However, A + B and AB are almost closable
when D(A)∩D(B) and D(AB) are not trivial, if we take the auxiliary spaces HA+B =
(D(A)∩D(B), [., .]A+B) and HAB = (D(AB), [., .]AB), where

[x,y]
A+B

= 〈x,y〉G(A) + 〈x,y〉G(B) , x,y ∈ D(A)∩D(B)

[x,y]AB = 〈x,y〉G(B) +
〈
Bx,By

〉
G(A) , x,y ∈ D(AB) (3.1)
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Clearly, HA+B and HAB are Hilbert spaces, HA+B ↪→ H , HAB ↪→ H and A + B ∈
B(HA+B,H), AB ∈ B(HAB,H). Thus, A + B and AB are respectively almost closed
extensions of A+B and AB on H, what shows that A+B, AB ∈ ACl(H).

There are also unbounded linear operators which are not almost closable, we so
show the following general result:

THEOREM 9. On every infinite dimensional complex Hilbert space we can define
linear operators who are not almost closable.

Proof. Let H be an infinite dimensional complex Hilbert space, we can always
find an unbounded linear operator A on H with domain D(A) = H . Indeed, it is well-
known that there exists an unbounded linear functional f defined on H, that is, there
is a linear functional f : H −→ C such that f is unbounded. Let ω ∈ H, ω 	= 0, and
let Ax = f (x)ω for each x in H . It is clear that A is an unbounded linear operator
and D(A) = H . Now, if A is an unbounded linear operator defined on H with domain
D(A) = H, then A cannot be extended to an almost closed operator on H. Indeed,
if A′ is an almost closed extension of A then D(A) = D(A′) = H and A′ is bounded
from HA′ to H where HA′ is the auxiliary Hilbert space of A′ . Thus, HA′ and H
are isometrically isomorphic Hilbert spaces because the injection from HA′ to H is
necessarily bicontinuous by the inverse mapping theorem and then A ∈ B(H) which is
a contradiction. �

Some fundamental properties related to almost closability are an immediate con-
sequence of definition 2 which are summarized as follows:

THEOREM 10. Let A ∈ ACl(H) with the associated almost closed extension B of
A and the auxiliary Hilbert space HB. Then,

1. N(A)
HB ⊂N(B)∩N(A) where N(A)

HB is the closure of N(A) with respect to the
topology of HB.

2. If D(A) = H, then A = B ∈ B(H).

3. If B is invertible then A−1 ∈ ACl(H). Furthermore, if R(A) = H then A−1 ∈
B(H).

4. There exists A0 ∈ B(HB,H) and C closable on HB such that A = A0C on D(A).

5. If H0 is a Hilbert space such that D(A) ⊆ H0 ↪→ HB, then A is almost closable
from H0 to H.

Proof. 1) The assertion is true since B is bounded from HB to H.
2) Indeed, the topologies induced on H by the norms of H and HB are equivalent,

then A ∈ B(H) since B ∈ B(HB,H).
3) Since B is an invertible extension of A, then A is also invertible and D(B−1) =

R(B) is a Hilbert space, denoted H−1, for the inner product

[y,z]−1 = 〈y,z〉H +[B−1y,B−1z]B (3.2)
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where [., .]B is the inner product of HB. B−1 is bounded from H−1 to H and thus is an
almost closed extension of A−1 which means that A−1 is almost closable on H.

4) We adopt here the same idea used in ([16], p. 69) by means of the Lemma 2.
Since B is bounded from HB to H, let

〈x,y〉′ = [x,y]B + 〈Bx,By〉H , x,y ∈ D(B) (3.3)

H ′
B = (D(B),〈., .〉′) is a Hilbert space and we have for all x ∈ D(B),

max([x,x]B;‖Bx‖2
H) � 〈x,x〉′ ,

thus H ′
B ↪→ HB ↪→ H and B ∈ B(H ′

B,H). It follows that there exists a nonnegative
operator B0 ∈ B(HB) such that R(B0) = D(B) and for all x,y ∈ D(B) ,

〈x,y〉′ = [B−1
0 x,B−1

0 y]B (3.4)

Let C = B−1
0 ( C is positive and bounded in HB ), and A0 = BB0. Then B = A0C. For

all x in HB we have ‖A0x‖2
H = ‖BB0x‖2

H � 〈B0x,B0x〉′ � [x,x]B. Thus, A0 ∈ B(HB,H),
A = B|D(A) = A0C|D(A) = A0(C|D(A)) where the restriction C|D(A) is closable from D(A)
to HB with closure equal to C.

