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SPECTRAL ESTIMATES FOR DIRICHLET

LAPLACIANS ON PERTURBED TWISTED TUBES

PAVEL EXNER AND DIANA BARSEGHYAN

Abstract. We investigate Dirichlet Laplacian in a straight twisted tube of a non-circular cross
section, in particular, its discrete spectrum coming from a local slowdown of the twist. We prove
a Lieb-Thirring-type estimate for the spectral moments and present two examples illustrating
how the bound depends on the tube cross section.

1. Introduction

Relations between geometry of a region and spectral properties of operators de-
scribing the corresponding dynamics are a trademark topic of mathematical physics.
A lot of work was done in the last quarter a century about Dirichlet Laplacians in in-
finitely extended tubular regions. A particularly interesting class of problems concerns
properties of twisted tubes.

The fact that twisting of a non-circular tube gives rise to an effective repulsive in-
teraction was noted for the first time in [3], a proper mathematical meaning to this fact
was given through an appropriate Hardy-type inequality [4]. On the other hand, while a
periodic twist of an infinite straight tube raises the threshold of the essential spectrum,
it is natural to expect that its local slowdown will act as an attraction and could thus
give rise to a discrete spectrum of the corresponding Dirichlet Laplacian; in [5] it was
demonstrated that it is indeed the case. The effect has been further investigated, in par-
ticular, the paper [2] analyzed the asymptotic distribution of eigenvalues in case when
the ‘slowdown’ perturbation is infinitely extended and has prescribed decay properties.

In this paper we address another aspect of this spectral problem. We suppose
for simplicity that the perturbation is compactly supported so that the discrete spec-
trum is finite, and we ask about bounds to eigenvalue moments. Using the dimension-
reduction technique of Laptev and Weidl [8] we derive Lieb-Thirring-type inequalities
for moments of order σ > 1/2; for σ � 3/2 these inequalities contain the optimal
semiclassical constant. The role of the potential is at that played by the negative part
of an auxiliary operator acting on the cross section of the tube the coefficients of which
carry the geometric information.

We accompany the general result by a pair of examples illustrating the dependence
of the obtained bound on the tube cross section. Not surprisingly the estimate becomes
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trivial as the cross section turns to a circle; using an elliptical disc we show that the
bound behaves like O

(
εσ+1/2

)
for small values of the eccentricity ε . The second

example is maybe less self-evident: we show that a sufficiently ‘wild’ cross section can
make the bound arbitrarily large even if both the cross section area and its diameter
remain bounded.

2. The Lieb-Thirring type estimate

In this section we first formulate the problem and state the main result, then we
prove it and comment on the spectrum on an auxiliary operator which appears in the
derived inequality.

2.1. The main result

Let ω be an open, bounded and connected Lipschitz domain in R2 , and let θ :
R → R be a differentiable function. For a given s ∈ R and t := (t2,t3) ∈ ω we define
the mapping L : R×ω → R3 by

L(s, t) = (s,t2 cosθ (s)+ t3 sinθ (s),t3 cosθ (s)− t2 sinθ (s)) , (2.1)

which has an obvious meaning of rotating the coordinate frame in the normal plane to
the x -axis at the point s by the angle θ (s) . The image L(R×ω) is a region in R3

which we call a twisted tube if the following two conditions are satisfied:

(i) the function θ is not constant,
(ii) the set ω is not rotationally symmetric with respect to the origin in R2 ;

in particular, the tube is set to be periodically twisted if θ is a linear function.
As we have indicated we are interested in tubes with a local perturbation of the

periodic twisting. Consequently, we shall consider angular function θ such that

θ̇(s) = β (s) = β0− μ(s) , (2.2)

where β0 is a positive constant1 and μ(·) is a positive and bounded function with
suppμ ⊂ [−s0,s0] for some s0 > 0. We will be concerned with tubes

Ωβ := L(R×ω) (2.3)

defined by L = Lθ corresponding to θ (s) =
∫ s
−s0

β (s)ds , the angle being determined

up to a constant. The object of our study is the Dirichlet Laplacian −Δ
Ωβ
D on L2

(
Ωβ
)

associated with the quadratic form

Qβ [ψ ] =
∫

Ωβ
|∇ψ(x)|2 dx , ψ ∈ D(Qβ ) = H 1

0

(
Ωβ
)
.

1The positivity assumption is made just for the sake of simplicity since for β0 < 0 one can pass to a
unitarily equivalent operator using mirror-image transformation (s,t) �→ (−s,t) .
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It is well know [5, 4] that analysis of −Δ
Ωβ
D can be rephrased as investigation of the

unitarily equivalent operator Hβ on the ‘straightened tube’, i.e. the cylindrical region
R×ω , which is associated with form

Q0
β [ψ ] =

∫
R×ω

[|(∇′ψ)(s,t)|2 +
∣∣(∂sψ + θ̇∂τ ψ

)
(s,t)|2] dsdt , (2.4)

where

∇′ :=
(

∂
∂ t2

,
∂

∂ t3

)
, ∂s :=

∂
∂ s

, ∂τ := t2
∂

∂ t3
− t3

∂
∂ t2

,

the latter being nothing else, up to an imaginary unit, than the angular momentum
operator in the normal plane to tube axis. In other words, the operator Hβ acts on its
domain in L2 (R×ω) as

Hβ = − ∂ 2

∂ t22
− ∂ 2

∂ t23
+
(
−i

∂
∂ s

− i θ̇(s)
(

t2
∂

∂ t3
− t3

∂
∂ t2

))2

and the geometry of the original problem is translated into the coefficients of the ‘straight-
ened’ one. We are going to compare Hβ with the ‘unperturbed’ operator Hβ0

. To
formulate the result, we need the following operator on L2(ω) ,

hβ0
= −Δω

D −β 2
0

(
t2

∂
∂ t3

− t3
∂

∂ t2

)2

with the domain

D(hβ0
) = H 1

0 (ω)∩
{

g :

(
−Δω

D −β 2
0

(
t2

∂
∂ t3

− t3
∂

∂ t2

)2
)

g ∈ L2(ω)

}
.

