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Abstract. We study the behavior at infinity of solutions of discrete Schrödinger equations. First
we study pairs of discrete Schrödinger equations whose potential functions differ by a quantity
that can be considered small in a suitable sense as the index n → ∞ . With simple assumptions
on the growth rate of the solutions of the original system, we show that the perturbed system
has a fundamental set of solutions with the same behavior at infinity, employing a variation-of-
constants scheme to produce a convergent iteration for the solutions of the second equation in
terms of those of the original one.

Next, we present a sharp discrete analogue of the Liouville-Green (JWKB) transformation,
making it possible to derive exponential behavior at infinity of a single difference equation, by
explicitly constructing a comparison equation to which the perturbation results apply. After that
we use the relations between the solution sets of two discrete Schrödinger equations differing
by a perturbation to derive exponential dichotomy of solutions and to elucidate the structure of
transfer matrices.

A final section contains illustrative examples, including some with large, oscillatory po-
tentials, and an appendix discusses the connection between the discrete Schrördinger problem
and orthogonal polynomials on the real line.

1. Introduction

In this article we address the asymptotic behavior of solutions to linear difference
equations of Schrödinger type, as the index n tends to infinity. We prove exponential
dichotomy theorems and refined approximative expressions for the growing and sub-
dominant (i.e., decaying) solutions, which have controlled errors.

We begin by approaching the subject as a perturbation analysis, showing that if two
Schrödinger difference equations have potential terms that are sufficiently close, then
they are asymptotically equivalent in the sense of [10], that is, there are solution bases
for the two problems with the same behavior at infinity. The expressions obtained by
the perturbation analysis are not merely asymptotic, but convergent for large but finite
indices n . We follow with a classification of the possible asymptotic behaviors and
some more estimates, including some cases where the asymptotic behavior of solutions
does not match that of the comparison equation but can nonetheless be characterized.
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Of course, when faced with one particular equation, comparison theorems are of
limited use in the absence of a good equation to which one can compare. We therefore
present some methods for constructing such equations after the perturbation analysis.
Finally, we present some examples and remarks about connections with orthogonal
polynomials.

Let Δ denote the discrete second-difference operator on the positive integer lattice.
We standardize the Laplacian such that (Δ f )n := fn+1 + fn−1 − 2 fn for f = ( fn) ∈
�2(N) , and consider pairs of equations of the form

(−Δ +V)ψ = 0, (1.1)

(−Δ +V0)φ = 0, (1.2)

where the potential-energy functions V , V 0 are diagonal operators with real values Vn

and V 0
n respectively. (Complex Vn and V 0

n could be allowed with, for the most part,
only straightforward complications, but we prefer to keep the exposition focused.)

Our first aim is to find conditions under which the solutions of (1.1) have the same
asymptotic behavior as n → ∞ as those of the comparison (1.2) when the potential
energies V and V0 are close in a suitable sense. One application of the analysis is to
the asymptotic behavior of eigenfunctions, in which case instead of (1.1) one could
write

(−Δ +V −E)ψ = 0 (1.3)

and (−Δ +V 0 −E)φ = 0 for some real eigenvalue E . Again, for simplicity we shall
absorb E into the definition of V , with no material restriction, because we consider the
full set of solutions to (1.1) without restricting to eigensolutions of a particular realiza-
tion of −Δ +V as an operator. Those interested in decay properties of eigenfunctions
should systematically replace Vn in this article by Vn−E .

We do assume, however, that among the solution set of the comparison equation
(1.2) there is a distinguished solution that decreases at infinity, unique up to a multi-
plicative constant, and we follow the nomenclature of ordinary differential equations
in referring to such solutions as subdominant. (The term recessive is also frequently
used.) We recall at this stage that if V has a constant value V∞ /∈ [−4,0] , then explicit
solutions are easily found, and it emerges that (−Δ−V∞)φ = 0 has a subdominant
solution, indeed, one that decreases exponentially (see Example 5.1). Conversely, if
V =V∞ ∈ [−4,0] , then there are no subdominant solutions. The significance of the
interval [−4,0] is that it is the continuous spectrum of Δ .

REMARK 1. Equation (1.1) is invariant under the transformation

ψn → (−1)nψn (1.4)

Vn →−4−Vn, (1.5)

as can be easily verified. Because of this, any fact proved under the assumption, for
example, that Vn > 0 has a counterpart for Vn < −4. We shall use this remark to avoid
repetition in some of our proofs.
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When (1.2) has a subdominant solution, it will be denoted φ− (fixing an overall
constant), and ordinarily we shall identify a second, independent solution as φ+ . We
recall that the Wronskian of two solutions of a discrete Schrödinger equation,

W [φ−,φ+] := φ−
n φ+

n+1 −φ−
n+1φ+

n , (1.6)

also referred to as the Casoratian, is independent of the coordinate n , analogously to a
well-known fact for Sturm-Liouville equations. (See, e.g., [1].) In terms of difference
operators ∇± ,

∇+ fn := fn+1− fn and ∇− fn := fn − fn−1. (1.7)

the Wronskian can also be expressed as

W = φ−
n (∇±φ+

n )−φ+
n (∇±φ−

n ). (1.8)

For future reference we recall some simple relations for the difference operators:

1. ∇+(∇− fn) = ∇−(∇+ fn) = Δ fn ;

2. (Right Product Rule) ∇+( f g)n = (∇+ fn)gn + fn(∇+gn)+ (∇+ fn)(∇+gn) ;

3. (Left Product Rule) ∇−( f g)n = (∇− fn)gn + fn(∇−gn)− (∇− fn)(∇−gn) .

In comparing (1.1) and (1.2) the behavior of solutions at infinity will be examined
from several points of view. First, we study the asymptotic behavior of solutions under
the effect of small perturbations of the potential as a fixed-point problem. We consider
the solutions of (1.2) as known, and use them as the basis for a (convergent) variation-
of-constants calculation of the solutions of (1.1). Then we introduce a factorization
of the equation satisfied by the coefficients in that scheme in order to get a detailed
understanding of how they converge.

Thereafter we present a new and efficient discrete variant of the Liouville-Green
(JWKB) approximation [21], so that for a given potential V a comparison equation
(1.2) can be found for which the asymptotics are explicitly known, and consequently
the behavior at infinity of solutions of (1.1) is explicitly determined, with controlled
errors.

Finally, the reader may refer to the Appendix for a discussion of the relation
between orthogonal polynomials and second-order difference equations. There the
connection between ratio asymptotics of orthogonal polynomials and the results of
Geronimo–Smith [11] will be discussed, and it will be shown how solutions of the dis-
crete Schrödinger equation can be represented by orthogonal polynomials of the first
and second kind.

We are far from the first to consider these questions, and like other researchers we
mimic the better-developed theory known for Sturm-Liouville problems. Let us close
the Introduction by placing our work in the context of the earlier literature.

A systematic study of certain difference equations dates from Poincaré [23]. In
his work and in that of Birkhoff [4] asymptotic analysis was considered for equations
using what would nowadays be termed transfer matrices of special types. A rather
satisfactory understanding of the effect of small perturbations on stability questions for



360 EVANS M. HARRELL II AND MANWAH LILIAN WONG

equations using transfer matrices, with dichotomy assumptions on their eigenvalues,
was developed in [22, 8, 3], some of which is recounted in the monograph by Agarwal
[1], which is a good source for showing how many of the standard facts from Sturm-
Liouville theory can be ported over to the discrete setting, in particular, the technique
of variation of constants. Coffman [8] and Benzaid–Lutz [3] studied product solutions,
and in that regard prefigure in a rough way what we do in Section 3. The main results of
[3] were discrete analogues of Levinson’s fundamental lemma [19] for the asymptotic
expression of the solution of a perturbed linear differential equation. In [3] the authors
considered difference equations of the form

y(k+1) = [Λ(k)+R(k)]y(k). (1.9)

Here Λ(k) is an N×N diagonal matrix with non-zero diagonal entries (λ j(k))N
j=1 that

satisfy a certain dichotomy condition. They further considered

x(k+1) = [Λ0 +V(k)+R(k)]x(k), (1.10)

again where Λ0 is diagonal and V and R satisfy certain bounds. Their results apply
widely to perturbed difference equations, but not readily to (1.1) and (1.2): As we shall
see in (2.3), the transfer matrices in the present article are of the form

I +Mn = I +
Vn−V 0

n

W

(
φ+

n φ−
n φ−

n φ−
n

−φ+
n φ+

n −φ+
n φ−

n

)
, (1.11)

which are neither diagonal nor diagonable if Vn−V 0
n �= 0. In fact, 1 is the only eigen-

value of the matrix I +Mn and it has geometric multiplicity one. Moreover, the term
Vn−V0

n
W (φ+

n )2 in the lower left corner typically diverges as n → ∞ .
Trench [27, 28] succeeded in giving conditions for the asymptotic equivalence of

the solution sets of (1.1) and (1.2) in the sense considered by Hartman and Wintner
[16], and seems to have been the first to realize that a good criterion for equivalence
relies on an analysis of the expression

Jk := φ+
k φ−

k

(
Vk −V 0

k

)
, (1.12)

(in our notation). In [7], following Trench, a necessary and sufficient condition for
asymptotic equivalence for some difference equations related to (1.1) and (1.2) is spelled
out in terms of J . Although we bring different methods to bear on asymptotic equiva-
lence in the following sections, �p norms of (1.12) and similar quantities remain central;
see Theorems 2.2, 4.2, and 4.3. One could interpret these norms as traces of operator
perturbations like those occurring in studies of spectral–shift functions (e.g., see [13]),
leading us to speculate that direct connections between the spectral-shift functions and
behavior at infinity could be found.