5) Let i the identity operator from H0 to HB. Since Bi = B|H0
is bounded on H0,

then A ∈ ACl(H0). �

REMARK 2. By virtue of 4) Theorem 10, we can represent every almost closable
operator by a quotient of unbounded linear operators and conversely. We shall treat this
question in a forthcoming paper.

Our first main result consists of verifying that sums and products of almost clos-
able operators are also almost closable operators.

THEOREM 11. Let A,B ∈ ACl(H) such that D(A)∩D(B) and D(AB) are not
trivial sets, then A+B, AB ∈ ACl(H).

Proof. If A′ and B′ are respectively the almost closed extensions of A and B on
H, using the fact that A′ and B′ are bounded from the corresponding auxiliary Hilbert
spaces HA′ = (D(A′), [., .]A′) and HB′ = (D(B′), [., .]B′), we take HA′+B′ = (D(A′)∩
D(B′), [., .]A′+B′) and HA′B′ = (D(A′B′), [., .]A′B′) where

[x,y]A′+B′ = [x,y]A′ +[x,y]B′ +
〈
A′x,A′y

〉
H +

〈
B′x,B′y

〉
H , x,y ∈ D(A′)∩D(B′),

[x,y]A′B′ = [x,y]B′ +[B′x,B′y]A′ +
〈
A′B′x,A′B′y

〉
H x,y ∈ D(A′B′) (3.5)

Clearly HA′+B′ and HA′B′ are Hilbert spaces continuously embedded in H . A′ + B′
and A′B′ are respectively almost closed extensions of A+B and AB (see [23]), which
means that A+B and AB are almost closable on H . �
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4. Almost closable operators on Banach spaces

The definition of almost closable operator on an infinite dimensional complex Ba-
nach space (E,‖.‖E) is similar to that given, in the previous section, in Hilbert space
case. A linear operator defined on E with domain D(A) is said almost closable on E
if and only if it possesses an almost closed extension B on E. B almost closed on E
means that there exists a norm ‖.‖B on D(B) such that EB = (D(B),‖.‖B) is a Banach
space, EB ↪→ E and B is bounded from EB to E. All properties satisfied by almost
closable operators on a Hilbert space stay true in the Banach space’s case. However,
some new results are technically valid on Banach spaces and that we have to use in
certain applications [12]. We use in this section all of the previous notations with the
Hilbert space H replaced by a Banach space E.

REMARK 3. Let A′ and B′ be the respective almost closed extensions of linear
unbounded operators A and B on E such that B′ is A′ -relatively bounded with A′ -
bound smaller than 1. Then, from a result of [23], A is almost closable on E if and
only if (A+B) is almost closable on E. The relative boundedness of B with respect to
A is not sufficient to insure this result.

We establish in what follows other main results of this paper, that the class of
almost closable operators with respect to a fixed Banach space is also invariant under
limits, infinite sums and integrals.

THEOREM 12. For all ε > 0, let Aε ∈ ACl(E) with the extension Bε ∈ AC(E)
and the auxiliary Banach space Eε =(D(Bε ),‖.‖Bε

). Assume that there exists a Banach
space L such that L ↪→ Eε for all ε > 0 and sup

ε>0
‖Aεx‖E < +∞, for all x ∈ L. Then,

Ax = lim
ε→0

Aεx with domain

D(A) =

{
x ∈
(⋂

ε>0

D(Aε)

)
∩L: lim

ε→0
Aεx exists in E

}
(4.1)

is almost closable linear operator on E.