This choice ensures that the hβ0
is self-adjoint and makes it possible to avoid problems

one may have, e.g., for polygonal ω ’s with non-convex corners [1, 9]. It is convenient
to introduce the polar coordinates (r,α) in the normal plane in which the action of hβ0

can be written as

hβ0
= −Δω

D −β 2
0 ∂ 2

α with D(hβ0
) = H 1

0 (ω)∩{g :
(−Δω

D −β 2
0 ∂ 2

α
)
g ∈ L2(ω)

}
,

(2.5)
where the standard polar-coordinate expression can be used for the Dirichlet Laplacian
−Δω

D . As the latter has a purely discrete spectrum and the second term is positive, the
spectrum of hβ0

is purely discrete as well. We denote

E := infσ(hβ0
) , (2.6)

further we consider the radius of ω ,

d := sup
(t2,t3)∈ω

√
t22 + t23
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and the quantity

γβ0
:= min

{
1
3
,

1

48β 2
0 d2

}
. (2.7)

Now we are in position to state our main result:

THEOREM 1. Let Hβ be the operator associated with form (2.4) with the twisting
velocity θ̇ given by (2.2), and assume that the compactly supported function μ(·) is
bounded with the derivative μ̇ ∈ L1 and satisfies the condition ‖μ‖∞ < cβ0 with some
c ∈ (0, 1

3γβ0
) . Then the following Lieb-Thirring-type inequality,

tr
(
Hβ −E

)σ
− � α2σ

μ,β0
Lcl

σ ,1

∫
R

trH(s)σ+1/2
− ds , σ � 3/2 , (2.8)

is valid for the discrete spectrum of Hβ , where

α2
μ,β0

:= γβ0
−3c , (2.9)

and furthermore, H(s)− is the negative part of the operator

−Δω
D −β 2

0

(
t2

∂
∂ t3

− t3
∂

∂ t2

)2

− 1

α2
μ,β0

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
−E (2.10)

with D(H(s))= H 1
0 (ω)∩

{
g :

(
−Δω

D −β 2
0

(
t2

∂
∂ t3

− t3
∂

∂ t2

)2
)

g ∈ L2(ω)
}

, where −Δω
D

is the Dirichlet Laplacian, f is the ground-state eigenfunction of hβ0
, and

Lcl
σ ,1 :=

Γ(σ +1)√
4π Γ(σ + 3

2 )
, (2.11)

is the standard semiclassical constant.

REMARK 1. The validity of the result can be in analogy with [6] extended to any
σ � 1/2; the price to pay is only a change in the constant, Lcl

σ ,1 being replaced with

r(σ ,1)Lcl
σ ,1 with the factor r(σ ,1) � 2 if σ < 3/2.

Proof. Using the fact that the ground-state eigenfunction f of hβ0
is strictly pos-

itive in ω — cf. [5] — we can decompose any ψ ∈C∞
0 (ω) as

ψ(s,t) = f (t)ϕ(s,t) .

We substitute this into (2.4) and integrate twice by parts obtaining

Q0
β [ψ ]−E‖ψ‖2 =

∫
R×ω

(
f 2|∇′ϕ |2− (Δω

D f ) f |ϕ |2 + f 2|∂sϕ |2

+(β0− μ) f∂α f (∂sϕ ϕ + ϕ ∂sϕ)+ (β0− μ) f 2(∂sϕ ∂α ϕ + ∂sϕ ∂α ϕ)
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+(β0− μ)2 f 2|∂α ϕ |2− (β0− μ)2(∂ 2
α f ) f |ϕ |2 −E f 2|ϕ |2

)
dsdt .

Since ∫
R
(∂sϕ ϕ + ϕ ∂sϕ)ds = 0 ,

∫
R

μ(∂sϕ ϕ + ϕ ∂sϕ)ds = −
∫

R
μ̇ |ϕ |2 ds ,

where the last integral makes sense in view of boundedness of the function ϕ , and
−Δω

D f −β 2
0 ∂ 2

α f −E f = 0 holds by assumption, we get

Q0
β [ψ ]−E‖ψ‖2 =

∫
R×ω

f 2(|∇′ϕ |2 + |∂sϕ + β0∂α ϕ |2)dsdt

−
∫

R×ω

(
μ f∂α f (∂sϕ ϕ + ϕ ∂sϕ)+ μ f 2(∂sϕ ∂α ϕ + ∂αϕ ∂sϕ)

−(μ2−2β0μ) f 2|∂α ϕ |2 +(μ2−2β0μ)(∂ 2
α f ) f |ϕ |2

)
dsdt

=
∫

R×ω
f 2 (|∇′ϕ |2 + |∂sϕ + β0∂α ϕ |2) dsdt− Iβ , (2.12)

where

Iβ :=
∫

R×ω

(
μ̇ f∂α f |ϕ |2 + μ f 2(∂sϕ ∂α ϕ + ∂αϕ ∂sϕ)

