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NEAR INVARIANCE AND SYMMETRIC OPERATORS

R. T. W. MARTIN

(Communicated by V. V. Peller)

Abstract. Let S be a subspace of L2(�) . We show that the operator M of multiplication by
the independent variable has a simple symmetric regular restriction to S with deficiency indices
(1,1) if and only if S = uhK2

θ is a nearly invariant subspace, with θ a meromorphic inner
function vanishing at i . Here u is unimodular, h is an isometric multiplier of K2

θ := H2 �θH2

into H2 and H2 is the Hardy space of the upper half plane. Our proof uses the dilation theory
of completely positive maps.

1. Introduction

A closed subspace S ⊂ H2(�+) , where �+ denotes the complex upper half plane
is called nearly invariant [3, Section 12], [12, 6] if the following condition holds:

f ∈ S and f (i) = 0 ⇒ f (z)
z− i

∈ S. (1.1)

In other words the backward shift (the adjoint of the restriction of multiplication by z−i
z+i

to H2 ) maps the subspace S′ := { f ∈ S| f (i) = 0} ⊂ S into S . Let θ denote an inner
function, i.e. θ is analytic in �+ ,

|θ (z)| < 1 z ∈ �+

and θ has non-tangential boundary values on the real line � which exist almost every-
where with respect to Lebesgue measure and satisfy

|θ (x)| = 1

almost everywherewith respect to Lebesgue measure on � . Any model subspace K2
θ :=

H2 � θH2 is nearly invariant since it is by definition invariant for the backward shift.
Any nearly invariant subspace of H2(�+) can be written as S = hK2

θ where θ is inner,

θ (i) = 0, h is a certain function such that h(z)
z+i ∈ S , and h is an isometric multiplier of

K2
θ into H2 (see [3] and Subsection 1.1). A subspace S ⊂ L2(�) is said to be nearly

invariant if S = uS′ where u is a unimodular function and S′ ⊂ H2 is nearly invariant.
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If θ is meromorphic, it is not difficult to show that any nearly invariant subspace
S = uhK2

θ ⊂ L2(�) is a reproducing kernel Hilbert space (RKHS) of functions on �

with a �-parameter family of total orthogonal sets of point evaluation vectors. Here
� denotes the unit circle. This follows, for example, from the results of [9, 10] (these
results show that any K2

θ has these properties for meromorphic inner θ ). It also follows
that there is a linear manifold (non-closed subspace) DS ⊂ S such that MS := M|DS is
a closed, regular and simple symmetric linear transformation with deficiency indices
(1,1) with domain Dom(MS) = DS . Here M denotes the self-adjoint operator of mul-
tiplication by the independent variable in L2(�) .

Recall that a linear transformation T is simple, symmetric and closed if it is de-
fined on a domain Dom(T ) contained in a separable Hilbert space H and has the
following properties:

〈Tx,y〉 = 〈x,Ty〉, ∀x,y ∈ Dom(T ), T is symmetric; (1.2)⋂
z∈�\�

Ran(T − z) = {0}, T is simple; (1.3)

{(x,Tx)| x ∈ Dom(T )} is a closed subset of H ⊕H , T is closed; (1.4)

dim
(
Ran(T − i)⊥

)
= 1 = dim

(
Ran(T + i)⊥

)
T has deficiency indices (1,1).

(1.5)
The condition (1.3) (T is simple) can be restated equivalently as: T is simple if T has
no non-trivial self-adjoint restrictions [1]. Further recall that a point z ∈ � is said to be
a regular point for a closed linear transformation T if T − z is bounded below. If T is
symmetric and ΩT is its set of regular points, then it follows that

�\�⊂ ΩT ⊂ �,

and T is said to be regular if ΩT = � .
Note that MS may not be densely defined, but the co-dimensions of its domain and

range are at most one [17, Proposition 2.1]. We will denote the family of all closed,
regular, simple symmetric linear transformations with deficiency indices (1,1) on a
separable Hilbert space H by SymR

1 (H ) for brevity. Here the R stands for regular.
Similarly let Sym1(S) denote the family of all simple symmetric linear transforma-
tions with deficiency indices (1,1) that are defined in S . If T ∈ Sym1(H ) , one can
construct an analytic function θT on �+ which is contractive ( |θT (z)| < 1), and which
is a complete unitary invariant for T [8]. That is, given any T1,T2 ∈ Sym1(H ) , T1

is unitarily equivalent to T2 if and only if θT1 = αθT2 for some α on the unit circle
in the complex plane. This function θT is called the Livšic characteristic function of
T . If T ∈ SymR

1 (H ) , then its characteristic function θT is an inner function which is
analytic in a neighbourhood of the real axis � , and has a meromorphic extension to �
(see e.g. [9, Theorem 5.0.7]).

