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EIGENVALUES FOR THE STURM–LIOUVILLE EQUATION ON GRAPHS
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Abstract. Applying the approach of Kostrykin and Schrader, [14], an explicit characterisation
of self-adjoint boundary conditions at the nodes or vertices of a graph for the Sturm-Liouville
equation is given. This is then proven to be equivalent to the conditions for self-adjointness of the
corresponding system boundary value problem with separated boundary conditions. In addition,
using an example, it is shown that the complete graph configuration is incorporated in the system
boundary condition at the terminal end point. Making use of the separated system formulation,
via matrix Prüfer angle techniques, an interlacing property of the eigenvalues for a self-adjoint
Sturm-Liouville boundary value problem on a graph is ascertained.

1. Introduction

In this paper we consider the second order differential equation

ly := −d2y
dx2 +q(x)y = λy, (1.1)

where q is real-valued and continuous, on the weighted graph G with boundary condi-
tions at the nodes.

Differential operators on graphs often appear in mathematics, mechanics, physics,
geophysics, chemistry and engineering, see [10, 11, 15, 16, 17, 18] and the bibli-
ographies thereof. Second order boundary value problems on finite graphs also arise
from quantum mechanical models of micro-electronic devices, [3, 12]. Multi-point
boundary-value problems and periodic boundary-value problems can be considered as
particular cases of boundary-value problems on graphs, [5]. In recent years interest in
the spectral theory of Sturm-Liouville equations on graphs has grown considerably, see,
for example [2, 20, 22], where properties of the spectrum are considered.

In our studies of differential operators on graphs we have on numerous occasions
used the approach of rewriting the boundary value problem on a graph as a system
boundary value problem with separated boundary conditions at 0 and 1, see [6, 7, 8].
In these papers we refer to the likes of Kostrykin and Schrader [14], Harmer [13] and
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Carlson [4] for the characterisation and details of self-adjoint boundary conditions on a
graph. In addition, we impose certain constraints on the boundary condition coefficient
matrices in the separated system formulation which ensure formal self-adjointness of
the system boundary value problem. We however do not ever give the explicit link
between the characterisation of self-adjoint boundary conditions on a graph, as given
in [14], and those conditions on the boundary condition coefficient matrices which we
assume for formal self-adjointness of the system boundary value problem. Thus, in
this paper, we fill this gap and prove that the characterisation of self-adjoint boundary
conditions on a graph as given by Kostrykin and Schrader in [14], using Hermitian sym-
plectic geometry, is equivalent to the conditions on the boundary condition coefficient
matrices used in the system formulation to guarantee formal self-adjointness.

It should be noted that Harmer, in [13], considers the special case of the Sturm-
Liouville operator on a non-compact graph with a finite number of edges of infinite
length connected at a single vertex i.e. a star shaped graph with infinite length rays. He
uses the idea of Hermitian symplectic spaces to parametrise all self-adjoint boundary
conditions at the single node in terms of a unitary matrix.

In the past it has been alluded to that once the boundary value problem on a graph
is rewritten as a system boundary value problem with separated boundary conditions
that the nature of the graph (or the explicit structure of the graph) is somehow ”lost”.
This is most certainly not the case and to show this we will provide a natural, yet simple
and physically meaningful example. This example will illustrate that in fact the entire
graph structure is explicitly encapsulated in the system boundary conditions that occur
at the end point 1 . Consequently, using the formally self-adjoint system boundary value
problem with separated boundary conditions together with the matrix Prüfer angle we
prove a couple of interlacing results for the eigenvalues of the system boundary value
problem and thus for the boundary value problem on the graph.

This paper is structured as follows: In Section 2, we recall how to rewrite a bound-
ary value problem on a graph as a system boundary value problem with separated
boundary conditions. In addition, we prove what conditions the boundary condition
coefficient matrices must obey for the system problem to be formally self-adjoint.

We use the approach given by Kostrykin and Schrader, see [14], in Section 3, to
give a characterisation of self-adjoint boundary conditions on a graph. Consequently,
we show that this is equivalent to the conditions imposed on the boundary condition
coefficient matrices in Section 2.

In Section 4, we show by means of an example, that the system boundary condi-
tions are directly and explicitly formed from the boundary conditions on the graph, i.e.
from the given graph structure. So the structure of the graph is entirely contained in
the boundary condition matrices at the terminal end point. Thus by rewriting a graph
boundary value problem as a separated system boundary value problem one does not
lose the graph structure as it remains accessible (up to a class) in the terminal end
boundary condition matrices.

Lastly, in Section 5, by considering the arguments of the characteristic roots of
the matrix Prüfer angle for the system boundary value problem with Dirichlet boundary
conditions, Neumann boundary conditions and general self-adjoint boundary conditions
respectively we prove two interlacing results. The first result shows how the eigenvalues
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of the boundary value problem with Dirichlet boundary conditions and the eigenvalues
of the boundary value problem with general self-adjoint boundary conditions interlace
and using this we obtain an analogous result when the Dirichlet boundary conditions
are replaced by Neumann boundary conditions.