−μ(μ −2β0) f 2|∂α ϕ |2 + μ(μ −2β0)(∂ 2
α f ) f |ϕ |2

)
dsdt ;

the integral again makes sense since μ̇ ∈ L1 by assumption and the other involved
functions are bounded. Let us estimate it. Using the Cauchy inequality one gets

Iβ �
∫

R×ω
μ̇ f (∂α f )|ϕ |2 dsdt

+2

(∫
R×ω

μ2 f 2|∂α ϕ |2 dsdt

)1/2(∫
R×ω

f 2|∂sϕ |2 dsdt

)1/2

+2β0

∫
R×ω

μ f 2|∂α ϕ |2 dsdt +
∫

R×ω
(μ2 −2β0μ)

∂ 2
α f
f

|ϕ |2 dsdt

�
∫

R×ω
μ̇

∂α f
f

|ψ |2 dsdt +
∫

R×ω
(μ2−2β0μ)

∂ 2
α f
f

|ψ |2 dsdt

+c
∫

R×ω
f 2|∂sϕ |2 dsdt +

∫
R×ω

(
c−1 +2β0μ

)
μ2 f 2|∂α ϕ |2 dsdt

�
∫

R×ω
μ̇

∂α f
f

|ψ |2 dsdt +
∫

R×ω
(μ2−2β0μ)

∂ 2
α f
f

|ψ |2 dsdt (2.13)

+c
∫

R×ω
f 2|∂sϕ |2 dsdt +

(‖μ‖2
∞

cβ 2
0

+
2‖μ‖∞

β0

)∫
R×ω

β 2
0 f 2|∂α ϕ |2 dsdt

for an arbitrary c > 0. Let us now return to the quadratic form expression (2.12). If

2β0

∫
R×ω

f 2|∂sϕ ||∂α ϕ |dsdt � 1
2

∫
R×ω

f 2|∂sϕ |2 dsdt
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then the said formula yields the estimate

Q0
β [ψ ]−E‖ψ‖2 � 1

2

∫
R×ω

f 2 (|∇′ϕ |2 + |∂sϕ |2 + β 2
0 |∂α ϕ |2) dsdt− Iβ . (2.14)

In the opposite case, namely under the assumption

2β0

∫
R×ω

f 2|∂sϕ ||∂α ϕ |dsdt >
1
2

∫
R×ω

f 2|∂sϕ |2 dsdt ,

one has to employ the obvious inequality |∂α ϕ | � d |∇′ϕ | to obtain∫
R×ω

f 2|∂sϕ |2 dsdt < 16β 2
0 d2

∫
R×ω

f 2|∇′ϕ |2 dsdt .

Combining these estimates with the definition (2.7), we infer from (2.12) that

Q0
β [ψ ]−E‖ψ‖2 � γβ0

∫
R×ω

f 2 (|∇′ϕ |2 + |∂sϕ |2 + β 2
0 |∂α ϕ |2) dsdt− Iβ . (2.15)

Furthermore, in view of inequality (2.13) it follows from (2.15) that

Q0
β [ψ ]−E‖ψ‖2 � α2

μ,β0

∫
R×ω

f 2 (|∇′ϕ |2 + |∂sϕ |2 + β 2
0 |∂α ϕ |2) dsdt

−
∫

R×ω

(
μ̇

∂α f
f

− μ (2β0− μ)
∂ 2

α f
f

)
|ψ |2 dsdt

with the number αμ,β0
given in (2.9). In the next step we estimate the integrals∫

R×ω f 2|∇′ϕ |2 dsdt and
∫
R×ω f 2|∂α ϕ |2 dsdt . An integration by parts yields

∫
R×ω

f 2

∣∣∣∣∂ϕ
∂ t j

∣∣∣∣2 dsdt =
∫

R×ω

∣∣∣∣∂ψ
∂ t j

−ϕ
∂ f
∂ t j

∣∣∣∣2 dsdt =
∫

R×ω

∣∣∣∣∂ψ
∂ t j

∣∣∣∣2 dsdt

+
∫

R×ω

1
f 2

(
∂ f
∂ t j

)2

|ψ |2 dsdt +
∫

R×ω

∂
∂ t j

(
1
f

∂ f
∂ t j

)
|ψ |2 dsdt

for j = 2,3. In a similar way, changing integration variables one finds∫
R×ω

f 2|∂α ϕ |2 dsdt =
∫

R×ω
|∂α ψ −ϕ∂α f |2 dsdt =

∫
R×ω

|∂α ψ |2 dsdt

+
∫

R×ω

(∂α f )2

f 2 |ψ |2 dsdt +
∫

R×ω
∂α

(
∂α f

f

)
|ψ |2 dsdt ,

hence inequality (2.15) implies

Q0
β [ψ ]−E‖ψ‖2 � α2

μ,β0

∫
R×ω

(|∇′ψ |2 + |∂sψ |2 + β 2
0 |∂α ψ |2) dsdt

+α2
μ,β0

∫
R×ω

(∣∣∇′ f
∣∣2 / f 2 +

∂
∂ t2

(
1
f

∂ f
∂ t2

)
+

∂
∂ t3

(
1
f

∂ f
∂ t3

)
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+β 2
0
(∂α f )2

f 2 + β 2
0 ∂α

(
∂α f

f

))
|ψ |2 dsdt

−
∫

R×ω

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
|ψ |2 dsdt .