After a discussion of asymptotic equivalence, we take advantage of the specific
Schrödinger form of the equation, and construct comparison equations having product
solutions of a certain structure, inspired by the classical Liouville-Green, or JWKB, ap-
proximation. Of prior work on discrete versions of the Liouville-Green approximation
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we single out that of Geronimo and Smith [11], which was inspired by some earlier
work of Braun [5]. Geronimo and Smith studied a somewhat more general equation
than (1.1),

dn+1yn+1−qnyn + yn−1 = 0, (1.13)

where dn and qn are sequences of numbers with dn �= 0 for n = 1,2, . . . , and pur-
sued a Riccati analysis for solutions in product form. In Section 3 we identify a more
explicit and efficient product scheme along the lines of the Liouville-Green approxi-
mation as presented in [21], to which we apply the perturbation analysis developed in
Section 2. Yet another article with Liouville-Green analysis using products is [6], in
which an explicit semiclassical parameter appears, and the Green matrix is studied in a
product form and used to prove refined stability results for nonhomogeneous difference
equations.

2. Variation of constants and behavior at infinity

We begin by casting the problem of understanding the asymptotic dependence of
solutions at infinity as a problem on a certain weighted Banach space, following ideas of
[15] in the continuous case, which was in turn inspired by [16]. Suppose that V is close
to another potential V 0 such that the solutions to (−Δ +V 0)φ = 0 are understood,
in the sense that a pair of independent solutions φ± can be identified, including a
subdominant solution φ−

n ∈ �2 . A perturbation analysis can be based on the following
way of connecting the solutions of (1.1) and (1.2).

THEOREM 2.1. Let V and V 0 be two potential functions, and let φ± be indepen-
dent solutions to the equation (1.2). We may represent any ψ as a linear combination
of φ± with variable coefficients a±n , i.e.,

ψn = a+
n φ+

n +a−n φ−
n . (2.1)

Then ψ is a solution to the equation (1.1) if and only if we may find sequences (a±n )∞
n=1

that satisfy the following two conditions: For all n � 1 ,

(∇−a+
n )φ+

n−1 +(∇−a−n )φ−
n−1 = 0, (2.2)(

a+
n+1

a−n+1

)
=

[
I +

Vn−V 0
n

W

(
φ+

n φ−
n φ−

n φ−
n

−φ+
n φ+

n −φ−
n φ+

n

)](
a+

n
a−n

)
=: (I +Mn)

(
a+

n
a−n

)
, (2.3)

under the convention that φ±
0 = 0 .

Proof of Theorem 2.1. Suppose that ψ is a solution to (1.1). Since the expression
(2.1) has two degrees of freedom we have the liberty to impose a second condition on
the coefficients so that

∇−ψn = a+
n (∇−φ+

n )+a−n (∇−φ−
n ). (2.4)

Observe that (2.4) implicitly sets the following expression to zero

(∇−a+
n )φ+

n +(∇−a−n )φ−
n − (∇−a+

n )(∇−φ+
n )− (∇−a−n )(∇−φ−

n ) = 0; (2.5)
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by direct expansion (2.5) is equivalent to (2.2).
Now compute Δψn = ∇+∇−ψn based on the expression (2.4). By the chain rules

for ∇± ,

Δψn = (∇+a+
n )(∇−φ+

n )+a+
n (Δφ+

n )+ (∇+a+
n )(Δφ+

n )

+ (∇+a−n )(∇−φ−
n )+a−n (Δφ−

n )+ (∇+a−n )(Δφ−
n ). (2.6)

By substituting Δψn = Vnψn and Δφ±
n = V 0

n φ±
n into (2.6), we obtain

(Vn−V 0
n )(a+

n φ+
n +a−n φ−

n ) = (∇−φ+
n +V 0

n φ+
n )(∇+a+

n )+ (∇−φ−
n +V 0

n φ−
n )(∇+a−n ).

(2.7)
In order for the coefficients of ∇+a−n in (2.7) and (2.2) to match, we multiply (2.7) by
φ−

n and (2.2) by (∇−φ−
n +V 0

n φ−
n ) . Then we subtract one from the other and get

(∇+a+
n )W = (Vn−V 0

n )
(
φ+

n a+
n + φ−

n a−n
)

φ−
n = (Vn−V 0

n )ψnφ−
n , (2.8)

where W is the Wronskian as defined in (1.6).
Similarly, we match the coefficients of ∇+a−n in (2.7) and (2.2) by multiplying

(2.7) with φ+
n and (2.2) with (∇−φ+

n +V 0
n φ+

n ) . Then we obtain

(∇+a−n )(−W ) = (Vn−V 0
n )

(
φ+

n φ+
n a+

n + φ−
n φ+

n a−n
)

= (Vn−V 0
n )ψnφ+

n . (2.9)

Putting (2.8) and (2.9) together in matrix form, we arrive at (2.3).
For the implication in the other direction, suppose that the sequences a±n satisfy

(2.3) and (2.2). By direct expansion of (2.1), we find that

Δψn = V 0
n ψn +(right side of (2.7))+ ∇+ (left side of (2.2)) . (2.10)

With (2.3), (2.8) and (2.9) follow. If we now apply these relations to the right side of
(2.7), it becomes

Vn−V 0
n

W

[
(∇−φ+

n +V 0
n φ+

n )ψnφ−
n − (∇−φ−

n +V 0
n φ−

n )ψnφ+
n

]
, (2.11)

which simplifies to

ψn
Vn−V 0

n

W
[φ−

n ∇−φ+
n −φ+

n ∇−φ−
n ] = (Vn−V 0

n )ψn. (2.12)

Returning to (2.10), we conclude that Δψn =Vnψn for all n only if ∇+((∇−a+
n )φ+

n−1 +
(∇−a−n )φ−

n−1) = 0 for all n , or in other words, when the expression on the left side of
(2.2) is a constant. Finally, note that since its value is zero when n = 1, it is zero for all
n . �
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2.1. Convergence of a±n in a suitable Banach space

An advantage of the variation-of-constants approach to asymptotic equivalence
over the methods of [27, 27, 7] is that it provides a rapidly convergent iterative scheme
with error estimates that can be made explicit. To set it up, we introduce the notation

an =
(

a+
n

a−n

)
and βn =

Vn−V 0
n

W
, (2.13)

where W is the Wronskian as in (1.6). We shall regard a as an element of a weighted
Banach space,

BN :=
{

X =
(

X+
n

X−
n

)
: ‖X‖N := sup

n�N

(|(φ+
n )2X+

n |+ |X−
n |) < ∞

}
. (2.14)

Substituting the expression for ψ into (2.3), we calculate

(∇−an) = βn

(
φ+

n φ−
n (φ−

n )2

−(φ+
n )2 −φ+

n φ−
n

)
an, (2.15)

or, by summing (2.15),

an = an+1−βn

(
φ+

n φ−
n (φ−

n )2

−(φ+
n )2 −φ+

n φ−
n

)
an

= . . .

= an+�−
n+�−1

∑
k=n

βk

(
φ+

k φ−
k (φ−

k )2

−(φ+
k )2 −φ+

k φ−
k

)
ak.

Formally letting � → ∞ , an+� →
(

0
1

)
, we therefore define a linear operator M by

(MX)n :=
∞

∑
k=0

βn+k

(
φ+

n+kφ−
n+k (φ−

n+k)
2

−(φ+
n+k)

2 −φ+
n+kφ−

n+k

)
Xn+k. (2.16)

The convergence of the coefficients in the Banach space proceeds as follows:

THEOREM 2.2. Suppose that (1.2) has a solution basis φ± such that limn→∞ φ−
n

= 0 , |φ+
n | is monotonically nondecreasing for sufficiently large n, and βn (cf. (2.13))

satisfies βn(1+ |φ+
n φ−

n |2) ∈ �1 . Then for N sufficiently large, M is a contraction on
BN . Consequently, there exists a unique solution ψ− of (1.1) such that

ψ−
n = a+

n φ+
n +a−n φ−

n ,

where limn→∞ a+
n = 0 and limn→∞ a−n = 1 . Moreover, if we define ψ̂−

n := maxm�n |φ−
n | ,

then
ψ−

n = φ−
n + rnψ̂−

n , (2.17)

with limn→∞ rn = 0 .
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REMARK 2. If |φ−
n | is monotone nonincreasing, then we may simply write ψ−

n =
(1+ rn)φ−

n , with limn→∞ rn = 0. If the product φ+
n φ−

n is bounded, it suffices for this
theorem to assume that βn ∈ �1 ; circumstances under which this is guaranteed are dis-
cussed below in Lemma 2.21, Theorem 3.3 and Theorem 3.2.