Proof. Let us define Bx = lim
ε→0

Bεx on

D(B) =

{
x ∈
(⋂

ε>0

D(Bε)

)
∩L: lim

ε→0
Bεx exists in E and sup

ε>0
‖Bεx‖E < +∞

}

Then clearly, ‖x‖B = ‖x‖L + sup
ε>0

‖Bεx‖E is a norm on D(B), we show that F =

(D(B),‖.‖B) is complete. Let (xn)n∈N be a Cauchy sequence in F. Then (xn)n∈N is
Cauchy in L , E and Eε for each ε > 0, and (Bεxn)n∈N is Cauchy in E for all ε > 0.
Thus, (xn)n∈N converges to x in L , E and Eε for each ε > 0, and (Bεxn)n∈N converges
in E for each ε > 0. Since (xn)n∈N is a Cauchy sequence in F , there exists a real
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number M such that ‖xn‖B � M for each n in N. Hence ‖Bεxn‖E � ‖xn‖B � M for
each n in N and for each ε > 0. Then, since xn → x in Eε , ‖Bεx‖E = lim

n→∞
‖Bεxn‖E �

M for each ε > 0. It follows that sup
ε>0

‖Bεx‖E � M.

Let yn = lim
ε→0

Bεxn for each n in N. Let δ > 0. There is a natural number N

such that ‖xm − xn‖B < δ
3 for m,n � N. Hence ‖Bεxm −Bεxn‖E � ‖xm − xn‖B < δ

3 for
m,n � N and for each ε > 0. Fix m � N and n � N. There exists δ0 > 0 such that
‖ym −Bεxm‖E < δ

3 and ‖yn−Bεxn‖E < δ
3 for 0 < ε < δ0. Fix ε, 0 < ε < δ0 . Then,

for each m,n � N,

‖ym − yn‖E � ‖ym −Bεxm‖E +‖Bεxm −Bεxn‖E +‖Bεxn− yn‖E

<
δ
3

+
δ
3

+
δ
3

= δ

Hence (yn)n∈N is Cauchy in E . There exists y in E such that yn → y in E.
Let δ > 0. Then, there exists a natural number N such that ‖xm − xn‖B < δ

3 for

all m,n � N . Thus ‖Bεxm −Bεxn‖E � ‖xm − xn‖B < δ
3 for m,n � N and for all ε > 0.

Hence ‖Bεx−Bεxn‖E = lim
m→∞

‖Bεxm −Bεxn‖E � δ
3 for each n � N and for each ε > 0.

So, for each n � N,

‖Bεx− y‖E � ‖Bεx−Bεxn‖E +‖Bεxn − yn‖E +‖yn− y‖E

� δ
3

+‖Bεxn− yn‖E +‖yn− y‖E

Choose n � N such that ‖yn− y‖E < δ
3 . There exists t > 0 such that ‖Bεxn− yn‖E < δ

3
for 0 < ε < t. So ‖Bεx− y‖E < δ for all ε > 0 satisfying 0 < ε < t. Hence lim

ε→0
Bεx = y

in E. It follows that x ∈ F. It is straight forward to show that ‖x− xn‖B → 0. Conse-
quently, F is a Banach space and F ↪→ E . It remains to show that B is bounded from
F to E. Let (xn)n∈N ⊂ D(B) converge to 0 in F. Then, (xn)n∈N converges to 0 in L ,
Eε and E for all ε > 0, in particular (Bεxn)n∈N converges to 0 in E uniformly with re-
spect to ε > 0. Thus, we can permute the limits and obtain lim

n→∞
Bxn = lim

n→∞
(lim

ε→0
Bεxn) =

lim
ε→0

( lim
n→∞

Bεxn) = 0 since Bε is bounded from Eε to E. Consequently, B is an almost

closed extension on E of A. �

THEOREM 13. Let An ∈ACl(E) with the extension Bn ∈ AC(E) and the auxiliary
Banach space En = (D(Bn),‖.‖Bn

) for all n ∈ N . Suppose that L is a Banach space

such that L ↪→ En for all n ∈ N. Then, Ax =
∞
∑

n=0
Anx with domain

D(A) =

{
x ∈
(⋂

n∈N

D(An)

)
∩L:

∞

∑
n=0

Anx exists in E

}
(4.2)

is almost closable linear operator on E.
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Proof. Let Bx =
∞
∑

n=0
Bnx with domain

D(B) =

{
x ∈
(⋂

n∈N

D(Bn)

)
∩L:

∞

∑
n=0

Bnx exists in E

}

and ‖x‖B = ‖x‖L + sup
N∈N

∥∥∥∥ N
∑

n=0
Bnx

∥∥∥∥
E
. Define SN =

N
∑

n=0
Bn with domain

D(SN) =

(
N⋂

n=0

D(Bn)

)
∩L, N ∈ N.