The goal of this paper is to show that the two conditions: (i) S is nearly invari-
ant with S = uhK2

θ for meromorphic θ (with θ (i) = 0) and (ii) M has a symmetric
restriction MS ∈ SymR

1 (S) , are in fact equivalent. This will show in particular that the
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latter condition implies that S is a RKHS with a �-parameter family of total orthogo-
nal sets of point evaluation vectors. One direction of (i) ⇔ (ii) follows from known
results - it is easy to show that if S is nearly invariant, then M has a symmetric re-
striction MS ∈ Sym1(S) (in the next subsection we observe that this follows from e.g.
[9]). Proving the converse appears to be more difficult, and the goal of this paper is to
accomplish this for the special case where MS ∈ SymR

1 (H ) . Namely, our main result
will be to prove the following:

THEOREM 1. Let S ⊂ L2(�) be a closed subspace. The multiplication opera-
tor M has a symmetric restriction MS ∈ SymR

1 (S) if and only if S = uhK2
θ is nearly

invariant with meromorphic inner function θ .

If M has such a restriction MS , then it follows that the characteristic function of
MS is θ [9]. In the above theorem, u is a unimodular function and h is an isometric
multiplier of K2

θ into H2 , as described previously. In fact we expect that a more general
result holds for arbitrary inner θ . That is, we conjecture that S is nearly invariant if and
only if the multiplication operator M has a simple symmetric restriction MS to a linear
manifold in S such that the Livšic characteristic function [8] of MS is inner (see also [1,
Appendix 1, Section 5]). Our approach to proving this result, however, would require
the extension of several results in Krein’s representation theory of simple symmetric
operators to the non-regular case [4]. We will discuss this in more detail in the final
section.

Given any symmetric operator T ∈ SymR
1 (H ) the results of [15, 16] essentially

show how to construct an isometry V : H → L2(�) such that Ran(V ) = uK2
θ for a

meromorphic inner θ and VTV ∗ = Mθ acts as multiplication by the independent vari-
able on its domain. They accomplish this by modifying and extending Krein’s original
representation theory for regular symmetric operators as presented in [4]. Using this
result, the theory of [4], and some dilation theory (Stinespring’s dilation theorem for
completely positive maps) we show that if M has a symmetric restriction belonging to
SymR

1 (S) where S⊂ L2(�) , that S = uhK2
θ must be nearly invariant with meromorphic

inner θ such that θ (i) = 0. This provides another connection between the classical
theory of representations of symmetric operators as originated by Krein and the theory
of model subspaces of Hardy space.

1.1. Nearly invariant subspaces of H2(�+) .

Although it will be most convenient to work with the upper half-plane, nearly
invariant subspaces of H2(�) have a more elegant description. Here � denotes the
unit disc. A subspace S ⊂ H2(�) is called nearly invariant if the following condition
holds:

f ∈ S and f (0) = 0 ⇒ f (z)/z ∈ S. (1.6)

If a subspace S ⊂ H2(�) is nearly invariant then S = hK2
ϕ where ϕ is inner with

ϕ(0) = 0, multiplication by h ∈ S is an isometry of K2
ϕ onto S , and h is the unique

solution to the extremal problem [6]:

sup{Re(h(0)) | h ∈ S and ‖h‖ = 1}. (1.7)
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Note that h ∈ H2 since ϕ(0) = 0 implies that kϕ
0 (z) = 1 ∈ K2

ϕ is the point eval-
uation vector at 0 . Conversely if h is any isometric multiplier of K2

ϕ into H2 where
ϕ(0) = 0, then S = hK2

ϕ is nearly invariant with extremal function h , and h must have
the form [13]:

h =
a

1−bϕ
, (1.8)

where a,b belong to the unit ball of H∞ and obey |a|2 + |b|2 = 1 a.e. on the unit circle
� .

Nearly invariant subspaces of H2(�+) have a similar description as follows. Let
μ(z) := z−i

z+i , μ : �+ →�\{1} , which has compositional inverse μ−1(z) = i 1+z
1−z . Then

U : H2(�) → H2(�+) defined by

U f (z) :=
1− μ(z)√

π
( f ◦ μ)(z), (1.9)

is a unitary transformation which maps K2
ϕ ⊂ H2(�) onto K2

ϕ◦μ ⊂ H2(�+) . If S ⊂
H2(�+) is nearly invariant, it follows that S′ := U ∗S is nearly invariant and hence
S′ = hK2