2. Formal self-adjointness in the system setting

In this section we recap, from [6], the necessary details on how to rewrite a bound-
ary value problem on a graph as a system boundary value problem with separated
boundary conditions. The main result of this section provides constraints on the bound-
ary condition coefficient matrices which ensure that the system boundary value problem
is formally self-adjoint.

Let G denote a directed graph with a finite number of edges, say K , each of finite
length and having the path-length metric. Each edge, ei , of length say li can thus be
considered as the interval [0, li] where 0 is identified with the initial point of ei and li
with the terminal point.

The differential equation (1.1) on the graph G can now be considered as the system
of equations

− d2yi

dx2 +qi(x)yi = λyi, x ∈ [0, li], i = 1, ...,K, (2.1)

where qi and yi denote q|ei and y|ei .
The boundary conditions at the node ν are specified in terms of the values of y

and y′ at ν on each of the incident edges. In particular if the edges which start at ν
are ei, i ∈ Λs(ν) and the edges which end at ν are ei, i ∈ Λe(ν) then the boundary
conditions at ν can be expressed as

∑
j∈Λs(ν)

[
αi jy j + βi jy

′
j

]
(0)+ ∑

j∈Λe(ν)

[
γi jy j + δi jy

′
j

]
(l j) = 0, i = 1, ...,N(ν), (2.2)

where N(ν) is the number of linearly independent boundary conditions at node ν . For
formally self-adjoint boundary conditions N(ν) = �(Λs(ν))+�(Λe(ν)) and ∑ν N(ν) =
2K , see [4, 19] for more details.

Let αi j = 0 = βi j for i = 1, ...,N(ν) and j �∈ Λs(ν) and similarly let γi j = 0 = δi j

for i = 1, ...,N(ν) and j �∈ Λe(ν) . The boundary conditions (2.2) considered over all
nodes ν , after possible relabelling, may thus be written as

K

∑
j=1

[
αi jy j + βi jy

′
j

]
(0)+

K

∑
j=1

[
γi jy j + δi jy

′
j

]
(l j) = 0, i = 1, ...,2K, (2.3)

where 2K is the total number of linearly independent boundary conditions.
We may define the Hilbert space L 2(G) as

L 2(G) =
K⊕

i=1

L 2(0, li),
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with inner product

( f ,g) =
K

∑
i=1

∫ li

0
f |ei g|ei dt =

K

∑
i=1

∫ li

0
figi dt =

K

∑
i=1

( fi,gi)L 2(0,li). (2.4)

The boundary value problem (2.1), (2.3) on G can be formulated as an operator
eigenvalue problem in L 2(G) , [1, 4, 21], for the closed densely defined operator

L f := − f ′′ +q f (2.5)

with domain

D(L) = { f | f , f ′ ∈ AC,L f ∈ L 2(G), f obeying (2.3) }. (2.6)

In [6], it is shown that by letting t = x
li

and ỹi(t) = yi(lit) the boundary value
problem on G , (2.1), (2.3), can be reformulated as the following system boundary
value problem on [0,1] :

−WỸ ′′ +QỸ = λỸ (2.7)

where W = diag
[

1
l21

, . . . , 1
l2K

]
, Ỹ =

⎡
⎢⎣

ỹ1
...

ỹK

⎤
⎥⎦ and Q = diag [Q1, . . . ,QK ] . Here Qi(t)= qi(lit) .

The corresponding boundary conditions are given as

ÃỸ (0)+ B̃Ỹ ′(0)+ C̃Ỹ (1)+ D̃Ỹ ′(1) = 0 (2.8)

where Ã = [αi j], B̃ =
[

βi j
l j

]
,C̃ = [γi j] and D̃ =

[
δi j
l j

]
.

Consequently, in [6], it is then also shown that by inserting a vertex, mi , at the
mid-point of each edge, ei , and imposing the continuity boundary conditions

y(m−
i ) = y(m+

i ),
y′(m−

i ) = y′(m+
i )

for i = 1, ...,K (it should be noted that these represent formally self-adjoint boundary
conditions at the vertex mi ), the system (2.7), (2.8) may be rewritten as a system of
twice the dimension with separated boundary conditions as given below:

−MY ′′ +PY = λY (2.9)

with boundary conditions

A∗Y (0)−B∗Y ′(0) = 0, (2.10)

Γ∗Y (1)−Δ∗Y ′(1) = 0 (2.11)

where M = 4

[
W 0
0 W

]
, P =

[
Q

(
t+1
2

)
0

0 Q
(

1−t
2

)]
, A∗ = 1√

2

[
I −I
0 0

]
, −B∗ = 1√

2

[
0 0
I I

]
,

Γ∗ = [C̃, Ã] and −Δ∗ = 2[D̃,−B̃] .
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Let
L1Y := −MY ′′ +PY, (2.12)

where

D(L1) = {Y |Y,Y ′ ∈ AC,L1Y ∈ L 2(0,1),Y obeys (2.10),(2.11)}. (2.13)

