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ON A CLASS OF BOUNDARY CONTROL PROBLEMS

RAINER PICARD, SASCHA TROSTORFF AND MARCUS WAURICK

Abstract. We discuss a class of linear control problems in a Hilbert space setting, which covers
diverse systems such as hyperbolic and parabolic equations with boundary control and boundary
observation even including memory terms. We introduce abstract boundary data spaces in which
the control and observation equations can be formulated without strong geometric constraints on
the underlying domain. The results are applied to a boundary control problem for the equations
of visco-elasticity.
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