After a differentiation we get from here

Q0
β [ψ ]−E‖ψ‖2

� α2
μ,β0

∫
R×ω

(
|∇′ψ |2 + |∂sψ |2 + β 2

0 |∂α ψ |2 +
(

Δω
D f
f

+ β 2
0

∂ 2
α f
f

)
|ψ |2

)
dsdt

−
∫

R×ω

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
|ψ |2 dsdt ,

so in view of the fact that f is the ground-state eigenfunction of operator hβ0
we are

able to conclude that

Q0
β [ψ ]−E‖ψ‖2 � α2

μ,β0

∫
R×ω

(|∇′ψ |2 + |∂sψ |2 + β 2
0 |∂α ψ |2−E|ψ |2) dsdt

−
∫

R×ω

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
|ψ |2 dsdt . (2.16)

Up to the numerical factor the quadratic form on the right-hand side corresponds to the
self-adjoint operator H−

0 on L2(R×ω) acting as

H−
0 := −ΔR×ω

D −β 2
0

(
t2

∂
∂ t3

− t3
∂

∂ t2

)2

− 1

α2
μ,β0

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
−E ;

we are going to prove that its negative spectrum is discrete and establish a bound to it.
We shall employ (2.16) in combination with the minimax principle.

Choosing for ψ a function u ∈ C∞
0 (R×ω) we can estimate the right-hand side of

(2.16) from below as follows∫
R×ω

(|∂su|2 + |∇′u|2 + β 2
0 |∂αu|2−E|u|2) dsdt

− 1

α2
μ,β0

∫
Ω0

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
|u|2 dsdt

�
∫

R×ω
|∂su|2 dsdt +

∫
R
〈H(s)u(s, ·), u(s, ·)〉L2(ω) ds ,

where H(s) is the negative part of Schrödinger operator (2.10). Consider next func-

tions of the form g = u+ v , where u as above and v ∈ C∞
0 (R̂×ω) supported by the

complement R̂×ω := R3\R×ω are both extended by zero to R3 . We have

‖∂su‖2
L2(R×ω) +

∫
R×ω

(|∇′u|2 + β 2
0 |∂αu|2−E|u|2) dsdt +‖∂sv‖2

L2(R̂×ω)
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+‖∇′v‖2
L2(R̂×ω)

− 1

α2
μ,β0

∫
R×ω

(
μ̇

∂α f
f

− μ(2β0− μ)
∂ 2

α f
f

)
|u|2 dsdt

�
∫

R3
|∂sg|2 dsdt +

∫
R
〈H(s)g(s, ·), g(s, ·)〉L2(R2) ds , (2.17)

where we have extended H(s) to an orthogonal sum acting as zero on C∞
0

(
R2\ω

)
obtaining thus an operator on C∞

0 (R2) . The inequality (2.17) holds true for any func-
tion g ∈ C∞

0

(
R3\∂Ω0

)
and its left-hand side is the quadratic form associated with

the operator H−
0 ⊕

(
−ΔR̂×ω

D

)
. On the other hand, the right-hand side of (2.17) is the

form associated with the operator − d2

d s2
⊗ IL2(R2) +H(s) defined on the larger domain

H 2
(
R,L2(R2)

)
. Due to the positivity of the Dirichlet Laplacian −ΔR̂×ω

D the varia-
tional principle allows us to conclude

tr
(
H−

0

)σ
− � tr

(
− ∂ 2

∂ s2 ⊗ IL2(R2) +H(s)
)σ

−
, σ � 0 . (2.18)

Then in turn the Lieb-Thirring inequality for operator-valued potentials [8] implies

tr
(
H−

0

)σ
− � Lcl

σ ,1

∫
R

trH(s)σ+1/2
− ds for any σ � 3/2

with the semiclassical constant Lcl
σ ,1 (and for σ � 1/2 with a worse constant as men-

tioned in Remark 1). By minimax principle we thus finally get

tr
(
Hβ −E

)σ
− � α2σ

μ,β0
Lcl

σ ,1

∫
R

trH(s)σ+1/2
− ds for σ � 3/2 ,

which concludes the argument. �

2.2. The discreteness of the spectrum of operator H(s)

In order to apply Theorem 1 we have to make sure that the (negative part of the)
spectrum of the operator H(s) is discrete. It looks almost self-evident, but we present
a proof, under slightly stronger assumptions:

THEOREM 2. The spectrum of H(s) is purely discrete for any fixed s ∈ R if the
following condition is satisfied:

max

{
2‖μ‖∞

β0
,
‖μ̇‖∞

2β 2
0

}
< α2

μ,β0
. (2.19)

Proof. We shall estimate H(s) from below by an operator the spectrum of which
is purely discrete, then the claim will follow by the minimax principle. Using once
more the fact that the ground-state eigenfunction is strictly positive, we can represent
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any ϕ ∈C∞
0 (ω) as ϕ(t) = f (t)φ(t), t ∈ ω . Using an integration by parts in the angular

variable in combination with Cauchy inequality we get∣∣∣∣∫ω

∂α f
f

|ϕ |2 dt

∣∣∣∣= ∣∣∣∣∫ω
f (∂α f )|φ |2 dt

∣∣∣∣= 1
2

∣∣∣∣∫ω
f 2(∂α φ φ + ∂αφ φ )dt

∣∣∣∣
�
(∫

ω
f 2|∂α φ |2 dt

)1/2(∫
ω

f 2|φ |2 dt

)1/2

� 1
2

∫
ω

f 2|∂α φ |2dt + 1
2

∫
ω
|ϕ |2 dsdt . (2.20)

Next we use the fact that the function f is ground state-eigenfunction of operator hβ .
Combining another integration by parts with Cauchy inequality and denoting here for
the sake of brevity (x,y) = (x1,x2) we derive