In the following theorem we show what conditions are needed on the coefficients, A∗ ,
B∗ , Γ∗ and Δ∗ , in the boundary conditions (2.10) and (2.11) in order to establish that
L1 is formally self-adjoint with respect the the inner product

〈U,V 〉M =
∫ 1

0
UT M− 1

2V dt. (2.14)

THEOREM 2.1. The system boundary value problem (2.9)–(2.11) , where
[Γ∗,−Δ∗] and [A∗,−B∗] have maximal rank, is formally self-adjoint if and only if the
following conditions hold:

(1) Γ∗M− 1
2 Δ = Δ∗M− 1

2 Γ and A∗M− 1
2 B = B∗M− 1

2 A;
(2) Γ∗Γ+ Δ∗Δ = I and A∗A+B∗B = I .

Proof. From the definition of A∗ and B∗ we have, automatically, that A∗M− 1
2 B

= B∗M− 1
2 A and A∗A+B∗B = I .

Let U,V ∈D(L1) then, since P and M− 1
2 are diagonal with real entries, we obtain

〈L1U,V 〉M −〈U,L1V 〉M =
∫ 1

0
[(−U ′′TMM− 1

2V +UTPM− 1
2V )

−(−UTM− 1
2 MV

′′
+UTM− 1

2 PV )]dt

=
∫ 1

0
(−U ′′TM

1
2 V +UTM

1
2V

′′
)dt

= [UT M
1
2V ′ −U ′TM

1
2V ]10,

by integration by parts. Since U,V ∈D(L1) they obey (2.10) and in addition A∗M− 1
2 B =

B∗M− 1
2 A giving that the above expression evaluated at 0 vanishes i.e. the Lagrange

form L is given by

L (U,V ) := 〈L1U,V 〉M −〈U,L1V 〉M = [UTM
1
2V ′ −U ′TM

1
2V ](1). (2.15)

Assume that L1 is formally self-adjoint with respect to the inner product (2.14) and that
[Γ∗,−Δ∗] and [A∗,−B∗] have rank 2K . Then

[UT M
1
2V ′ −U ′TM

1
2V ](1) = 0.

This may be rewritten as

[UT ,U ′T ]

[
0 M

1
2

−M
1
2 0

][
V

V
′

]
= 0.
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Now, [Γ∗,−Δ∗] is of rank 2K and

Γ∗X −Δ∗Y = 0 = Γ∗Z−Δ∗W ⇒ [XT ,YT ]

[
0 M

1
2

−M
1
2 0

][
Z
W

]
= 0

⇔ XTM
1
2W −YT M

1
2 Z = 0.

We may also write the null space of [Γ∗,−Δ∗] as [DT
1 ,DT

2 ]T p , p ∈ C2K , for suit-
able 2K × 2K matrices D1 and D2 . In particular, for all p , q ∈ C2K , we require
Γ∗D1p−Δ∗D2p = 0 and (D1q)T M

1
2 (D2p)− (D2q)T M

1
2 (D1p) = 0.

I.e.

qT DT
1 M

1
2 D2p−qTDT

2 M
1
2 D1p = 0 ⇒ DT

1 M
1
2 D2 = DT

2 M
1
2 D1

⇒ D∗
1M

1
2 D2 = D∗

2M
1
2 D1.

So
D∗

2M
1
2 D1 = D∗

1M
1
2 D2, (2.16)

giving D∗
2M

1
2 D1p−D∗

1M
1
2 D2p = 0 for all p ∈ C2K . Hence [D∗

2M
1
2 ,−D∗

1M
1
2 ] has the

same null space as [Γ∗,−Δ∗] and the same rank. As we are only interested in the null

space of [Γ∗,−Δ∗] we can without loss of generality let Γ∗ = D∗
2M

1
2 and Δ∗ = D∗

1M
1
2 .

Therefore, by (2.16), we have that

Γ∗M− 1
2 Δ = Δ∗M− 1

2 Γ,

as required.
We now show that Γ∗Γ+ Δ∗Δ = I . Obviously Γ∗Γ � 0 and Δ∗Δ � 0 giving that

Γ∗Γ+ Δ∗Δ � 0. Since Γ∗Γ+ Δ∗Δ has rank 2K

Γ∗Γ+ Δ∗Δ > 0

and is Hermitian symmetric. So there exists ϒ and Φ > 0 such that ϒ∗ = ϒ−1 and

Γ∗Γ+ Δ∗Δ = ϒ∗Φϒ

giving
ϒΓ∗Γϒ∗ + ϒΔ∗Δϒ∗ = Φ.

Thus
Φ− 1

2 ϒΓ∗Γϒ∗Φ− 1
2 + Φ− 1

2 ϒΔ∗Δϒ∗Φ− 1
2 = I.