It follows from Theorem 11, that SN is almost closed on E if

(
N⋂

n=0
D(Bn)

)
∩L is the

associated auxiliary Banach space with the norm ‖x‖SN
= ‖x‖L+‖SNx‖E , N ∈N. First

we show that F = (D(B),‖x‖B) is a Banach space. Clearly ‖x‖B is a norm on D(B) .
On the other hand if (xk)k∈N is a Cauchy sequence in F, then (xk)k∈N converges to x
in L, En and E for all n ∈ N. Hence, x ∈ D(Bn)∩L and lim

k→+∞
Bnxk = Bnx, by virtue

of the boundedness of Bn from En to E for all n ∈ N. (xk)k∈N is in particular bounded
in F, then there exists M > 0 such that for all k ∈ N,

sup
N∈N

‖SNx‖E � ‖xk‖B � M

One needs to show now that
∞
∑
i=0

Bix exists in E. Let ε > 0. There exists a natural

number N such that ‖Snxm −Snxk‖E � ‖xm − xk‖B < ε
3 for m,k � N for all n in

N. Hence ‖Snx−Snxk‖E = lim
m→∞

‖Snxm −Snxk‖E � ε
3 for k � N and for every natu-

ral number n . Fix k � N . Since lim
n→∞

Snxk exists, there exist N0 in N, N0 � N , such

that ‖Smxk −Snxk‖E < ε
3 for all m,n � N0. Thus ‖Smx−Snx‖E � ‖Smx−Smxk‖E +

‖Smxk −Snxk‖E +‖Snxk −Snx‖E < ε
3 + ε

3 + ε
3 = ε for all m,n � N0.

It follows that (Snx)n∈N
is a Cauchy sequence in E . Hence

∞
∑
i=0

Bix = lim
n→∞

Snx

exists in E . Hence x ∈ D(B). As consequence, there exists k0 ∈ N such that for all
m,k � k0,

‖xm − xk‖L � ε
2

and sup
n∈N

‖Snxm −Snxk‖E � ε
2

, ε > 0

Thus, for all m,k � k0,

‖xm − x‖B = ‖xm − x‖L + supn∈N limk→∞ ‖Snxm −Snxk‖E

� ‖xm − x‖L +‖xm − xk‖B � ε

Hence, F is a Banach space and F ↪→ E. On the other hand, F ↪→ (D(SN),‖.‖SN
) for

all N ∈ N. Obviously, Ax = lim
N→∞

SNx and

D(B) =

{
x ∈
(⋂

n∈N

D(Sn)

)
∩L: lim

N→∞
SNx exists

}
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Then, according to Theorem 12 we conclude that B is an almost closed extension of
A. �

THEOREM 14. Let J be a (Lebesgue) measurable subset of R and At ∈ ACl(E)
with an extension Bt ∈ AC(E) and the associated auxiliary Banach space
Et = (D(Bt),‖.‖Bt

) for all t ∈ J. Let Ax =
∫
J

Atxdt with domain

D(A) =

{
x ∈
(⋂

t∈J

D(At)

)
∩L : Atx ∈ L1(J,E)

}

where L is a Banach space such that L ↪→ Et for all t ∈ J. Then, A ∈ ACl(E) with the
almost closed extension Bx =

∫
J

Btxdt defined on E of domain

EB =

{
x ∈
(⋂

t∈J

D(Bt)

)
∩L : Btx ∈ L1(J,E)

}
(4.3)

equipped with the norm ‖x‖EB
= ‖x‖L +

∫
J
‖Btx‖E dt .