β 2
0

∫
ω

∂ 2
α f
f

|ϕ |2 dt = −β 2
0

∫
ω
(∂ 2

α f ) f |φ |2 dt =
∫

ω
(E f 2|φ |2 dt +(Δω

D f ) f |φ |2)dt

= E
∫

ω
f 2|φ |2 dt +

∫
ω
(Δω

D) f |φ |2 dt = E
∫

ω
|ϕ |2 dt +

∫
ω
(Δω

D) f |ψ |2 dt

= E
∫

ω
|ϕ |2 dt +

2

∑
j=1

∫
ω

∂ 2 f

∂x2
j

f |φ |2 dt = E
∫

ω
|ϕ |2 dt +

2

∑
j=1

∫
ω

f |φ |2 d
dx j

(
∂ f
∂x j

)
dy

= E
∫

ω
|ϕ |2 dt−

2

∑
j=1

∫
ω

(
∂ f
∂x j

)2

|φ |2 dt−
2

∑
j=1

∫
ω

∂ f
∂x j

f

(
∂φ
∂x j

φ +
∂φ
∂x j

φ
)

dt

� E
∫

ω
|ϕ |2 dt−

∫
ω
|∇′ f |2|φ |2 dt +2

2

∑
j=1

∫
ω

f |φ |
∣∣∣∣ ∂ f
∂x j

∣∣∣∣ ∣∣∣∣ ∂φ
∂x j

∣∣∣∣ dt
� E

∫
ω
|ϕ |2 dt−

∫
ω
|∇′ f |2|φ |2 dt +2

2

∑
j=1

√∫
ω

f 2

∣∣∣∣ ∂φ
∂x j

∣∣∣∣2 dt
∫

ω
|φ |2

(
∂ f
∂x j

)2

dt

� E
∫

ω
|ϕ |2 dt−

∫
ω
|∇′ f |2|φ |2 dt +

2

∑
j=1

∫
ω

f 2

∣∣∣∣ ∂φ
∂x j

∣∣∣∣2 dt +
2

∑
j=1

∫
ω
|φ |2

∣∣∣∣ ∂ f
∂x j

∣∣∣∣2 dt

= E
∫

ω
|ϕ |2 dt +

∫
ω

f 2|∇′φ |2 dt . (2.21)

Armed with these estimates, we are going to find the indicated lower bound to H(s) .
To this aim we first rewrite the corresponding quadratic form as

〈H(s)ϕ ,ϕ〉 =
∫

ω
|∇′φ |2 f 2 dt + β 2

0

∫
ω

f 2|∂α φ |2 dt− 1

α2
μ,β0

∫
ω

μ̇
∂α f

f
|ϕ |2 dt

+
1

α2
μ,β0

∫
ω

μ(2β0− μ)
∂ 2

α f
f

|ϕ |2 dt (2.22)

for any function ϕ = fφ ∈C∞
0 (ω) . In order to establish this relation we have to check

that ∫
ω

(−Δω
Dϕ −β 2

0 ∂ 2
α ϕ −Eϕ

)
ϕ dt =

∫
ω
|∇′φ |2 f 2 dt + β 2

0

∫
ω

f 2|∂α φ |2 dt. (2.23)



176 P. EXNER AND D. BARSEGHYAN

First we integrate by parts

∫
ω

f (x,y)φ(x,y)
∂ f
∂x

(x,y)
∂φ
∂x

(x,y)dxdy = −
∫

ω

(
∂ f
∂x

)2

(x,y)|φ(x,y)|2 dxdy

−
∫

ω
f (x,y)φ(x,y)

∂φ
∂x

(x,y)
∂ f
∂x

(x,y)dxdy−
∫

ω
f (x,y)|φ(x,y)|2 ∂ 2 f

∂x2 (x,y)dxdy ,

and the same for the variable y which yields

∫
ω

fφ
∂ f
∂x j

∂φ
∂x j

dt +
∫

ω
fφ

∂ f
∂x j

∂φ
∂x j

dt = −
∫

ω

(
∂ f
∂x j

)2

|φ |2 dt−
∫

ω
f |φ |2 ∂ 2 f

∂x2
j

dt

(2.24)
for j = 1,2. Using polar coordinates t = (r,α) one can check is a similar way that∫

ω
fφ (∂α φ)(∂α f )dt +

∫
ω

fφ (∂α φ)(∂α f )(x,y)dt

= −
∫

ω
(∂α f )2|φ |2 dt−

∫
ω

f |φ |2(∂ 2
α f )dt . (2.25)

These identities make it possible to infer that∫
ω

(−Δω
Dϕ −β 2

0 ∂ 2
α ϕ −Eϕ

)
ϕ dt

=
2

∑
j=1

∫
ω

∣∣∣∣ ∂ f
∂x j

φ +
∂φ
∂x j

f

∣∣∣∣2 dt + β 2
0

∫
ω
| f (∂α φ)+ φ(∂α f )|2 dt−E

∫
ω

f 2|φ |2 dt

=
2

∑
j=1

(∫
ω

(
∂ f
∂x j

)2

|φ |2 dt +
∫

ω

∣∣∣∣ ∂φ
∂x j

∣∣∣∣2 f 2 dt +
∫

ω
fφ

∂ f
∂x j

∂φ
∂x j

dt

+
∫

ω
fφ

∂ f
∂x j

∂φ
∂x j

dt

)
+ β 2

0

(∫
ω

f 2|∂α φ |2 dt +
∫

ω
|φ |2(∂α f )2 dt

+
∫

ω
fφ (∂α φ)(∂α f )dt +

∫
ω

fφ(∂α φ )(∂α f )dt

)
−E

∫
ω

f 2|φ |2 dt

Using then the identities (2.24) and (2.25) we rewrite the last expression as

2

∑
j=1

(∫
ω

f 2

∣∣∣∣ ∂φ
∂x j

∣∣∣∣2 dt +
∫

ω
|φ |2

(
∂ f
∂x j

)2

dt−
∫

ω
|φ |2

(
∂ f
∂x j

)2

dt−
∫

ω
f |φ |2 ∂ 2 f

∂x2
j

dt

)