Let Ψ = Φ− 1
2 ϒΓ∗ and Ω = Φ− 1

2 ϒΔ∗ . Then

[Ψ , −Ω]
[

Y (1)
Y ′(1)

]
= [Φ− 1

2 ϒΓ∗ , −Φ− 1
2 ϒΔ∗]

[
Y (1)
Y ′(1)

]

= Φ− 1
2 ϒ[Γ∗Y (1)−Δ∗Y ′(1)]

= 0
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if and only if Γ∗Y (1)−Δ∗Y ′(1) = 0. Therefore [Ψ , −Ω] has the same null space as
[Γ∗,−Δ∗] and the same rank. Again, since we are only interested in the null space of
[Γ∗,−Δ∗] we can without loss of generality let Γ∗ = Ψ and Δ∗ = Ω and then we have
Γ∗Γ+ Δ∗Δ = I .

Note that ΨM− 1
2 Ω∗ = Φ− 1

2 ϒΓ∗M− 1
2 Δϒ∗(Φ− 1

2 )∗ = Φ− 1
2 ϒΔ∗M− 1

2 Γϒ∗(Φ− 1
2 )∗ =

ΩM− 1
2 Ψ∗ , so (1) is also preserved. This completes the proof in one direction and we

now prove the converse.
Assume that (1) and (2) hold. We must show that L1 is formally self-adjoint with

respect to the inner product (2.14) and that [Γ∗,−Δ∗] and [A∗,−B∗] have maximal rank.
The Lagrange form L , given in (2.15), is

L (U,V ) = [UT M
1
2V ′ −U ′TM

1
2V ](1)

for U,V ∈D(L1) . Since U,V obeys boundary condition (2.11) and condition (1) holds
we have that L (U,V ) = 0 i.e. L1 is formally self-adjoint with respect to the inner
product (2.14). In addition, since Γ∗Γ + Δ∗Δ = I we have that Γ∗Γ + Δ∗Δ has rank
2K and thus [Γ∗,−Δ∗] has maximal rank. Trivially, from the definition of A∗ and B∗ ,
[A∗,−B∗] has maximal rank. �

It should be noted that A∗,B∗,Γ∗,Δ∗ are not necessarily invertible. Hence, the
system boundary value problem, (2.9)–(2.11), is more general than the boundary value
problem studied in [23]. In [23] the author requires that at least one of the boundary
condition matrices at each end point is invertible. In particular the boundary conditions
considered in [23] are of the form

Y ′(0)−hY(0) = 0, Y ′(π)+HY(π) = 0,

which is equivalent to B∗ =−Δ∗ = I . Although this may appear to be a minor difference
it in fact has significant consequences.

3. Self-adjoint boundary conditions on a graph

We now use the approach given by Kostrykin and Schrader, [14], in order to char-
acterise self-adjoint boundary conditions on a compact graph. We then prove that this
is equivalent to the conditions for formal self-adjointness given in Section 2.

Let L0 be the minimal Sturm-Liouville operator such that

D(L0) = { f | fi ∈W 2,2(0, li), f ( j)
i (0) = f ( j)

i (l j) = 0, j = 0,1, i = 1, . . . ,K}, (3.1)

L0 f =
(
−d2 f1

dx2 +q1 f1, . . . ,−d2 fK
dx2 +qK fK

)
for f ∈ D(L0), (3.2)

where qi is continuous and real valued for all i = 1, . . . ,K .
The defect indices of L0 are then (2K,2K) .
Following the approach given in [14], we now wish to find all self-adjoint exten-

sions of L0 . Let D ⊂ L 2(G) be defined as

D := { f | fi ∈W 2,2(0, li), i = 1, . . . ,K}.
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Set S to be the Lagrange form

S( f ,g) = (L f ,g)− ( f ,Lg),

where L is as given in (2.5), (2.6).
Define Λ : D → C4K to be the surjective linear map which associates to each f

the element Λ( f ) as

Λ( f ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(0)

.

.

.
fK (0)
f1(l1)

.

.

.
fK (lK )
f ′1(0)

.

.

.
f ′K (0)

− f ′1(l1)

.

.

.
− f ′K (lK )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=
(

f
f ′

)
.

Obviously D(L0) is the null space of the map Λ . Also, S vanishes identically on
D(L0) . Thus any self-adjoint extension of L0 is given in terms of a maximal isotropic
linear subspace on which the Lagrange form S vanishes identically. In order to find
these maximal isotropic subspaces of D we use integration by parts as follows:

S( f ,g) = (L f ,g)− ( f ,Lg)

=
K

∑
i=1

[ fig′
i − f ′i gi]

li
0

= (Λ( f ),−JΛ(g))C4K

where L fi = − f ′′i + qi fi for fi ∈ D(L) , J =
[

0 I2K×2K

−I2K×2K 0

]
and ( , )C4K is the

scalar product on C4K .
Consider the linear subspace V (A ,B) of all Λ( f ) ∈ C4K such that

A f +B f ′ = 0 (3.3)

where A , B are 2K×2K matrices.
To find all maximal isotropic subspaces in D with respect to S it suffices to find all

maximal isotropic subspaces in C4K with respect to S and take their pre-image under
the map Λ . Since J is non-degenerate such spaces all have complex dimension equal
to 2K .