Proof. For N sufficiently large, we claim that M is a strict contraction on BN .

To see this, we introduce the shorthand sup

∣∣∣∣(X+
n

X−
n

)∣∣∣∣ for supn�N(|X+
n |+ |X−

n |) , and

observe that ‖X‖BN = supm�N

∣∣∣∣((φ+
m )2 0
0 1

)
Xm

∣∣∣∣ . Thus

‖MX‖BN

= sup
n�N

∣∣∣∣∣
(|φ+

n |2 0
0 1

) ∞

∑
k=0

βn+k

(
φ+

n+kφ−
n+k (φ−

n+k)
2

−(φ+
n+k)

2 −φ+
n+kφ−

n+k

)
Xn+k

∣∣∣∣∣
= sup

n�N

∣∣∣∣∣ ∞

∑
k=0

βn+k

(|φ+
n |2 0
0 1

)(
φ+

n+kφ−
n+k (φ−

n+k)
2

−(φ+
n+k)

2 −φ+
n+kφ−

n+k

)(|φ+
n+k|2 0
0 1

)−1(|φ+
n+k|2 0
0 1

)
Xn+k

∣∣∣∣∣
= sup

n�N

∣∣∣∣∣ ∞

∑
k=0

βn+k

(
φ+

n+kφ−
n+k

∣∣φ+
n /φ+

n+k

∣∣2 (φ+
n+kφ−

n+k)
2
∣∣φ+

n /φ+
n+k

∣∣2
−1 −φ+

n+kφ−
n+k

)(|φ+
n+k|2 0
0 1

)
Xn+k

∣∣∣∣∣
� ‖X‖BN sup

n�N

∞

∑
k=0

|βn+k|max(|φ+
n+kφ−

n+k|+ |φ+
n+kφ−

n+k|2,1+ |φ+
n+kφ

−
n+k|)

� 2‖X‖BN

∞

∑
k=0

|βN+k|(1+ |φ+
N+kφ−

N+k|2)

We then ask whether there is a solution to

an =
(

0
1

)
− (M a)n,

and conclude by the contraction mapping theorem that there is, for N large enough that

∞

∑
k=0

|βN+k| (1+ |φ+
N+kφ−

N+k|2) <
1
2
.

Indeed, therefore (1+M )a =
(

0
1

)
is uniquely solved by the norm-convergent Neu-

mann series

a =

(
∞

∑
�=0

(−M )�
)(

0
1

)
. (2.18)

Being dominated by a geometric series, the convergence of (2.18) is exponentially fast.
For the final statement, we need a lemma about the operator M :
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LEMMA 2.3. Suppose that |x+
n | � C1|φ−

n |2 and |x−n | � C2 . Then

|M x|+n � M (C1 +C2)|φ−
n |2 (2.19)

and
|M x|−n � M (C1 +C2), (2.20)

where M := ‖βn(1+ |φ+
n φ−

n |2)‖ .

The lemma is an easy estimate from the definition of M .
The proof of the final statement of the theorem then requires choosing N suffi-

ciently large that the coefficients in the conclusions of the lemma are small enough that
M is a contraction, and summing the Neumann series (2.18). �

2.2. Construction of a second solution and estimates of the product of the two
solutions

Since understanding the asymptotic behavior of the solutions of the perturbed
equation requires knowledge of a full set of independent solutions {φ+

n ,φ−
n } to the

original equation, we recall a standard reduction-of-order formula showing that the
subdominant solution determines a second, independent solution, which grows at infin-
ity. (E.g., the text [16] treats this argument in the continuous case in §XI.2, and it can
be found in the discrete literature in numerous places, including [27, 7].) The following
simple formula does not require a subdominant solution, only one that is nonvanishing.
It is true by direct verification that ψ+

n solves (1.1) and that W = 1 when n = m . (Of
course it is derived by positing that ψ+

n = γnψ−
n , substituting, and using the Wronski

identity to determine γn .)

LEMMA 2.4. (Standard) Suppose that (1.1) has a solution that is nonzero for all
n , n = m, . . . ,M. If

ψ+
n :=

⎧⎪⎨⎪⎩
0 if n = m

ψ−
n

n−1

∑
k=m

1

ψ−
k ψ−

k+1

if n > m.
(2.21)

then ψ+
n is an independent solution of (1.1) on the interval [m,M] .

The lemma has some simple but useful consequences:

COROLLARY 2.5. Suppose that for some a, |a| > 1 , (1.1) has a solution such
that anψ−

n → 1 as n → ∞ . Then

• Every solution ψn of (1.1) that is independent of ψ−
n is exponentially increasing,

i.e., a−nψn →C �= 0 as n → ∞ .

• For any solution ψn , the product ψnψ−
n is bounded independently of n .
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• Given any boundary condition of the form aψ1 + bψ2 = 0 , if 0 /∈ sp(−Δ +V ) ,
then the Green matrix for (−Δ +V) on n � 1 is uniformly bounded.

Proof. Because every solution to (1.1) is a linear combination of ψ−
n and ψ+

n
as defined in (2.21), it suffices to show the first two statements for ψn = ψ+

n , which
behaves asymptotically like a−n ∑n−1

k a2k+1 . Since this quantity can be bounded above
and below by expressions of the form C1 +C2 a−n ∫ n−1

1 a2x+1dx = C2
2 lnaan−1 + O(1) ,

where C2 �= 0, the first two statements follow.
If 0 �= sp(−Δ +V) , then the Green matrix is defined, and

Gmn =
ψ+

min(m,n)ψ
−
max(m,n)

W [ψ−,ψ+]
, (2.22)

where ψ+
n satisfies the boundary condition at n = 1,2. Since this is bounded on any

finite set of indices m,n , the third statement follows from the asymptotic estimate of
ψ+

n in the first statement. �

An important case where these estimates apply is captured in the following.

COROLLARY 2.6. Suppose that for some constant V∞ /∈ [−4,0] , V −V∞ ∈ �1 .
Then there is a solution to (1.1) of the type ψ−

n ∼ a−n for |a| > 1 and an independent
solution ψ+

n ∼ an , and the statements of Corollary 2.5 apply.

Proof. We can apply Theorem 2.2 and Corollary 2.5 once it is observed that the
comparison equation

(−Δ +V∞)φn = 0

has an exponentially decreasing solution, viz., assuming V∞ > 0, φ−
n = a−n for a =

1
2

(
V∞ +

√
V 2

∞ +4V∞

)
. (The case V∞ < −4 similarly has an exponentially decreasing

solution, according to Remark 1.) �

Further conditions for the existence of exponentially decreasing and exponentially
increasing solutions may be found in [31].

The existence of a more rapidly decreasing solution has similar implications:

COROLLARY 2.7. Suppose that for some a > 1 , b > 1 , equation (1.1) has a so-
lution such that anbψ−

n → 1 as n → ∞ . Then

• Every solution ψn of (1.1) that is independent of ψ−
n increases rapidly as n→∞ ,

but a−nbψn → 0 as n → ∞ .

• For any solution ψn , the product ψnψ−
n is bounded independently of n .

• Given any boundary condition of the form aψ1 + bψ2 = 0 , if 0 �= sp(−Δ +V) ,
then the Green matrix for (−Δ +V) on n � 1 is uniformly bounded.
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The proof of this is similar to that of Corollary 2.5, but details will be left to
the interested reader. On the other hand, subdominant solutions that decrease only
polynomially fast do not lead to as strong control of the products or of the Green matrix:

COROLLARY 2.8. Suppose that for some a > 0 Equation (1.1) has a solution
such that naψ−

n → 1 as n → ∞ . Then for any solution ψ that is independent of ψ−
n ,

|ψ−
n ψn| ∼Cn.

Proof sketch. The argument being familiar from the proof of Corollary 2.5, we
content ourselves with the application of Formula (2.21). As before, we may as well
assume that ψn = ψ+

n as defined by that formula, which is of the form

n−a
n−1

∑
k

ka(k+1)a. (2.23)

This is asymptotic to n−a ∫ n−1
1 x2adx = na+1

2a+1 + o(na+1) . The claimed estimate for the
product results when this is multiplied by ψ−

n . �

Some converse implications, by which the boundedness of φ+
n φ−

n controls the
asymptotic behavior of solutions, will appear in Section 3.