+β 2
0

(∫
ω

f 2|∂α φ |2 dt +
∫

ω
|φ |2(∂α f )2 dt−

∫
ω
|φ |2(∂α f )2 dt−

∫
ω

f |φ |2(∂ 2
α f )dt

)
−E

∫
ω

f 2|φ |2 dt

=
∫

ω

(
f 2|∇′φ |2 − f |φ |2Δω

D f + β 2
0 f 2|∂α φ |2 −β 2

0 f |φ |2(∂ 2
α f )−E f 2|ϕ |2

)
dt ,



SPECTRAL ESTIMATES FOR DIRICHLET LAPLACIANS 177

and since −Δω
D f − β 2

0 ∂ 2
α f − E f = 0 holds by assumption, we arrive at the relation

(2.23). Using now the estimates (2.20) and (2.21) we infer from (2.22) that

〈H(s)ϕ ,ϕ〉 �
∫

ω
|∇′φ |2 f 2 dt + β 2

0

∫
ω

f 2|∂α φ |2 dt− |μ̇(s)|
2α2

μ,β0

(∫
ω

f 2|∂α φ |2 dt+
∫

ω
|ϕ |2 dt

)
−μ(s)(2β0− μ(s))

α2
μ,β0

β 2
0

(
E
∫

ω
|ϕ |2 dt +

∫
ω

f 2|∇′φ |2 dt

)

�
(

1− μ(s)(2β0− μ(s))
α2

μ,β0
β 2

0

)∫
ω

f 2|∇′φ |2 dt +

(
β 2

0 −β 2
0

|μ̇(s)|
2α2

μ,β0
β 2

0

)∫
ω

f 2|∂α φ |2 dt

−Eμ(s)(2β0− μ(s))
α2

μ,β0
β 2

0

∫
ω
|ϕ |2 dt− |μ̇(s)|

2α2
μ,β0

∫
ω
|ϕ |2 dt

�
(

1− 2μ(s)
α2

μ,β0
β0

)∫
ω

f 2|∇′φ |2 dt + β 2
0

(
1− |μ̇(s)|

2α2
μ,β0

β 2
0

)∫
ω

f 2|∂α φ |2 dt

− 2Eμ(s)
α2

μ,β0
β0

∫
ω
|ϕ |2 dt− |μ̇(s)|

2α2
μ,β0

∫
ω
|ϕ |2 dt

�
(

1−max

{
2μ(s)

α2
μ,β0

β0
,

|μ̇(s)|
2α2

μ,β0
β 2

0

})∫
ω

(
f 2|∇′φ |2 dt + β 2

0

∫
ω

f 2|∂α φ |2 dt

)
− 2Eμ(s)

α2
μ,β0

β0

∫
ω
|ϕ |2 dt− |μ̇(s)|

2α2
μ,β0

∫
ω
|ϕ |2 dt .

Using now (2.23) we arrive at the operator inequality

H(s) �
(

1−max

{
2μ(s)

α2
μ,β0

β0
,

|μ̇(s)|
2α2

μ,β0
β 2

0

})
hβ0

− 2Eμ(s)
α2

μ,β0
β0

− |μ̇(s)|
2α2

μ,β0

from which the sought discreteness of σ(H(s)) readily follows. �

3. Dependence on the cross section

We conclude the paper by a couple of examples illustrating how the obtained
bound depends on the cross section shape.

3.1. First example: an elliptic disc

Given a positive number ε we assume that ωε is an elliptic disc the boundary
of which is described by the relation (1+ ε)2x2 + y2 = 1. We are going to show that
for sufficiently small values of the parameter ε and a gentle perturbation μ(·) the
negative-spectrum moments of the operator Hβ −E on the corresponding twisted tube
(2.3) behave asymptotically as

O
(

εσ+1/2
)∫ s0

−s0

(|μ̇(s)|+ μ(s)(2β0− μ(s))
)σ+1/2

ds .
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To prove this claim, let us estimate the right-hand side of (2.8) in this case. First
we check that the negative spectrum of operator H(s) is nonempty under the condi-
tion ‖μ‖∞ < 2β0 . Using the fact that −Δω

D f − β 2
0 ∂ 2

α f −E f = 0 holds by assump-
tion, that the function f is strictly positive on ωε according to [5], and the relation∫

ωε
(∂α f ) f dt = 0, we find

( f ,H(s) f )L2(ωε ) =
μ(s)(2β0− μ(s))

α2
μ,β0

∫
ωε

(∂ 2
α f ) f dt

= −μ(s)(2β0− μ(s))
α2

μ,β0

∫
ωε

(∂α f )2 dt < 0 ,

hence the claim follows by minimax principle. On the other hand, the lower bound to
H(s) proved in the previous section under the conditions (2.19) means that the negative
spectrum consists of a finite number of negative eigenvalues, the multiplicity taken into
account. Moreover, their number has an upper bound independent of ε , and in fact,
H(s) has for small ε a single negative eigenvalue as we are going to check next.