Proof. Let (xn)n∈N a Cauchy sequence in EB. Then, (xn)n∈N and (Btxn)n∈N are
Cauchy sequences respectively in E and L1(J,E) . Hence xn → x in L and there exists
a function yt ∈ L1(J,E) such that Btxn → yt in L1(J,E) . So, since ‖Btxn− yt‖E → 0 in
L1(J,R), there exists a subsequence (xnk)k∈N for which

∥∥Btxnk − yt
∥∥

E → 0 converges
pointwise almost everywhere in L1(J,R), that is, Btxn → yt converges pointwise almost
everywhere in E . The boundedness of Bt from Et into E implies that x ∈ D(Bt) and
Btx = yt for almost all t ∈ J . Consequently, Btx ∈ L1(J,E) and therefore x ∈ EB .
Furthermore, ‖xn− x‖EB

= ‖xn − x‖L +
∫
J
‖Btxn− yt‖E dt → 0 as n → ∞. Thus, EB is

a Banach space and EB ↪→ E . Since

‖Bx−Bxn‖E =

∥∥∥∥∥∥
∫
J

(Btx−Btxn)dt

∥∥∥∥∥∥
E

�
∫
J

‖Btx−Btxn‖E dt � ‖x− xn‖EB

it follows that B is a bounded extension of A from EB into E . �

5. Topology in the class of almost closable operators

We introduce in this section a topology in the class ACl(E) of all almost closable
linear operators on E. We use here the constructions made by Caradus in [5]. Let
A∈ ACl(E) with the almost closed extension B on the auxilliary Banach space EB and
suppose α denotes a canonical decomposition A = A0C for A on D(A) according to
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4) of Theorem 10, we use the notation A = A0C[EB] to represent this decomposition. It
is clear that, given A, the space EB is unique up to isomorphism. For ε > 0, we define
an ε -neighborhood of an almost closable operator A = A0C[EB] by

V (A;α,ε) = {S ∈ ACl(E): D(S) = D(A), S has a canonical

decomposition S = Ã0C[EB] and
∥∥∥A0− Ã0

∥∥∥
B(EB,E)

< ε} (5.1)

The family {V (A;α,ε): A ∈ ACl(E) and ε > 0} constitute a subbasis of ACl(E)
since

⋃{V (A;α,ε): A ∈ ACl(E) and ε > 0}= ACl(E). The topology τα generated by
the subbasis {V (A;α,ε)}ε>0 is the collection of all unions of finite intersections of
elements of {V (A;α,ε)}ε>0 , that is τα is the smallest topology on ACl(E) in which
the elements V (A;α,ε) are open. This definition of ε -neighborhoods is not restrictive
knowing that in the mathematical literature several interesting studies concern some
classes of operators all defined on the same domain, one can consult for example the
recent work of Polakovič and Riečanová [24].

REMARK 4. As any two Banach space norms ‖.‖1 and ‖.‖2 on D(B) which make
D(B) complete are equivalent, then if we take another representation β instead of α
the topologies τα and τβ coincide on ACl(E), for this reason we denote τα by τ.

If T ∈ B(E) , the representation α of T is given by T = TI[E], it resuls then that
τ coincide with the uniform operator topology on B(E). τ coincide on the set C(E),
of all closed densely defined operators on E, with the topology introduced by Caradus
in [5]. Thus, τ is stronger than that induced by the gap metric g on C(E); that is, if
An → A in τ implies g(An,A) → 0 as n → ∞ for An,A ∈C(E).

The topology τ in ACl(E) possesses the following fundamental properties.

THEOREM 15. τ is a locally convex Hausdorff topology on ACl(E).

Proof. We have to show at first that each V (A;α,ε) is convex. Let A(1),A(2) ∈
V (A;α,ε) where A = A0C[EB]. Then, A(1) = A(1)

0 C[EB] and A(2) = A(2)
0 C[EB] with∥∥∥A0−A(1)

0

∥∥∥
B(EB,E)

< ε and
∥∥∥A0−A(2)

0

∥∥∥
B(EB,E)

< ε .