3. Construction of Comparison Equations

In this section we turn to the problem of determining the asymptotic behavior of
solutions of (1.1) as n → ∞ given a potential Vn , where Vn can be either bounded or
unbounded. We shall construct explicit comparison equations with respect to which
we can call upon the perturbation results of the earlier sections of this article. The con-
struction will require a discrete replacement for the Liouville-Green (familiarly, JWKB)
approximation, which is a well-known and quite useful tool for this purpose in the set-
ting of ordinary differential equations [16, 21].

Our ansatz is that given an equation of the type (1.1), a related equation is to be
sought for which the solutions are of the form

φ±
n = zn

n

∏
�=1

S±1
� . (3.1)

Recall that in the Liouville-Green approximation to ordinary differential equations of
Schrödinger type a comparison is made to a similar equation having a solution basis in
the form

V (x)−1/4 exp

(
±

∫
V (x)1/2dx

)
[21]. In common with previous authors, we replace the exponential function containing
an “action integral” by a product of the quantities we designate Sn , but we innovate
with an additional prefactor zn , to be specified below in (3.8). This is designed to
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bring simplifications in the discrete case analogous to those resulting from the prefactor
V (x)−1/4 in the continuous case.

Before we state the main results of this section, we pause to point out a connection
between the factor zn and the Green matrix for the Schrödinger operator −Δ + Ṽ , viz.,
for n > m ,

Gnm = φ+
min(m,n)φ

−
max(m,n) = znzm

n

∏
�=m+1

1
S�

, (3.2)

for which (−Δ + Ṽ)G is the identity operator, by a direct computation. In case n = m ,

Gnn = z2
n. (3.3)

In a companion article [14] we study the diagonal elements of the Green matrix and
relate them to the notion of an Agmon metric and a variant of the Bohl transformation
previously treated by Davies and Harrell [9, Section 4].

In order to determine zn , we recall the constancy of the Wronskian of solutions to
equations of the type (1.1). To simplify the discussion, we take W = 1, which can be
arranged by scaling. Given our assumptions it implies that

znzn+1

(
Sn+1− 1

Sn+1

)
= 1. (3.4)

Guided by the case of a constant potential, we expect that if Vn is well-behaved,
then a good choice for Sn is one of the solutions of Sn +S−1

n = Vn +2. This turns out
to be adequate in some bounded cases, but a more sophisticated choice is necessary
when, for example, Vn is allowed to be unbounded. We remark that the choice is not
unique, because different choices lead to the same asymptotic behavior if the compari-
son potentials they lead to are sufficiently close. Our discussion will proceed under the
supposition that Vn > 0 for large n ; the case where Vn < −4 for large n is similar with
the systematic sign changes mentioned in Remark 1.

To determine the best choices for Sn and zn , we consider the equation

Sn +
1
Sn

= bn, (3.5)

which is effectively a quadratic, and let Sn be the root of larger magnitude, i.e.,

Sn =
bn +

√
b2

n−4
2

, where |bn| � 2. (3.6)

We observe that the relationship

Sn− 1
Sn

=
√

b2
n−4 (3.7)

necessarily follows.
To be consistent with the Wronski identity (3.4) we must set

zn := C(−1)n
z

√
(b2

n−1−4)(b2
n−3−4) · · ·

(b2
n−4)(b2

n−2−4) · · · (3.8)
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for all n , where the constant Cz will be chosen below. (We clarify that the prefactor
simply alternates between Cz and its reciprocal, depending on whether n is even or
odd.)

The comparison functions φ± both solve a Schrödinger equation with potential
Ṽn given by

Ṽn :=
Δφ±

n

φ±
n

=
zn+1

zn
Sn+1 +

zn−1

zn

1
Sn

−2. (3.9)

This equation is true by direct substitution for φ+ ; to see that is it also true for φ−
requires also substituting from (3.4). (It is shown in [14], Theorem 3.1, that there is an
analogous exact relationship for diagonals of Green matrices.) We shall in fact show
that there is a choice of ways to choose bn that will lead to a sufficient convergence rate
of Ṽn−Vn , and that the the logarithm of the quantity Sn can be regarded as an Agmon
metric [2, 17] controlling the behavior of solutions φ of (1.1) at infinity.

For clarity, we first consider the case where Vn is bounded and Vn � C > 0 for all
n � N0 . Without loss of generality we may assume that N0 = 1, because this does not
affect the large-n behavior of a solution basis. (This simply allows us to avoid choosing
phases for some square-roots of quantities that might otherwise not be positive.)

In the case of bounded, slowly varying potentials Vn , Theorem 3.1 contains es-
timates for Sn and zn and uses them to control the solutions and Green matrix of the
comparison equation (−Δ + Ṽ )φ = 0. The construction in Theorem 3.1 is guided by
the special case of a constant potential.

In Theorem 3.2 that follows, we shall present a more general result which covers
potentials that are convergent to a finite limit under more relaxed assumptions on Vn .

Finally, in Theorem 3.3 we show that the method proposed in this section also
works for unbounded potentials that possibly fluctuate.

THEOREM 3.1. (bounded and slowly varying potential) Suppose that for some
C > 0 , C � Vn ∈ �∞ , and that n(Vn+1−Vn) ∈ �1 . Choose

bn = bbdd
n := Vn +2. (3.10)

This implies (with a short calculation) that

Sn = Sbdd
n :=

1
2

(
Vn +2+

√
Vn(Vn +4)

)
. (3.11)

The factor zn is determined by (3.8). Then

(a)
Sbdd

n+1−Sbdd
n ∈ �1. (3.12)

(b) Vn converges to a nonzero limit V∞ as n → ∞ , and

Cz := (V∞(V∞ +4))−1/4
∞

∏
m=1

√
V2m(V2m +4)

V2m−1(V2m−1 +4)
(3.13)

is well defined through a finite convergent product.
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(c) Under this definition of Cz and the one of zn in (3.8), znzn+1 = 1/
√

Vn(Vn +4) and

zm − 1

[V∞(V∞ +4)]1/4
∈ l1. (3.14)

(d) The comparison potential Ṽn defined in (3.9), satisfies limn→∞ Ṽn = V∞ , and the
Green matrix for −Δ + Ṽ and the product φ+

n φ−
n are uniformly bounded.

(e) Ṽn−Vn ∈ �1, and therefore, identifying Ṽ with the comparison potential V 0 in (1.2),
the solutions of (1.1) and (1.2) are asymptotically equivalent in the sense of Theorem
2.2.

Proof. The proof for (a) is a direct application of Taylor’s Theorem: Following
(3.6), we consider the function f (x) = 1/2(x+2+

√
x(x+4)) , which is differentiable

for all x > 0. In particular, if x,y > C > 0, f (y) = f (x) + R(x,y) , where R(x,y) =
(y− x)(r+2)/2

√
r(r+4) for some r between x,y , implying that R(x,y) is uniformly

bounded in x,y if x,y > C > 0. Since Sbdd
n+1 = f (Vn+1) we can write

Sbdd
n+1 = Sbdd

n +R(Vn,Vn+1) = Sbdd
n +O(|Vn+1−Vn|), (3.15)

which proves (a).
The fact that if the differences Vn+1 −Vn are summable, then Vn has a limit is

immediate. To establish the convergence of the product (3.13), let δm := Vm −Vm−1 .
Then

Vm(Vm +4) = Vm−1(Vm−1 +4)+ δm(2Vm−1 + δm +4) (3.16)

and since 0 < C � Vn < Vn +4 for all n ,∣∣∣∣δm
2Vm−1 + δm +4
Vm−1(Vm−1 +4)

∣∣∣∣ = O(|δm|) . (3.17)

As a result,
Vm(Vm +4)

Vm−1(Vm−1 +4)
= 1+O

(∣∣∣∣Vm−Vm−1

Vm−1

∣∣∣∣) , (3.18)

which implies that ln Vm(Vm+4)
Vm−1(Vm−1+4) ∈ �1 . By taking the logarithm in (3.13), the product

therefore converges, and is easily seen to be nonzero. This proves (b).
The same argument as for (b) establishes the convergence as m → ∞ of z2m and

of z2m+1 , separately. The choice of the prefactor in (3.13) ensures that the two limits
are the same. The more precise statement (3.14) is where the assumption that not only
Vn+1−Vn but also n(Vn+1−Vn) ∈ �1 is needed. From the definition of zn it can be seen
(by taking logs and using Taylor’s theorem) that |zn+2− zn| is dominated by a constant
times |Vn+1−Vn|+ |Vn−Vn−1| . Thus ∑m |zm − z∞| is dominated by a constant times

∞

∑
m=1

∞

∑
k=m

|Vk −Vk−1|,
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which by reversing the order of summation equals

∞

∑
k=1

(k−1)|Vk−Vk−1| < ∞

by assumption. The other statements in (c) follow by (3.2) and (3.3).
Finally, by (3.9),

Rn :=Vn−Ṽn = Vn−
(

zn+1Sbdd
n+1

zn
+

zn−1

znSbdd
n

−2

)
= (Vn +2)−

(
zn+1Sbdd

n+1

zn
+

zn−1

znSbdd
n

)
.