The following theorem by Kostrykin and Schrader, [14], gives the conditions on
A and B which define self-adjointness of the boundary value problem on a graph:

THEOREM 3.1. If [A ,B] has maximal rank then V (A ,B) is maximal isotropic
if and only if A B∗ is self-adjoint.
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Proof. If the 2K × 4K matrix [A ,B] has maximal rank equal to 2K then obvi-
ously V has dimension equal to 2K . Also, the image of C4K under the map [A ,B] is
then all of C2K since we have the general result that for any linear map T from C4K

into C2K

dim ker(T )+dim range(T ) = 4K.

Noting that J2 = −I and J∗ = −J we have that a linear subspace V of C4K is
maximal isotropic if and only if V⊥ = −JV and V⊥ is maximal isotropic, where V⊥
denotes the orthogonal complement with respect to ( , )

C4K of V .
We now rewrite (3.3) as (F (i),Λ( f ))

C4K = 0 for 1 � i � 2K , where F (i) is the i th

column vector of the 4K×2K matrix [A ,B]T =
[

A ∗
B∗

]
. Clearly the F (i) ’s are linearly

independent, so from above V (A ,B) is maximal isotropic if and only if the space
spanned by F(i) is maximal isotropic. This condition is tantamount to the condition
that

[A ,B]J
[

A ∗
B∗

]
= 0

which means A B∗ must be self-adjoint. �
It should be noted that Kostrykin and Schrader, in [14], also characterise self-

adjoint boundary conditions for non-compact graphs with both trivial compact part and
non-trivial compact part.

The next theorem proves that the conditions for formal self-adjointness given in
Theorem 2.1 are equivalent to those given in Theorem 3.1.

THEOREM 3.2. The following are equivalent:
(I) Γ∗M− 1

2 Δ = Δ∗M− 1
2 Γ and Γ∗Γ+ Δ∗Δ = I ;

(II) [A ,B] has maximal rank and A B∗ = BA ∗ .

Proof. From (3.3), (2.3) and (2.8) we obtain that

A = [αi j,γi j] = [Ã,C̃] and B = [βi j,−δi j] = 2[B̃,−D̃]M− 1
2 ,

where M is the weight matrix given in (2.9). Thus A B∗ self-adjoint implies that

[Ã,C̃]

[
W− 1

2 0

0 W− 1
2

][
B̃∗
−D̃∗

]
= [B̃,−D̃]

[
W− 1

2 0

0 W− 1
2

][
Ã∗
C̃∗

]
.

Hence we have the condition

ÃW− 1
2 B̃∗ − C̃W− 1

2 D̃∗ = B̃W− 1
2 Ã∗ − D̃W− 1

2 C̃∗. (3.4)

Now consider Δ∗M− 1
2 Γ = Γ∗M− 1

2 Δ . From the definition of Γ∗ and Δ∗ we get

[−D̃, B̃]

[
W− 1

2 0

0 W− 1
2

][
C̃∗
Ã∗

]
= [C̃, Ã]

[
W− 1

2 0

0 W− 1
2

][−D̃∗
B̃∗

]
,
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which when multiplying out gives exactly (3.4).
Note that [A ,B] has maximal rank if and only if [Ã,C̃, B̃W− 1

2 ,−D̃W− 1
2 ] has

maximal rank if and only if [C̃, Ã,−D̃W− 1
2 , B̃W− 1

2 ] has maximal rank if and only if

[Γ∗,Δ∗M− 1
2 ] has maximal rank if and only if [Γ∗,−Δ∗] has maximal rank and this

implies that Γ∗Γ + Δ∗Δ may, without loss of generality, be taken to be equal to the
identity, as shown in Theorem 2.1. �

REMARK. In Theorem 3.2 we only consider the system boundary conditions at
the end point 1 since the end point 0 represents the artificial node inserted at the mid-
point of each edge of the graph where we imposed continuity boundary conditions
which are undoubtedly self-adjoint. In addition, as is shown in the next section, the
complete graph structure as well as the original graph boundary conditions are totally
incorporated in the system boundary condition at the end point 1 .

4. Example

We now illustrate by means of an easy, yet applicable example, that the config-
uration of the graph is completely encapsulated in the boundary condition matrices at
the terminal end point. In particular, given a self-adjoint graph boundary value problem
we may construct the terminal end boundary condition matrices such that the system
boundary value problem is self-adjoint and the boundary conditions are co-normal. In
addition, Jordan reduction of the terminal end boundary condition matrices enables one
to find graphs with the minimal number of loops on which the boundary value problem
can be posed.