We use reductio ad absurdum assuming that there is more than one negative eigen-
value. Let {λk(s)}M

k=1 with M > 1 be the negative spectrum of H(s) and {gk(s)}M
k=1

the family of corresponding eigenfunctions. It is easy to see that

λk(s) =
∫

ωε
((hβ0

−E)gk(s))gk(s)dt (3.1)

− 1

α2
μ,β0

∫
ωε

(
μ̇(s)

(∂α f )|gk(s)|2
f

− μ(s)(2β0− μ(s))
(∂ 2

α f )|gk(s)|2
f

)
dt ;

we shall estimate the second term on the right-hand side. We write the operator hβ0

more explicitly as

hβ0
= − ∂ 2

∂x2 −
∂ 2

∂y2 −β 2
0

(
x2 ∂ 2

∂y2 − x
∂
∂x

−2xy
∂ 2

∂x∂y
− y

∂
∂y

+ y2 ∂ 2

∂x2

)
.

and pass to the coordinates x = ξ
1+ε , y = η which allows us to replace the operator hβ0

by a unitarily equivalent operator on L2
(
ω0,

1
1+ε dξ dη

)
acting as

h̃β0
= −Δω0

D −β 2
0 ∂ 2

α + ε
(
−(2+ ε)(β 2

0 η2 +1)
∂ 2

∂ξ 2 +
2+ ε

(1+ ε)2 β 2
0 ξ 2 ∂ 2

∂η2

)
. (3.2)

Using the fact that the principal eigenfunction f of hβ0
on L2(ωε ) equals

f (x,y) = f̃ ((1+ ε)x,y) , (x,y) ∈ ωε ,

where f̃ is the ground-state eigenfunction of h̃β0
on L2

(
ω0,

1
1+ε dξ dη

)
and applying

the first-order perturbation theory [7] one gets that for small values of the parameter ε

f (x,y) = fdisc ((1+ ε)x,y)+O(ε) , (3.3)
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where fdisc is the ground-state eigenfunction of operator −Δω0
D − β 2

0 ∂ 2
α on L2(ω0) ,

which coincides naturally with the ground-state eigenfunction of the Dirichlet Lapla-
cian on the unit disc.

Let us next show that there is a constant C > 0 such that the bound

|gk(s)|
f

� C , k = 1, . . . ,M , (3.4)

holds on the cross-section ωε uniformly in s . Passing to polar coordinates and denoting
g∗(r,ϕ) := g(rcosϕ ,r sinϕ) for any k = 1, . . . ,M and similarly for f , and using the
Dirichlet condition at the boundary of ωε , one gets

|gk(s)(x,y)|
f (x,y)

=
|g∗k(s)(r,ϕ)|

f ∗(r,ϕ)
=

|g∗k(s)(r,ϕ)−g∗k(s)(r(ϕ),ϕ)|
f ∗(r,ϕ)− f ∗(r(ϕ),ϕ)

= −|(∂g∗k(s)/∂ r)(r0(ϕ),ϕ)|
(∂ f ∗/∂ r)(r1(ϕ),ϕ)

,

where the curve ϕ �→ r(ϕ) with ϕ ∈ [0,2π) is the boundary of the ellipse ωε and
r0(ϕ),r1(ϕ) ∈ [0,r(ϕ)] . Note that the left-hand side of (3.4) is well defined and contin-
uous on the precompact set suppμ ×ωε , hence we have to care only about the behavior

in the vicinity of the boundary. We have
∣∣∣ ∂ fdisc

∂ r

∣∣∣> α > 0 near the boundary of the unit

circle and using the asymptotics (3.3) for points near the boundary of the ellipse ωε we
get

|gk(s)(x,y)|
f (x,y)

� 1
α +O(ε)

∥∥∥∥∂g∗k(s)
∂ r

∥∥∥∥
L∞(ωε )

,

which yields the bound (3.4) valid uniformly is s .
Working out the perturbation theory in (3.3) to higher orders and using the fact

that the angular derivative of the function fdisc is zero one can check that

∂α f = O(ε) , ∂ 2
α f = O(ε) , (3.5)

and combining this asymptotics with the inequality (3.4) we find that the second term
on the right-hand side of (3.1) behaves as O(ε) in the limit ε → 0. Since the first term
is positive and λk(s) < 0 holds for k = 1, . . . ,M by assumption, it follows∫

ωε

((
hβ0

−E
)
gk(s)

)
gk(s)dt = O(ε) . (3.6)

Now we expand the functions gk(s), k = 1, . . . ,M , in the orthonormal basis { f m}∞
m=1

corresponding to the eigenvalues {Em}∞
m=1 of the operator hβ0

− E on L2(ωε) , ar-
ranged in the ascending order, i.e.

gk(s) =
∞

∑
m=1

ck,m(s) f m .

The principal eigenvalue E of the operator hβ0
is simple. Indeed, assume that there are

two eigenfunctions q1 and q2 such that hβ0
q j = Eqj holds for j = 1,2. By the first
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order of perturbation theory and (3.2) we then have

q j(x,y) = fdisc((1+ ε)x,y)+O(ε) , j = 1,2 ,

which, however, contradicts to the orthonormality of the functions q1 and q2 . Inserting
now the Fourier expansion into (3.6) we get

∫
ωε

(
∞

∑
m=2

ck,m(s)Em f m

)(
∞

∑
l=1

ck,l(s) f l

)
dt = O(ε) ,

and consequently, ∑∞
m=2 Em|ck,m(s)|2 = O(ε) , and since E2 > 0, we have

∞

∑
m=2

|ck,m(s)|2 = O(ε) ,

which means that ∫
ωε

∣∣gk(s)− ck,1(s) f
∣∣2 dt = O(ε)

as ε → 0. This in turn implies

gk(s) = ck,1(s) f +O(ε) , k = 1, . . . ,M ,

a.e. in ωε . The orthogonality of the functions gk(s) then requires

ck,1(s)cl,1(s) = O(ε) if k �= l ,

which contradicts to the fact that ck,1(s) = 1 + O(ε) coming from the relation∫
ωε

|gk(s)|2 dt = 1. Consequently, the operator H(s) has a single negative eigenvalue
for all ε > 0 small enough.