(3.19)
With the aid of (3.11),

Rn = (Sn+1−Sn)+
(

zn+1

zn
−1

)
Sn+1 +

(
zn−1

zn
−1

)
1
Sn

.

Since Sn and zn both have finite nonzero limits and Sn − limk→∞ Sk and zn − z∞ are
both �1 , each of these three terms is easily seen to belong to �1 . �

REMARK 3. The quantity Cz is analogous to the exponential of an action integral
in the continuous situation, which shows up in “tunneling” effects. We summarize that
in the case where 0 < C � Vn and Vn+1 −Vn ∈ �1 , there is a Liouville-Green basis of
comparison functions for (1.1), and The perturbation method of §2 lets the solutions
{ψ±

n } be determined from that basis through an iteration that converges for all n � N
for some finite N . To collect the details in one formula, the Liouville-Green basis is of
the explicit form

φ±
n =

√
Vn−1(Vn−1 +4)Vn−3(Vn−3 +4) . . .

Vn(Vn +4)Vn−2(Vn−2 +4) . . .

n

∏
k

(
Vk +2+

√
Vk(Vk +4)

2

)±1

(3.20)

(dropping the normalization factors Cz or, resp., 1/Cz ).

The next result concerns potentials that are convergent to a finite limit under more
relaxed assumptions on Vn .

THEOREM 3.2. (general bounded potential) Let Sn + 1/Sn = bn . where bn is a
bounded function of the potential V such that for all n , C1 > bn > C2 > 2 for some
constants C1,C2 . If ∑n |bn+1−bn| < ∞ , then

(a)
Sn+1−Sn = O(|bn+1−bn|).

(b)

PM :=
M

∏
m=1

(
b2

2m−4

b2
2m−1−4

)
→ P∞ (3.21)

is well defined through a finite convergent product. If bn �= bn+1 for all n , then P∞ �= 0 .
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(c) If Vn+1 −Vn ∈ �1 , we can choose bn in a way such that bn+1 − bn ∈ �1 and that
Ṽn−Vn ∈ �1 . Some appropriate choice will be shown explicitly in the proof below.

Proof of Theorem 3.2. The proof for (a) is a direct application of Taylor’s The-
orem. Following (3.6), we consider the function f (x) = 1/2(x+

√
x2−4) , which is

differentiable for all x2 > 4. In particular, if x,y > 2, f (y) = f (x) + (y− x)R(x,y) ,
where R(x,y) = r/2

√
r2−4 for some r between x,y , implying that R(x,y) is uni-

formly bounded in x,y if x,y > 2. Since Sn+1 = f (bn+1) we can write

Sn+1 = Sn +(bn+1−bn)R(bn,bn+1) = Sn +O(|bn+1−bn|), (3.22)

which proves (a).
Note that (3.30) can be expressed as

Ṽn−Vn =
1
2

⎡⎣ bn√
b2

n−4
− bn+1√

b2
n+1−4

⎤⎦ (b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · ·︸ ︷︷ ︸

(I)

+

⎡⎣ bn+1√
b2

n+1−4

⎤⎦ (b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · · − (Vn +2)

︸ ︷︷ ︸
(II)

. (3.23)

Clearly, (I) is summable in n because both Sn and bn are of bounded variation.
Hence, we are left with

(II) =
bn√
b2

n−4

(b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · · − (Vn +2). (3.24)

To see what possible choices of bn will give us the desired convergence, we let

Jn =
(b2

n −4)(b2
n−2−4) · · ·

(b2
n−1−4)(b2

n−3−4) · · · . (3.25)

Then we have
b2

n+1−4 = Jn+1Jn (3.26)

which implies that

(II)= Jn

√
Jn+1Jn +4

Jn+1Jn
−(Vn+2)=

√
1+

Jn− Jn−1

Jn+1

√
(Jn+1− Jn)Jn + J2

n +4−(Vn+2).

(3.27)
Therefore, a natural choice for Jn is

J2
n +4 = (Vn +2)2 (3.28)



SOLUTIONS TO DIFFERENCE EQUATIONS IN SCHRÖDINGER FORM 373

(or equivalently, Jn =
√

Vn(Vn +4)), then Jn+1 − Jn = O(|Vn+1 −Vn|) and by (3.26),
bn+1−bn is also O(|Vn+1−Vn|) . Under this particular choice of Jn ,√

1+
Jn− Jn−1

Jn+1

√
(Jn+1− Jn)Jn + J2

n +4 = (1+O(Vn+1−Vn))(Vn +2). (3.29)

In fact, there are a number of choices of Jn that we can choose from. By (3.23)
above, bn+1−bn ∈ �1 and Jn+1− Jn ∈ �1 are are sufficient conditions for Ṽn−Vn ∈ �1 .

We provide a few examples here for the interested reader:

(a) (geometric mean) Let J2
n + 4 = (Vn+1 + 2)(Vn + 2) . Clearly, under this choice,

J2
n +4 = (Vn+2)2+O(|Vn+1−Vn|) and by (3.26), bn+1−bn = O(|Jn+1−Jn−1|)=

O(|Vn+1−Vn|+ |Vn−Vn−1|) ∈ �1 .

(b) (arithmetic mean) Let J2
n +4 = [(Vn +2)2 +(Vn−1 +2)2]/2.

(c) (skipping some Vn ’s) For k � 0, let J2
2k + 4 = J2

2k+1 + 4 = (V2k + 2)2 . Then for
all n , Jn+1− Jn = O(|Vn+1−Vn−1|) ∈ �1 . Hence, bk+1−bk = O(Vk+1−Vk−2) ∈
�1 . �

We now turn to the case where Vn is not bounded. Here we find that the Liouville-
Green approximation for the unbounded case simply requires replacing Vn + 2 by the
geometric mean of Vn +2 and Vn−1+2. That is, the canonical choice in the unbounded
case is

Sn− 1
Sn

=
√

(Vn +2)(Vn−1 +2),

which, we remark, is equivalent to Vn +2 when Vn is bounded and slowly varying. The
argument establishing the accuracy of the Liouville-Green approximation runs much as
in the simpler, more restricted case, but with correspondinglymore complicated details.
As before, this choice of Sn is convenient but not unique.

In terms of a general bn and the Sn related to it according to (3.5), the comparison
potential (3.9) becomes

Ṽn−Vn =

⎡⎣ Sn+1√
b2

n+1−4
+

1

Sn
√

b2
n−4

⎤⎦ (b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · · − (Vn +2). (3.30)

Note that by (3.6) and the fact that 1/Sn = bn−Sn ,

Sn+1√
b2

n+1−4
=

bn+1

2
√

b2
n+1−4

+
1
2

(3.31)

1

Sn
√

b2
n−4

=
bn−Sn√

b2
n−4

=
bn

2
√

b2
n−4

− 1
2
. (3.32)
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Hence, (3.30) becomes

Ṽn−Vn =
1
2

⎡⎣ bn+1√
b2

n+1−4
+

bn√
b2

n−4

⎤⎦ (b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · · − (Vn +2). (3.33)

It turns out that the convenient choice of Cz in a situation where Vn is unbounded
is simply Cz = 1. The theorem reads as follows:

THEOREM 3.3. (unbounded potential) Let V be a potential that satisfies

∑
n

1

V 1/2
n

(
1

V 3/2
n+1

+
1

V 3/2
n−1

)
< ∞. (3.34)

Let Cz = 1 and bn = Sn +1/Sn > 0 be chosen such that

Sn− 1
Sn

=
√

b2
n−4 =

√
(Vn +2)(Vn−1 +2). (3.35)

Then

(a) bn =
√

(Vn +2)(Vn−1 +2)+4, zn = 1√
Vn+2

and

Sn =

√
(Vn +2)(Vn−1 +2)+

√
4+(Vn +2)(Vn−1 +2)

2
> 1. (3.36)

(b) Ṽn−Vn = O

(
1

V 3/2
n+1V

1/2
n

+
1

V 1/2
n V 3/2

n−1

)
∈ �1 .

(c) The Green matrix Gm,n is uniformly bounded.

REMARK 4. The potentials that satisfy the condition (3.34) are unbounded, in-
cluding some that fluctuate. An example is given §5.

Proof of Theorem (3.3). Given this choice of b2
n−4, we have

(b2
n−4)(b2

n−2−4) · · ·
(b2

n−1−4)(b2
n−3−4) · · · = Vn +2. (3.37)

By the definition of zn in (3.8), this implies (a).
Therefore, by (3.33) above,

Ṽn−Vn =
Vn +2

2

⎡⎣ bn+1√
b2

n+1−4
+

bn√
b2

n−4
−2

⎤⎦ . (3.38)
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We apply the relation
√

a−√
b = (a−b)/(

√
a+

√
b) to

bn+1√
b2

n+1−4
−1 =

bn+1−
√

b2
n+1−4√

b2
n+1−4

=
b2

n+1− (b2
n+1−4)√

b2
n+1−4

(
bn+1 +

√
b2

n+1−4
)

=
4

bn+1

√
b2

n+1−4+b2
n+1−4

(3.39)

=
4√

(Vn+1 +2)(Vn +2)[(Vn+1 +2)(Vn +2)+4]+
√

(Vn+1 +2)(Vn +2)
,

which is on the order of O((Vn+1 +2)3/2(Vn +2)3/2 ).
Next, we obtain a similar formula for bn/

√
b2

n−4 and show that it is in the order
of O((Vn +2)3/2(Vn−1 +2)3/2) . Canceling the Vn +2 term in (3.38), we prove (b).