Consider the graph boundary value problem given by equation

− y′′i (x)+qi(x)yi(x) = λyi(x), on [0, li], (4.1)

where i = 1,2 and l1 = l2 = 1, with boundary conditions

y2(0) = 0, (4.2)

y1(0) = y1(1), (4.3)

y1(0) = y2(1) (4.4)

and
y′1(0) = y′1(1)+ y′2(1). (4.5)

We observe that equations (4.1) are equivalent to the system

− Ỹ ′′ +QỸ = λỸ , (4.6)

on [0,1] , where Q = diag[q1,q2] and Ỹ = [ỹ1, ỹ2]T .
Now the boundary conditions, (4.2)–(4.5), on the graph may be written as

2

∑
j=1

[
αi jy j(0)+ βi jy

′
j(0)

]
+

2

∑
j=1

[
γi jy j(l j)+ δi jy

′
j(l j)

]
= 0, i = 1, ...,4, (4.7)
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where α12 = α21 = α31 = β41 = 1, γ21 = γ32 = δ41 = δ42 = −1 and all the others are
equal to zero.

These boundary conditions transform to the system boundary conditions

ÃỸ (0)+ B̃Ỹ ′(0)+ C̃Ỹ (1)+ D̃Ỹ ′(1) = 0, (4.8)

where

Ã =

⎡
⎢⎢⎣

0 1
1 0
1 0
0 0

⎤
⎥⎥⎦ , B̃ =

⎡
⎢⎢⎣

0 0
0 0
0 0
1 0

⎤
⎥⎥⎦ , C̃ =

⎡
⎢⎢⎣

0 0
−1 0
0 −1
0 0

⎤
⎥⎥⎦ , D̃ =

⎡
⎢⎢⎣

0 0
0 0
0 0
−1 −1

⎤
⎥⎥⎦ .

Now, by inserting a node with continuity boundary conditions at the middle of each
edge, the formally self-adjoint boundary value problem, (4.6), (4.8), is equivalent to a
formally self-adjoint boundary value problem of dimension 4 with separated boundary
conditions, i.e., is equivalent to a system of the form

−MY ′′ +PY = λY, (4.9)

with boundary conditions

A∗Y (0)−B∗Y ′(0) = 0, (4.10)

Γ∗Y (1)−Δ∗Y ′(1) = 0, (4.11)

where P is a diagonal potential matrix,

M = 4

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ := 4I4, Y =

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ , A∗ =

1√
2

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

B∗ =
1√
2

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
−1 0 −1 0
0 −1 0 −1

⎤
⎥⎥⎦ , Γ∗ = [C̃, Ã] =

⎡
⎢⎢⎣

0 0 0 1
−1 0 1 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦

and

Δ∗ = 2[−D̃, B̃] =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
2 2 2 0

⎤
⎥⎥⎦ .

In addition, we require that Γ∗Γ + Δ∗Δ = I = A∗A = B∗B , Γ∗M− 1
2 Δ = Δ∗M− 1

2 Γ
and A∗M− 1

2 B = B∗M− 1
2 A . It is easy to verify that I = A∗A = B∗B and A∗M− 1

2 B =
B∗M− 1

2 A . In order for Γ∗Γ+ Δ∗Δ = I we rewrite Γ and Δ appropriately ensuring that
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the null space remains the same. Using Gram-Schmidt gives

Γ∗ =

⎡
⎢⎢⎢⎣

0 0 0 1

−
√

2
3

1√
6

1√
6

0

0 − 1√
2

1√
2

0

0 0 0 0

⎤
⎥⎥⎥⎦ and Δ∗ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1√
3

1√
3

1√
3

0

⎤
⎥⎥⎦ .

By routine calculation one can show that these represent exactly the same boundary
conditions as before and that Γ∗Γ+ Δ∗Δ = I and Γ∗M− 1

2 Δ = Δ∗M− 1
2 Γ .

In addition, it can be shown that the boundary conditions (4.11) are co-normal in
the sense of [8, Appendix A]. To do this we must show that Δ and Γ may be written as

Δ =

[
w1√

1+ |μ1|2
, . . . ,

wn√
1+ |μn|2

,0, . . . ,0

]
(4.12)

and

Γ =

[
μ1w1√
1+ |μ1|2

, . . . ,
μnwn√
1+ |μn|2

,wn+1, . . . ,w4

]
, (4.13)

where w1, . . . ,w4 form an orthonormal basis for C
4 and μ1, . . . ,μn are real numbers.

We may, without altering the boundary conditions at all, write

Γ∗ =

⎡
⎢⎢⎢⎣

0 0 0 0

−
√

2
3

1√
6

1√
6

0

0 − 1√
2

1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎦ and Δ∗ =

⎡
⎢⎢⎣

1√
3

1√
3

1√
3

0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

i.e.