ϕ for some inner ϕ ∈ H∞(�) such that ϕ(0) = 0 and h ∈ H2(�) . It follows

that S = U S′ = (h ◦ μ)K2
ϕ◦μ where U h = π−1/2(1− μ)h ◦ μ ∈ S , so that θ := ϕ ◦ μ

vanishes at i and h◦μ
z+i ∈ S ⊂ H2(�+) . This shows that if h′ is any isometric multiplier

of K2
θ into H2(�+) (where θ (i) = 0), that h′

z+i ∈ H2 .
Given any inner function θ ∈ H∞(�+) , it is well known that M has a restriction

Mθ ∈ Sym1(K2
θ ) (see e.g [9, 10]). Suppose S := hK2

θ is nearly invariant (θ (i) = 0)
and h is an isometric multiplier of K2

θ . Since V :=multiplication by h commutes with
M and is an isometry of K2

θ onto S , it is not hard to see that MS = PSVMθV ∗PS is
a symmetric restriction of M to S with domain Dom(MS) = VDom(Mθ ) . Moreover,
since VRan(Mθ±i) = Ran(MS ± i) , it follows that MS ∈ Sym1(S) , and that the Livšic
characteristic function of MS is θ (recall here that θ (i) = 0). This shows that any
nearly invariant subspace has the property that M has a restriction MS ∈ Sym1(S) .
The main goal of this paper is to show the converse (in the special case where θ is
meromorphic), namely that if S ⊂ L2(�) is such that MS ∈SymR

1 (S) , that S = uhK2
θ is

nearly invariant.

2. Representation theory for symmetric operators

Let H be a separable Hilbert space and let Sym1(H ) denote the family of all
closed simple symmetric linear transformations in H with deficiency indices (1,1) .
By a linear transformation we mean a linear map which is not necessarily densely
defined, we reserve the term operator for a densely defined linear map. Notice that
Sym1(H ) ⊃ SymR

1 (H ) .
Choose ψ(i) ∈ Ran(T + i)⊥ (= Ker(T ∗ − i) in the case where T is densely de-

fined), and define the vector-valued function

ψ(z) := (T ′ − i)(T ′ − z)−1ψ(i) = ψ(i)+ (z− i)(T ′ − z)−1ψ(i), (2.1)
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where T ′ is any densely defined self-adjoint extension of T within H . If T is regular
then T ′ has purely point spectrum consisting of eigenvalues of multiplicity one with no
finite accumulation point, and it follows that ψ(z) is meromorphic in � , with simple
poles at each point in σ(T ′) ⊂ � . Also it can be shown that 0 �= ψ(z) ∈ Ran(T − z)⊥
for all z ∈ �\� , see e.g. [4, Section 1.2, pgs. 8–9].

Choose 0 �= u ∈ Ran(T + i)⊥ . One can establish the following:

LEMMA 1. If T ∈SymR
1 (H ) and z∈�+ , then for any non-zero ψz ∈Ran(T−z)⊥ ,

〈ψi,ψz〉 �= 0 (so that 〈u,ψz〉 �= 0 ).

The above lemma is a consequence of the following considerations:
Recall that w ∈ � is called a regular point of T if T −w is bounded below. Let

Ω+
T denote the intersection of �+ with the set of all regular points of T . Then �+ ⊂

Ω+
T ⊂ �+ and Ω+

T = �+ if and only if T is regular, i.e. if and only if T ∈ SymR
1 (H ) .

Now for any w ∈ Ω+
T , Ran(T −w)⊥ = �{φw} is one dimensional, spanned by a

fixed non-zero vector φw . For each w ∈ Ω+
T , let Dw := Dom(T )+�{φw} , and define

the linear transformation Tw with domain Dw by

Tw(φ + cφw) = Tφ +wcφw, (2.2)

for any φ ∈Dom(T ) and c∈� . It is not difficult to verify that Tw is a well-defined and
closed linear extension of T . Clearly Tw is densely defined if T is, in which case T ⊂
Tw ⊂ T ∗ . A quick calculation verifies that iTw is dissipative, i.e. Im(〈Twφ ,φ〉) � 0 for
all φ ∈Dw . It follows from this that Tw−z is bounded below for all z∈�− , so that one
can define (Tw − z)−1 as a linear transformation from Ran(Tw − z) onto Dom(Tw) =
Dw . Observe that φw is an eigenvector of Tw to eigenvalue w by construction.