Statement (c) about the Green matrix and the products of comparison solutions
then follows from (3.2) and (3.3). �

4. Dichotomy and refined asymptotic estimates

Let ψ be a non-trivial solution to the equation (−Δ +V )ψ = 0, when V 0
n −Vn

is small, and ψn = a+
n φ+

n + a−n φ−
n . In this section, we provide a classification of the

parameters a+
n and a−n and describe how they converge.

To begin, we prove a preliminary classification of a+ and a− , distinguishing the
exceptional cases where the perturbed solutions only depend on one of the comparison
solutions in (2.1) for large n :

PROPOSITION 4.1. (primary classification) Suppose βnφ+
n φ−

n → 0 . Then for any
non-trivial solution ψn = a+

n φ+
n +a−n φ−

n with a±n satisfying (2.3), one of the following
must be true:

1. Given any integer N , there is an integer p > N such that both a+
p and a−p are

non-zero (this will be treated in Theorem 4.2 below).

2. There is an integer p0 such that

a+
p0+k = a+

p0
�= 0, a−p0+k = 0 ∀k � 0. (4.1)

3. There is an integer p0 such that

a−p0+k = a−p0
�= 0, a+

p0+k = 0 ∀k � 0. (4.2)

Proof of Proposition 4.1. Recall the definition in (2.3). Observe that detMp =
TrMp = 0. Hence, for all p ∈ N ,

det(I +Mp) = 1+TrMp +detMp = 1, (4.3)
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which implies that

an :=
(

a+
n

a−n

)
= 0 for some m ⇔ ap = 0, ∀p ∈ N ⇔ a1 = 0. (4.4)

Since ψ is not the trivial solution, for any p either a+
p �= 0 or a−p �= 0 (or both).

Suppose we are not in Case 1. Then there exists N0 such that for all k � N0 , either
a+

k = 0 or a−k = 0. Without loss of generality, suppose for some large p > N0 , a+
p �= 0

and 1+ βkφ+
k φ−

k �= 0 for all k � p (this is possible because βkφ+
k φ−

k → 0). We will
show that this corresponds to Case 2.

Observe that (
a+

p+1
a−p+1

)
= (I +Mp)

(
a+

p
0

)
= a+

p

(
1+ βpφ+

p φ−
p

−βp(φ+
p )2

)
, (4.5)

which implies a+
p+1 �= 0 and as a result, a−p+1 = 0. Apply the same argument recursively

to obtain (4.1) �

ASSUMPTIONS 4.1. Now we focus on Case 1 of Proposition 4.1. Without loss
of generality, we assume a+

1 ,a−1 �= 0 and supn |βnφ+
n φ−

n | < 1. The latter assumption,
together with the assumption in Theorem 4.2 that ∑∞

n=1 |βnφ+
n φ−

n |< ∞ , guarantees that
p±n �= 0 for all n and that limn→∞ Π±

n �= 0.

A key observation here is that the recurrence matrix I+Mn in (2.3) can not always
be diagonalized, making it impossible to utilize existing techniques in the perturbation
theory literature, which heavily relies on the fact that the transfer matrix can be diago-
nalized (see, e.g., Benzaid–Lutz [3] and the discussion in the Introduction).

A key observation is that the recurrence matrix can be decomposed into the sum
of a lower triangular matrix and an upper triangular error matrix:

I +Mn =
(

1+ βnφ+
n φ−

n 0
−βn(φ+

n )2 1−βnφ+
n φ−

n

)
+

(
0 βn(φ−

n )2

0 0

)
(4.6)

=: Gn +En. (4.7)

The advantage of such a decomposition is as follows: let Σn be defined recursively as

Σn :=

⎧⎪⎨⎪⎩−βn(φ+
n )2

n−1

∏
j=1

(1+ β jφ+
j φ−

j )+ (1−βnφ+
n φ−

n )Σn−1, n � 2;

−β1(φ+
1 )2, n = 1,

(4.8)

and let

Π±
n =

n

∏
j=1

(1±β jφ+
j φ−

j ) :=
n

∏
j=1

p±j . (4.9)

Under such definitions, we have a closed form for the product GnGn−1 . . .G1 :

GnGn−1 · · ·G1 = Gn

(
Π+

n−1 0
Σn−1 Π−

n−1

)
=

(
Π+

n 0
Σn Π−

n

)
. (4.10)
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While Gn is an approximation for the recurrence matrix I + Mn , we shall show
that the product GnGn−1 · · ·G1 will serve as an approximation to the actual recurrence
relation (2.3) for a±n under Trench-type conditions on V 0

n −Vn :

THEOREM 4.2. Let φ±
n be independent solutions to the difference equation (−Δ+

V 0)ψ = 0 . Consider a potential V such that

sup
n
|Σn| < ∞ and

∞

∑
n

∣∣(Vn−V 0
n )(φ+

n φ−
n )

∣∣ < ∞. (4.11)

If either ∑∞
n=1 |φ−

n |2 < ∞ or ∑∞
n=1 |V 0

n −Vn| < ∞ , then any non-trivial solution ψ
to the equation (−Δ +V)ψ = 0 can be written as ψn = a+

n φ+
n + a−n φ−

n such that one
of the following is true:

1. There is an integer p such that

a+
p+k = a+

p �= 0, a−p+k = 0 ∀k � 0. (4.12)

2. There is an integer p such that

a−p+k = a−p �= 0, a+
p+k = 0 ∀k � 0. (4.13)

3. There exists a constant f∞ �= 0 such that a+
n = Π+

n f∞ + o(1) and a−n = Σn f∞ +
o(1) .

4. There exist constants f +
∞ , f−∞ with f−∞ �= 0 such that a+

n = Π+
n f +

∞ + o(1) and
a−n = Σn f +

∞ + f−∞ +o(1) .

In Example 5.1, we will construct a potential V such that sup
n
|Σn| < ∞ but Σn

fluctuates as n goes to infinity.
Next, we prove a result such that |Σn| may go to infinity:

THEOREM 4.3. Let the definitions be the same as in Theorem 4.2 and V be a
potential such that

Vn−V 0
n � 0(or � 0) ∀n ∈ N and

∞

∑
n

∣∣(Vn−V 0
n )(φ+

n φ−
n )

∣∣ < ∞. (4.14)

Moreover, we require that supn |(φ−
n )2Σn| < ∞ .

If lim
n→∞

|Σn| = ∞ , then exactly one of the following must be true: as n→ ∞ ,

1. a+
n = Π+

n (a+
∞ +o(1)) �= 0 and a−n = Σn−1(a+

∞ +o(1));

2. a+
n → 0 and a−n → a−∞ �= 0 .

If sup
n
|Σn| < ∞ , the reader may refer to Theorem 4.2.
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Proof of Theorem 4.2. Let f +
n+1 and f−n+1 be defined implicitly in (4.15) below:(

a+
n+1

a−n+1

)
=

(
Π+

n 0
Σn Π−

n

)(
f +
n+1
f−n+1

)
. (4.15)

First, we want to prove that

sup
n
| f +

n |+ | f−n | < ∞. (4.16)

Then we prove that exactly one of the following must be true:

1. lim
n→∞

f +
n =: f +

∞ �= 0 and lim
n→∞

f−n = 0.

2. lim
n→∞

f +
n =: f +

∞ exists and lim
n→∞

f−n �= 0.

To begin, we observe that

f +
n+1− f +

n =
a+

n+1

Π+
n

− a+
n

Π+
n−1

=
a+

n+1− p+
n a+

n

Π+
n

=
βn(φ−

n )2a−n
Π+

n

=
βn(φ−

n )2(Σn−1 f +
n + Π−

n−1 f−n )
Π+

n
, (4.17)

which, by the triangle inequality, implies that

| f +
n+1| � | f +

n |
(

1+
βn(φ−

n )2Σn−1

Π+
n

)
+ | f−n |

∣∣∣∣∣βn(φ−
n )2Π−

n−1

Π+
n

∣∣∣∣∣ . (4.18)

f−n+1− f−n =
a−n+1−Σn f +

n+1

Π−
n

− a−n −Σn−1 f +
n

Π−
n−1

=
a−n+1− p−n a−n −Σn f +

n+1 + p−n Σn−1 f +
n

Π−
n

.

