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ON THE BEHAVIOR AT INFINITY OF SOLUTIONS TO

DIFFERENCE EQUATIONS IN SCHRÖDINGER FORM

EVANS M. HARRELL II AND MANWAH LILIAN WONG

Abstract. We study the behavior at infinity of solutions of discrete Schrödinger equations. First
we study pairs of discrete Schrödinger equations whose potential functions differ by a quantity
that can be considered small in a suitable sense as the index n → ∞ . With simple assumptions
on the growth rate of the solutions of the original system, we show that the perturbed system
has a fundamental set of solutions with the same behavior at infinity, employing a variation-of-
constants scheme to produce a convergent iteration for the solutions of the second equation in
terms of those of the original one.

Next, we present a sharp discrete analogue of the Liouville-Green (JWKB) transformation,
making it possible to derive exponential behavior at infinity of a single difference equation, by
explicitly constructing a comparison equation to which the perturbation results apply. After that
we use the relations between the solution sets of two discrete Schrödinger equations differing
by a perturbation to derive exponential dichotomy of solutions and to elucidate the structure of
transfer matrices.

A final section contains illustrative examples, including some with large, oscillatory po-
tentials, and an appendix discusses the connection between the discrete Schrördinger problem
and orthogonal polynomials on the real line.
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