Γ =

⎡
⎢⎢⎢⎢⎣

0 −
√

2
3 0 0

0 1√
6

− 1√
2

0

0 1√
6

1√
2

0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ and Δ =

⎡
⎢⎢⎢⎣

1√
3

0 0 0
1√
3

0 0 0
1√
3

0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

Setting

w1 =

⎛
⎜⎜⎜⎝

1√
3

1√
3

1√
3

0

⎞
⎟⎟⎟⎠ , w2 =

⎛
⎜⎜⎜⎜⎝

−
√

2
3

1√
6

1√
6

0

⎞
⎟⎟⎟⎟⎠ , w3 =

⎛
⎜⎜⎜⎝

0
− 1√

2
1√
2

0

⎞
⎟⎟⎟⎠ and w4 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ,

we have that
Δ = [w1,0,0,0] and Γ = [0,w2,w3,w4].

So Γ and Δ are in the form (4.13) and (4.12) where n = 1, μ1 = 0 and w1, . . . ,w4 form
an orthonormal basis for C

4 .
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Thus the system boundary conditions (4.11) are directly and explicitly formed
from the boundary conditions on the graph (4.2)–(4.5), i.e. from the given graph struc-
ture.

Although three different forms for Γ∗ and Δ∗ are found in the example above, the
minimal graph on which the boundary conditions given by Γ∗ and Δ∗ can be posed is,
in all three cases, (i.e. the graph with a minimal number of interactions at the nodes), a
lasso type graph. Note that, one can give Γ∗ and Δ∗ which express equivalent boundary
conditions to those above but which, from their form, appear to belong to a figure of
eight graph (the maximal graph). That there is redundancy becomes apparent after
Jordan reduction of the augmented matrix [Γ∗ : Δ∗] .

5. Interlacing of eigenvalues

To obtain interlacing results for the eigenvalues of the system we consider the
arguments of the characteristic roots of the matrix Prüfer angle for Dirichlet boundary
conditions, Neumann boundary conditions and general self-adjoint boundary conditions
as given in (2.10) and (2.11).

In order to define the matrix Prüfer angle for the system boundary value problem
we need the following theorem:

THEOREM 5.1. [9, Thm C] Let {Y (x,λ ),Z(x,λ )} be the solution pair of

Y ′ = Z, Z′ = −G(x,λ )Y

where G(x,λ ) = M−1(λ I−P) , i.e the second order operator rewritten as a first order
system, satisfying the the conditions

Y (0,λ ) ≡ B, Z(0,λ ) ≡ A.

Then there exists a continuous, symmetric matrix H(x,λ ) and a nonsingular, continu-
ously differentiable (in x) matrix T (x,λ ) such that

Y (x,λ ) = S∗(x,λ )T (x,λ ), Z(x,λ ) =C∗(x,λ )T (x,λ )

for each λ , where {S(x,λ ),C(x,λ )} is the solution of

S′ = H(x,λ )C, C′ = −H(x,λ )S, (5.1)

S(0,λ ) = B∗, C(0,λ ) = A∗. (5.2)

Moreover , T (x,λ ) is the solution of

T ′ = [SC∗−CGS∗]T, T (0,λ ) = I

and
H(x,λ ) = CC∗ +SGS∗. (5.3)
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In [6] it was shown that for the system (2.9)–(2.11) the matrix Prüfer angle is given
by

F(x,λ ) = (V − iU)−1(V + iU), (5.4)

where

U(x,λ ) = S(x,λ )Γ−C(x,λ )Δ, V (x,λ ) = C(x,λ )Γ+S(x,λ )Δ (5.5)

and S , C are as given in Theorem 5.1.
If we have purely Dirichlet boundary conditions i.e. Δ = 0 and Γ = I , then we

have that the matrix Prüfer angle is given as

FD(x,λ ) = (C− iS)−1(C+ iS) = E(x,λ ) (5.6)

where C and S are as above since we have not altered A and B .
Let f j(x,λ ) , j = 1 . . .2K , denote the characteristic roots of F(x,λ ) and let β j(x,λ )

= arg f j(x,λ ) for each j , with the assumption that β j(x,λ ) is a continuous function
and β j(0,λ ) ∈ [0,2π) .

Similarly let φ j(x,λ ) , j = 1 . . .2K , denote the characteristic roots of E(x,λ ) and
let ω j(x,λ ) = argφ j(x,λ ) for each j , where φ j(x,λ ) is a continuous function.

Then, from [6], we have that both the β j(x,λ )’s and the ω j(x,λ )’s are monotoni-
cally increasing in λ and we have the equation

2K

∑
j=1

[ω j(1,λ )−ω j(0,λ )] =
2K

∑
j=1

[β j(1,λ )−β j(0,λ )]. (5.7)

Now since the boundary conditions are independent of λ we have that ∑2K
j=1 ω j(0,λ )

and ∑2K
j=1 β j(0,λ ) are constants independent of λ .

THEOREM 5.2. Let λi denote the eigenvalues of the system (2.9)–(2.11). Let λ D
i

denote the eigenvalues for the boundary value problem (2.9), (2.10) and

Y (1) = 0. (5.8)

Then there is at least one λi in the interval [λ D
n ,λ D

n+4K−1] and at least two λi ’s in the
interval [λ D

n ,λ D
n+4K ] .