(4.19)
By (2.3),

a−n+1− p−n a−n = −βn(φ+
n )2a+

n = −βn(φ+
n )2Π+

n−1 f +
n = (Σn − p−n Σn−1) f +

n . (4.20)

Thus, (4.19) becomes

f−n+1 − f−n =
Σn( f +

n − f +
n+1)

Π−
n

=
βn(φ−

n )2Σn(Σn−1 f +
n + Π−

n−1 f−n )
Π−

n
, (4.21)

which implies that

| f−n+1| �
∣∣ f−n ∣∣(1+

∣∣∣∣βn(φ−
n )2Σn

p−n

∣∣∣∣)+ | f +
n |

∣∣∣∣βn(φ−
n )2ΣnΣn−1

Π−
n

∣∣∣∣ . (4.22)

Add (4.18) to (4.22). Since ∑∞
n=1 |βnφ+

n φ−
n | < ∞ , Π±

n converges to a non-zero limit
and p±n → 1. Moreover, supn |Σn| < ∞ , so there is a constant K such that

| f +
n+1|+ | f−n+1| � (1+K|βn(φ−

n )2|)(| f +
n |+ | f−n |) , (4.23)

which implies (4.16).
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DICHOTOMY 4.1. There are only two mutually exclusive possibilities for f +
n and

f−n :

1. For any pair consisting of an integer N and a constant M > 0, there exists an
integer p = p(N,M) > N such that

M
∣∣ f +

p

∣∣ > | f−p |. (4.24)

2. There exist an integer N0 and a constant M0 such that∣∣ f +
n

∣∣ � M0| f−n | ∀n � N0. (4.25)

Suppose we are in Case 1. Note that (4.24) implies that f +
p �= 0, because if f +

p = 0,
then f−p = 0 which implies a+

p = a−p = 0, and hence a±n ≡ 0. This contradicts the
assumption that ψ is a non-trivial solution.

Let p be the integer given in (4.24). We shall specify the choice of N and M later
in the proof.

Let

rn =
f−n
f +
n

. (4.26)

Note that by the triangle inequality and (4.17),∣∣∣∣∣ f +
p+1

f +
p

∣∣∣∣∣ � 1−
∣∣∣∣∣ f +

p+1 − f +
p

f +
p

∣∣∣∣∣ � 1−K1|βp(φ−
p )2|(1+ |rp|) > 0. (4.27)

Thus, f +
p �= 0 implies f +

p+1 �= 0. Furthermore, by inverting (4.27), we obtain∣∣∣∣∣ f +
p

f +
p+1

∣∣∣∣∣ � 1

1−K1|βp(φ−
p )2(1+ |rp|)|

< K2. (4.28)

Clearly, both rp and rp+1 are well defined as f +
p , f +

p+1 �= 0. Observe that by the
triangle inequality,

|rp+1− rp| �
∣∣∣∣∣ f−p+1− f−p

f +
p

∣∣∣∣∣
∣∣∣∣∣ f +

p

f +
p+1

∣∣∣∣∣+
∣∣∣∣∣ f +

p+1− f +
p

f +
p

∣∣∣∣∣
∣∣∣∣∣ f−p
f +
p

∣∣∣∣∣
∣∣∣∣∣ f +

p

f +
p+1

∣∣∣∣∣ . (4.29)

By (4.21),∣∣∣∣∣ f−p+1− f−p
f +
p

∣∣∣∣∣ �
∣∣∣∣∣βp(φ−

p )2Σp

Π+
p

∣∣∣∣∣(|Σp−1|+ |rp||Π−
p−1|

)
� (1+ |rp|)K3|βp(φ−

p )2|. (4.30)

Similarly, by (4.17),∣∣∣∣∣ f +
p+1− f +

p

f +
p

∣∣∣∣∣ �
∣∣∣∣∣βp(φ−

p )2

Π+
p

∣∣∣∣∣(|Σp−1|+ |rp||Π−
p−1|

)
� K4|βp(φ−

p )2|(1+ |rp|). (4.31)
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By the triangle inequality,

|rp+1| � |rp+1− rp|+ |rp|

� |rp|
[
1+

K5(1+ |rp|)|βp(φ−
p )2|

1−K1|βp(φ−
p )2(1+ |rp|)|

]
+

K5|βp(φ−
p )2|

1−K1|βp(φ−
p )2(1+ |rp|)|

= |rp|+
(1+ |rp|+ |rp|2)K5|βp(φ−

p )2|
1−K1|βp(φ−

p )2(1+ |rp|)| . (4.32)

In particular, if |rp| < 1, then 1 + |rp|+ |rp|2 � 1+ 2|rp| . Besides, when p is large
(which will be the case),

1−K1|βp(φ−
p )2(1+ |rp|)| > 1−2K1|βp(φ−

p )2| > 1/2. (4.33)

Hence, (4.32) becomes

|rp+1| � |rp|+(1+2|rp|)K6|βp(φ−
p )2| = |rp|

(
1+2K6|βp(φ−

p )2|)+K6|βp(φ−
p )2|.
(4.34)

Hence, by an inductive argument we can prove that

|rp+k| �
(

k−1

∏
j=0

(1+ ηp+ j)

)(
|rp|+

k−1

∑
j=0

ηp+ j

)
, (4.35)

where
ηk := 2K6|βk(φ−

k )2| � 0. (4.36)

Since either βk or |φ−
k |2 are summable, ηk ∈ �1 . Hence,

Pp :=
∞

∏
j=0

(1+ ηp+ j) <
∞

∏
j=0

(1+ η j) := P∞ < ∞ (4.37)

and

Sp :=
k−1

∑
j=0

ηp+ j < K7

∞

∑
j=0

ηp+ j → 0 as p → ∞. (4.38)

Here is how we choose M and N : given ε > 0, choose M,N such that

|rp| < M <
ε

2P∞
and sup

k�N
Sk <

ε
2P∞

. (4.39)

It is guaranteed that there exists an integer p > N such that |rp| < M . By (4.35),

|rp+k| � P∞ (|rp|+Sp) < P∞

(
ε

2P∞
+

ε
2P∞

)
< ε. (4.40)

In other words, if (4.24) is true, then lim
n→∞

rn = 0. Apply this to (4.31), we get∣∣∣∣∣ f +
n+1

f +
n

−1

∣∣∣∣∣ � K7|βn(φ−
n )2| ∈ �1. (4.41)
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Since logz is analytic near z = 1, in a neighborhood of 1 there is a constant K8 ,
arbitrarily close to 1, such that

| logz| = | logz− log1| � K8|z−1|. (4.42)

Put z = f +
n+1/ f +

n . By (4.41),∣∣∣∣∣log
f +
n+1

f +
n

∣∣∣∣∣ = O
(|βn(φ−

n )2|) ∈ �1. (4.43)

Moreover, by the argument following (4.27), we know that there exists an integer p
such that f +

n �= 0 for all n � p . Therefore,

log f +
n =

n−1

∑
j=p

(
log

f +
j+1

f +
j

)
+ log f +

p . (4.44)

That implies the existence of limn→∞ log f +
n , and

lim
n→∞

f +
n := f +

∞ �= 0. (4.45)

Together with the proven fact that rn → 0, we obtain

lim
n→∞

f−n = 0. (4.46)

Next, suppose (4.25) is true. If f−n ≡ 0, then f +
n ≡ 0 for all n � N0 , which

contradicts the assumption that ψ is a non-trivial solution.
Now suppose there is an m � N0 such that f−m �= 0. Divide both sides of (4.21) by

f−m . Then we obtain: ∣∣∣∣∣ f−m+1

f−m
−1

∣∣∣∣∣ � K9|βm(φ−
m )2|. (4.47)

Using the same argument as in Case 1, we can prove that f−m �= 0 implies f−m+1 �=
0, which allows us to apply the same logarithmic argument to prove that

lim
n→∞

f−n := f−∞ �= 0. (4.48)

By (4.17),

f +
n+1 =

(
1+ βn(φ−

n )2 Σn−1

Π+
n

)
f +
n +

(
βn(φ−

n )2 Π−
n−1

Π+
n

)
f−n

= (1+O(|βn(φ−
n )2|)) f +

n +O(|βn(φ−
n )2|). (4.49)

Hence,
lim
n→∞

f +
n = f +

∞ exists. � (4.50)
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Proof of Theorem 4.3. The proof is very similar to the one of Theorem 4.2. The
only difference in the proof is that instead of f−n and rn we consider

f̂−n :=
f−n

Σn−2
and r̂n =

f̂−n
f +
n

. (4.51)

In place of |rn+1− rn| in (4.29), we replace it with∣∣∣∣r̂n+1− Σn−2

Σn−1
r̂n

∣∣∣∣ (4.52)

and make use of the fact that |Σn−1/Σn| � 1 for all n . �

5. Some illustrative examples

In Theorem 4.2, we considered the problem when supn |Σn| < ∞ . Here we con-
struct a potential V such that the boundedness condition of Σn is satisfied but Σn fluc-
tuates as n → ∞ :

EXAMPLE 5.1. (bounded but fluctuating Σn ) Let V 0
n ≡ V such that V �∈ [−4,0] .