Since λA(1) + (1−λ )A(2) = (λA(1)
0 +(1−λ )A(2)

0 )C[EB] for 0 � λ � 1, then∥∥∥A0− (λA(1)
0 +(1−λ )A(2)

0 )
∥∥∥

B(EB ,E)

=
∥∥∥λ (A0−A(1)

0 )+ (1−λ )(A0−A(2)
0 )
∥∥∥

B(EB ,E)

< λ ε +(1−λ )ε = ε

Hence, λA(1) + (1− λ )A(2) ∈ V (A;α,ε). On the other hand, to establish the Haus-
dorff separability of τ we take A(1),A(2) ∈ ACl(E) such that A(1) 	= A(2). If D(A(1)) 	=
D(A(2)) then V (A(1);α,ε)∩V (A(2);α,ε) = /0 for any ε > 0. If D(A(1)) = D(A(2)), by
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virtue of the previous remark, we can consider A(1) and A(2) with the same represen-

tation α and the same auxiliary space EB, A(1) = A(1)
0 C1[EB] and A(2) = A(2)

0 C2[EB].
Suppose that S ∈V (A(1);α,ε)∩V (A(2);α,ε). So we have D(S) = D(A(1)) = D(A(2)),
S = S1C1[EB] = S2C2[EB],

∥∥∥S1−A(1)
0

∥∥∥
B(EB,E)

< ε and
∥∥∥S2−A(2)

0

∥∥∥
B(EB,E)

< ε. Thus,

for any x ∈ D(A(1)) = D(A(2)), we obtain∥∥∥A(1)x−A(2)x
∥∥∥

E
�
∥∥∥A(1)

0 C1x−S1C1x
∥∥∥

E
+
∥∥∥A(2)

0 C2x−S2C2x
∥∥∥

E

< ε(‖C1x‖EB
+‖C2x‖EB

)

Then, A(1) = A(2), which contradicts the hypothesis. Consequently, V (A(1);α,ε) ∩
V (A(2);α,ε) = /0. �

THEOREM 16. The mappings s: (A(1),A(2))→A(1)+A(2) and p : (A(1),A(2))→
A(1)A(2) are continuous in (ACl(E),τ).

Proof. Let A(1),A(2) ∈ ACl(E). A(1) = A(1)
0 C1[EB1 ] and A(2) = A(2)

0 C2[EB2 ] are
respectively the canonical decompostions α1 and α2 of A(1) and A(2). From the defi-
nition of ε -neighborhoods, we see that

V (A(1);α1,ε1)+V(A(2);α2,ε2) ⊆V (A(1) +A(2);α1 + α2,ε) (5.2)

V (A(1);α1,ε1)V (A(2);α2,ε2) ⊆V (A(1)A(2);α1α2,ε)

with, in each case, M(ε1 +ε2) < ε , where M is a constant depending on A(1) and A(2) .
α1 + α2 and α1α2 are obtained from α1 and α2 by the constructions 4) of Theorem
10. Hence, it follows from (5.2) the continuity of s and p. �
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[6] J. DIXMIER, L’adjoint du produit de deux opérateurs fermés, Ann. Fac. Sci. Toulouse Math. 4ème

série, 11, (1974), 101–106.
[7] G. DJELLOULI, S. MESSIRDI AND B. MESSIRDI, Some stronger topologies for closed operators in

Hilbert space, Int. J. Contemp. Math. Sciences 5, 25 (2010), 1223–1232.



156 S. MESSIRDI, B. MESSIRDI AND M. MESSIRDI

[8] R. ENGEL AND K. J. NAGEL, One-parameter semigroups for linear evolution equations, Graduate
Texts in Mathematics. Springer Verlag, 2000.

[9] M. FERNANDEZ MIRANDA AND J. PH. LABROUSSE,On the closure of the product and sum of linear
relations, Complex Anal. Oper. Theory 6, 3 (2012), 613–624.

[10] P. A. FILLMORE AND J. P. WILLIAMS, On operator ranges, Adv. Math. 7, (1971), 254–281.
[11] C. FOIAS, Invariant semiclosed subspaces, Preprint, Institute of Mathematics, Bucarest, Romania,

1970.
[12] E. HILLE AND R. S. PHILLIPS,Functional Analysis and Semi-Groups, Amer. Math. Soc. Providence,

Rhode Island, 1957.
[13] R. V. KADILON AND J. R. RINGROSE, Fundamentals of the theory of operator algebras (I), Acad.

Press, 1983.
[14] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. Reprint of the

1980 edition.
[15] W. E. KAUFMAN, Representing a closed operator as a quotients of continuous operators, Proc. Amer.

Math. Soc. 72, (1978), 531–534.
[16] W. E. KAUFMAN, Semiclosed operators in Hilbert space, Proc. Amer. Math. Soc. 76, (1979), 67–73.
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