Proof. For the case of purely Dirichlet boundary conditions i.e. for the boundary
value problem (2.9), (2.10) and (5.8) we have that the eigencondition which needs to
be satisfied in order to get an eigenvalue of the system is given by

ω j(1,λ ) = 0(mod2π), (5.9)

for some j ∈ {1, . . . ,2K} , whereas for the general boundary conditions i.e. for the
boundary value problem (2.9)–(2.11) we have the eigencondition

β j(1,λ ) = 0(mod2π) (5.10)
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for some j ∈ {1, . . . ,2K} .
In order to guarantee that at least one of the β j(1,λ )’s, j ∈ {1, . . . ,2K} , has in-

creased by 2π i.e. to guarantee that we have an eigenvalue of the general system, we
require ∑2K

j=1 ω j(1,λ ) to increase by at least 4Kπ . This is since, from equation (5.7),

we would then have that ∑2K
j=1 β j(1,λ ) must increase by at least 4Kπ and if none of

the β j(1,λ )’s increase by at least 2π then we have the situation where ∑2K
j=1 β j(1,λ )

increases by (2π − ε)2K = 4Kπ −2εK which is less that 4Kπ and gives us a contra-
diction.

From equation (5.9) we have that as λ increases from λ D
n to λ D

n+2K we are en-
sured that ∑2K

j=1 ω j(1,λ ) increases by at least 2π since (5.9) has been solved 2K + 1

times. However, if λ increases from λ D
n to λ D

n+2K+1 then ∑2K
j=1 ω j(1,λ ) increases by

at least 4π . Proceeding in this manner, as λ increases from λ D
n to λ D

n+N , ∑2K
j=1 ω j(1,λ )

increases by at least 2π(N− (2K− 1)) . So, in order for ∑2K
j=1 ω j(1,λ ) to increase by

at least 4Kπ we need 2π(N− 2K + 1) � 4Kπ , giving that n � 4K− 1. Hence in the
interval [λ D

n ,λ D
n+4K−1] we have at least one eigenvalue of (2.9)–(2.11).

Now consider the interval [λ D
n ,λ D

n+4K ] . Then by the above calculations ∑2K
j=1 ω j(1,λ )

increases by at least 2π(2K+1) as λ increases from λ D
n to λ D

n+4K . Hence ∑2K
j=1 β j(1,λ )

increases by at least 2π(2K +1) as λ increases from λ D
n to λ D

n+4K . Then at least one
β j has increased by at least 2π , say β1 . If more than one β j has increased by 2π , the
result is proved. So assume that only one β j has increased by at least 2π . Then β j ,
j = 2, . . . ,2K , each increase by at most 2π−ε for some 0 < ε < 2π . Thus the increase
in ∑2K

j=1 β j(1,λ ) for λ increasing from λ D
n to λ D

n+4K is at most (2K−1)(2π−ε) , mak-
ing the increase in β1 at least 2π(2K + 1)− (2K− 1)(2π − ε) = 4π(2K− 1)ε > 4π .
Thus there are at least two eigenvalues of (2.9)–(2.11) in [λ D

n ,λ D
n+4K] . �

Next we consider the case where we have purely Neumann boundary conditions,
i.e. Δ = I and Γ = 0 in (2.11). The matrix Prüfer angle is then given by

FN(x,λ ) = (S− iC)−1(S+ iC) (5.11)

where C and S are as defined in Theorem 5.1.
Let f N

j (x,λ ) , j = 1 . . .2K , denote the characteristic roots of FN(x,λ ) and let

β N
j (x,λ ) = arg f N

j (x,λ ) for each j , with the assumption that β N
j (x,λ ) is a continuous

function.

THEOREM 5.3. Let λi denote the eigenvalues of the system (2.9)–(2.11). Let λ N
i

denote the eigenvalues for the boundary value problem (2.9), (2.10) and

Y ′(1) = 0. (5.12)

Then there is at least one λi in the interval [λ N
n ,λ N

n+4K−1] and at least two λi ’s in the
interval [λ N

n ,λ N
n+4K] .

Proof. We begin by relating FN(x,λ ) and FD(x,λ ) .

FN(x,λ ) = (S− iC)−1(S+ iC) = (−C− iS)−1(C− iS) = −(FD(x,λ ))−1.
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Thus
eiβ N

j = −e−iω j = ei(π−ω j),

which implies that
β N

j = (2πk j −π)−ω j

where k j is a constant. The interlacing result now follows directly from the analysis
used in Theorem 5.2 since adding an additional constant term into equation (5.7) does
not change any of the reasoning. Hence we obtain that in the interval [λ N

n ,λ N
n+4K−1] we

have at least one eigenvalue of (2.9)–(2.11) and in the interval [λ N
n ,λ N

n+4K] we have at
least two eigenvalues of (2.9)–(2.11). �
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