Now it is sufficient to combine relations (3.1), (3.4), and (3.5) with the fact that
hβ0

−E � 0 to arrive at the asymptotics

λ1(s) = O(ε)(|μ̇(s)|+ μ(s)(2β0− μ(s)))

for ε → 0 which proves the sought assertion.

3.2. Second example: a multiply folded ribbon

Next we are going to illustrate the opposite effect, namely that choosing the cross
section far from the circular shape we can make for a fixed twist perturbation μ the
right-hand side of the estimate (2.8) arbitrarily large. To this aim we shall construct an
appropriate sequence of the sets ωk, k = 1,2, . . . .

We begin with the circles T1 and T2 centered at zero of radii one and two, respec-
tively. We cross them by axes and quadrant axes, i.e. the lines y = ±x , and connect

the intersection points by a closed piecewise linear zigzag curve denoted as Γ(1)
out . Next

we fix a small positive number ε and construct in a similar way the curve Γ(1)
in with
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Figure 1: The curve Γ(1)
in and the set ω1 .

Figure 2: The curve Γ(2)
out .

vertices on the circles of radii 1− ε and 2− ε . The two curves are the inner and outer
boundary of the set which we denote as ω1 – cf. Fig. 1.

Next we construct the set ω2 bounded by the curves Γ(2)
out and Γ(2)

in obtained in a
similar way by cutting the plane into sixteen radial segments – cf. Fig. 2.

The construction proceeds in the same way: in the k -th step we obtain a ‘zigzag
ribbon’ loop with 2k+1 outer vertices.

Our aim is now to show that if such a ‘maccaroni’ tube is twisted with a fixed
slowdown perturbation μ , the right-hand side of the spectral estimate (2.8) will be
bound from below by

1
αμ,β0

(
4k+1

π2

)σ+1/2∫
R

μ(s)σ+1/2(2β0− μ(s))σ+1/2 ds. (3.7)

To demonstrate this claim we note first that in view of minimax principle the ground
state eigenvalue of H(s) equals

λ1,k(s) = inf

{∫
ωk

gH(s)gdt : g ∈ D(H(s)), ‖g‖L2(ωk) = 1

}
,

which means that

λ1,k(s) � − 1

α2
μ,β0

∫
ωk

(
μ̇ (∂α fk) fk − μ(2β0− μ)(∂ 2

α fk) fk
)

dt ,

where fk is the ground state eigenfunction of hβ0
on L2(ωk) . Using the fact that∫

ωk
(∂α fk) fk dt = 0 and an integration by parts similar to the argument used in the pre-
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vious example we find that

λ1,k(s) � −μ(s)(2β0− μ(s))
α2

μ,β0

∫
ωk

(∂α fk)2 dt ; (3.8)

we are going to estimate the last integral from below.
To this aim we consider separately the parts of ωk divided by the four circles used

in the construction, specifically

ωk ∩{1− ε � r < 1} , ωk ∩{1 < r < 2− ε} , and ωk ∩{2− ε < r � 2} ,

and moreover, in view of the discrete rotational symmetry we can discuss only one
segment of it. Consider therefore first the part ω̃ of ωk ∩{1 � r < 2− ε} bounded
by the circles T1 and T2−ε and the radial lines ϕ = 0 and ϕ = π

2k+1 , and estimate

the integral
∫

ω̃ (∂α fk)2 dt from below. The polar coordinates of the points of ω̃ are

r ∈ (1,2− ε) and ϕ(r) ∈ (ϕ1(r),ϕ2(r)) with appropriate ϕ j(r) ∈
(
0, π

2k+1

)
, hence we

get ∫
ω̃

f 2
k dt =

∫ 2−ε

1
dr
∫ ϕ2(r)

ϕ1(r)
r f 2

k (r,α)dα .

Writing f 2
k (r, ·) as a primitive function of the radial derivative and using the Dirichlet

condition which fk has to satisfy at ∂ωk we rewrite this expression as

∫
ω̃

f 2
k dt =

∫ 2−ε

1
rdr

∫ ϕ2(r)

ϕ1(r)

(∫ α

ϕ1(r)

∂ fk
∂θ

dθ
)2

dα ,

hence using Cauchy inequality we may infer that

∫
ω̃

f 2
k dt � π

2k+1

∫ 2−ε

1
dr
∫ ϕ2(r)

ϕ1(r)

∫ α

ϕ1(r)
r

(
∂ fk
∂θ

)2

dθ dα

� π2

4k+1

∫ 2−ε

1
dr
∫ ϕ2(r)

ϕ1(r)
r

(
∂ fk
∂θ

)2

dθ =
π2

4k+1

∫
ω̃
(∂α fk)2 dt ,

which implies ∫
ω̃
(∂α fk)2 dt >

4k+1

π2

∫
ω̃

f 2
k dt .

In a similar way one estimate from below contributions from the other parts of the set
ωk , thus combining (3.8) with the normalization condition

∫
ωk

f 2
k dt = 1 we get

|λ1,k(s)| > 4k+1

π2

μ(s)(2β0− μ(s))
α2

μ,β0

, s ∈ R ,

and consequently, the validity of estimate (3.7) for the right-hand side of (2.8).
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