Then we may find a non-zero x ∈ (−1,1) such that

x+
1
x

= (2+V). (5.1)

The solutions to (−Δ +V0)ψ = 0 are given by

φ−
n = xn and φ+

n = x−n. (5.2)

and the Wronskian W is x−1− x . Consider an asymptotically constant potential:

Vα
n = V +(−1)nWx2n. (5.3)

In other words, βn = βnφ+
n φ−

n = (−1)nx2n is summable and βn(φ+
n )2 = (−1)n . There-

fore, 0 < supn |∏n
j=1(1±β jφ+

j φ−
j )| < ∞ . For n � 1,

Σn = (−1)n+1
n−1

∏
j=1

(1+(−1) jx2 j)+ (1− (−1)nx2n)Σn−1 (5.4)

with
Σ1 = 1, Σ2 = x2− x4, Σ3 = 1− x6 + x8− x10. (5.5)

Using (5.4), it is easy to prove that for k ∈ N ,

lim
k→∞

Σ2k = 0 and lim
k→∞

Σ2k+1 = 1. (5.6)



SOLUTIONS TO DIFFERENCE EQUATIONS IN SCHRÖDINGER FORM 383

EXAMPLE 5.2. The main situation we have treated is where Vn → V∞ /∈ [−4,0] ,
with Vn−V∞ ∈ �2 , for which the solutions are of exponential type, with a subdominant
solution. As a second case, let us suppose that Vn → ∞ .

Eigenfunctions that decay only polynomially are possible when V∞ = 0 or −4.
Suppose, for example, that φ−

n = n−α for some α > 0. This is a solution to a discrete
Schrödinger equation with a potential satisfying

Vk =
(Δφ−)k

φk
= −2+

(
k

k+1

)α
+

(
k

k−1

)α
. (5.7)

Using a Taylor expansion, we find that

Vk =
(Δφ−)k

φk
=

α(α +1)
k2 +0(k−4). (5.8)

Thus polynomial decay can be anticipated when the potential decreases like γk−2 .

COROLLARY 5.1. Suppose that for some γ > 0 ,

Vk =
γ
k2 +Wk,

where kWk ∈ �1 . Then equation (1.1) has a subdominant solution ψ−
k such that

lim
k→∞

k
1
2 (1+

√
1+4γ)ψ−

k = 1. (5.9)

For any solution ψk that is linearly independent of ψ−
k ,

k
1
2 (1−√

1+4γ)ψk (5.10)

converges to a finite, nonzero value.

Next, we provide an example such that |φ+
n φ−

n | is not bounded, yet the quantity
Jn ∈ �1 and therefore Theorems 4.2 and 4.3 apply.

EXAMPLE 5.3. (sparse perturbation) Consider a potential V 0 such that

V 0
n :=

⎧⎨⎩
2

(n+1)(n−1)
n > 1;

− 3
2 n = 1.

(5.11)

It is easy to verify that φ−
n := 1/n is a solution to the equation −Δ +V0 = 0 under the

convention that φ−
−1 = 0. By Corollary 2.8, φ+

n obeys |φ+
n φ−

n | ∼Cn for some constant
C .

Consider a potential V which is a sparse perturbation of V 0 :

Vn :=

⎧⎨⎩V 0
n +

W
n2 n = 2k for some k ∈ N;

V 0
n otherwise.

(5.12)

Under such definitions, βnφ+
n φ−

n ∼C/n is sparsely distributed at powers of 2 and hence
summable.
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Finally, we provide an example for which Liouville-Green approximation is accu-
rate, while the potential fluctuates and diverges as n → ∞ .

EXAMPLE 5.4. Let Va be defined such that

Va
n =

{
na if n is odd;

1 if n is oven,
a > 2. (5.13)

Then

∑
n

1

V 1/2
n

(
1

V 3/2
n+1

+
1

V 3/2
n−1

)
= ∑

n is odd

2

na/2
+ ∑

n is even

(
1

(n+1)3a/2
+

1

(n−1)3a/2

)
< ∞.

(5.14)

Appendix: Second-order difference equations and orthogonal polynomials

In this section, we will show how the discrete Schrödinger operator relates to or-
thogonal polynomials on the real line. We begin by recalling some standard facts; the
reader may refer to [24, 25] for a comprehensive introduction to the subject.

Let μ be a non-trivial measure on R such that for all n ∈ N , the moments are
finite. In other words, ∫

R

|x|ndμ(x) < ∞. (5.15)

We form an inner product and a norm on L2(R,dμ) as follows: for any f ,g ∈
L2(R,dμ) , we define an inner product and a norm as follows:

〈 f ,g〉 =
∫

R

f (x)g(x)dμ(x), ‖ f‖2 =
∫

R

f (x)2dμ(x). (5.16)

By the Gram–Schmidt process, we can orthogonalize 1,x,x2, . . . and obtain the
family of monic orthogonal polynomial on the real line with respect to the measure μ ,

which we denote as (Pn(x))∞
n=0 . For example, if μ =

√
2π

−1
ex2/2 , then we obtain the

Hermite polynomials; and if μ = χ[−1,1]dx , then we obtain the Legendre polynomials.
Let (pn(x))∞

n=0 denote the family of normalized orthogonal polynomials, i.e.,
‖pn‖2

μ = 1. It is well-known that the monic and the normalized orthonormal poly-
nomials on the real line satisfy the following recurrence relations

xPn(x) = Pn+1(x)+bn+1Pn(x)+a2
nPn−1(x), (5.17)

xpn(x) = an+1(x)pn+1(x)+bn+1pn(x)+anpn−1(x). (5.18)

Note that (5.18) above can be expressed as follows:⎛⎜⎜⎝
b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
. . . . . . . . . . . . . . .

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

1
p1(x)
p2(x)

...

⎞⎟⎟⎟⎠ = x

⎛⎜⎜⎜⎝
1

p1(x)
p2(x)

...

⎞⎟⎟⎟⎠ . (5.19)
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The tridiagonal matrix in (5.19) above is called the Jacobi matrix. The recurrence
relation (5.18) can also be expressed in terms of the 2× 2 transfer matrix An+1(x) as
follows (

pn+1(x)
an+1pn(x)

)
= an+1

−1
(

x−bn+1 −1
a2

n+1 0

)
︸ ︷︷ ︸

An+1(x)

(
pn(x)

anpn−1(x)

)
, n � 0. (5.20)

Observe that the discrete Schrödinger operator with potential V and energy E on
f can be written as

− fn+1− fn−1 +(Vn +2) fn = E fn. (5.21)

Compare (5.21) with (5.18). Note that the discrete Schrödinger equation (5.21) can be
seen as having an ≡ 1 and bn+1 = Vn +2 and X = E . Hence, orthogonal polynomials
associated with the measure with recurrence relations an ≡ 1 and bn+1 = Vn +2 eval-
uated at x = E can be seen as a solution of the difference equation (5.21) with initial
condition (p0(x),a0p−1(x)) = (1,0) .

The solution to (5.20) with initial condition (0,−1) (i.e., n = 0) are known as
orthogonal polynomials of the second kind, (qn(x))∞

n=0 , where qn(x) is a polynomial
of degree n− 1. Therefore, (pn(x))∞

n=0 and (qn(x))∞
n=0 form a basis for the solution

space of the difference equation (5.21).
However, for the Schrödinger equation, we impose the condition that the solu-

tion is square summable (i.e., in �2(N)), a property that is not necessarily satisfied by
pn(E) . In fact, for any x0 ∈ R ,(

∞

∑
k=0

pk(x0)2

)−1

= μ(x0). (5.22)

Hence, (pn(E))n is a solution if and only if E is a point of positive mass for μ .
Recall the second-order difference equation (1.13) studied by Geronimo–Smith

[11] which was briefly discussed in Section 1. Note that (1.13) can be written in terms
of a transfer matrix(

y(n+1)
y(n)

)
= d(n+1)−1

(
q(n) −1

d(n+1) 0

)(
y(n)

y(n−1)

)
(5.23)

which resembles the transfer matrix An+1(x) in (5.20). Hence, techniques developed to
study the asymptotic behavior of orthogonal polynomials can be applied to study ratio
asymptotics of the solutions, which determines whether the limit limn→∞ y(n+1)/y(n)
exists and what the limit is in the case that it does. For (1.13) and given that y(n) =
∏n

j=n0
u( j) , ratio asymptotics means

y(n+1)
y(n)

=
u(n+1)

u(n)
, (5.24)

which explains why it was reasonable for Geronimo–Smith to assume that limn→∞ u(n+
1)/u(n) exists should the convergence rates of q(n) and d(n) be sufficiently fast.
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For the asymptotic analysis of pn(x) by means of the transfer matrix when the
coefficients are asymptotically identical (meaning an → a , bn → b ), the reader may
refer to [31].
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