REMARK 1. More can be said about the extensions Tw . Since we will not have
need of these facts, we will state them here without proof. If T is not densely defined,
then one can show that there is exactly one proper closed linear extension T ′ of T
which is not densely defined, and this extension must be self-adjoint. The transforma-
tions Tw are self-adjoint if and only if w ∈ � . (If Tx is the self-adjoint extension of T
which is not densely defined, it is self-adjoint in the sense of a linear relation, i.e. its
graph is self-adjoint as a subspace of H ⊕H [5]). One can show that if Tw is densely
defined that σ(Tw) ⊂ �+ . Since iTw is dissipative, it follows that the Cayley transform
μ(Tw) is a contractive linear operator which extends the isometric linear transformation
μ(T ) . One can further show that w ∈ Ω+

T is an eigenvalue of multiplicity one for Tw ,
and that w ∈ Ω+

T is an eigenvalue for both Tw and Tz if and only if Tw = Tz .

Proof of Lemma 1. Choose w = i∈�+ , and recall that u∈Ran(T + i)⊥ . Suppose
that z ∈ Ω+

T (= �+ since we assume T is regular). Then there is an extension Tz of T
for which ψz is an eigenvector with eigenvalue z (as described above).

If it were true that 〈u,ψz〉 = 0 then we would have that ψz ∈ Ran(T + i) so that
ψz = (T + i)φ for some φ ∈ Dom(T ) . But then since Tz −w is bounded below for all
w∈�− it would follow that (z+ i)−1ψz = (Tz + i)−1ψz = φ so that ψz ∈Dom(T ) . This
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contradicts the fact that T is simple (it also contradicts the fact that T is symmetric if
z /∈ �). �

It follows that the function 〈u,ψ(z)〉 is meromorphic on � with zeroes contained
strictly in the lower half-plane.

Now we can define the vector-valued function

δ (z) :=
ψ(z)

〈ψ(z),u〉 .

By the previous lemma, this is meromorphic in � with poles contained in the lower
half-plane (the poles of ψ(z) on � cancel out with those of 〈ψ(z),u〉 , see e.g. [18]).

Hence one can define a linear map V of H into a vector space of functions
analytic on an open neighbourhood of the closed upper half-plane by

(V f )(z) := 〈 f ,δ (z)〉 =: f̂ (z)

for any f ∈ H . We can endow the range of V , VH =: Ĥ with an inner product
which makes it a Hilbert space (and V : H → Ĥ an isometry) as follows.

Let Q denote any unital B(H )-valued POVM (Positive Operator Valued Mea-
sure) which diagonalizes T . In this case Q(Ω) = PχΩ(S)P where S is a self-adjoint
extension of T (to perhaps a larger Hilbert space K ⊃ H ), and P : K → H is or-
thogonal projection. Here we assume that Q(�) = � so that S is a densely defined
linear operator in K (this is always the case if T is densely defined). Also here,
Ω ∈ Bor(�) := the Borel sigma algebra of subsets of � . The Borel measure defined by
σ(Ω) := 〈Q(Ω)u,u〉 = 〈χΩ(S)u,u〉 is called a u -spectral measure for T , and we have
the following theorem [4, Theorem 2.1.2, pg. 51]:

THEOREM 2. (Krein) The map V f = f̂ is an isometric map of H into L2(�,dσ) .
It is onto if and only if Q is a projection-valued measure (PVM).

It is not hard to check that VTV ∗ = T̂ acts as multiplication by the independent
variable in Ĥ .

Silva and Toloza modify this construction slightly as follows [15]. Let h(z) be
any entire function whose zero set is equal to σ(T ′) (such an entire function always
exists, since the spectrum of σ(T ′) is a discrete set of real eigenvalues of multiplicity
one with no finite accumulation point). Then define γ(z) := h(z)ψ(z) . Then they define
the linear map

Ṽ f (z) := f̃ (z) := 〈 f ,γ(z)〉,
which maps elements of H into a vector space H̃ of entire functions. If one endows
H̃ with the inner product 〈 f̃ , g̃〉

H̃
= 〈 f ,g〉 , then H̃ is a Hilbert space, Ṽ is an isom-

etry, and one can further verify that H̃ is actually an axiomatic de Branges space of
entire functions. It follows from results of de Branges that there is an entire de Branges
function E (which we can assume has no real zeroes by de Branges [2, Problem 44, pg.
52]) such that H̃ with the inner product

〈 f̃ , g̃〉E :=
∫ ∞

−∞
f̃ (x)g̃(x)

1
|E(x)|2 dx
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is a de Branges space of entire functions and 〈 f̃ , g̃〉E = 〈 f̃ , g̃〉
H̃

for all f̃ , g̃ ∈ H̃ =:
H (E) .

Now let
r(z) := h(z)û(z) = h(z)〈u,ψ(z)〉.

By Lemma 1, 〈u,ψ(x)〉 �= 0 for any x ∈ � , and it follows that r has no zeroes or poles
on � (the simple zeroes of h on � coincide with the simple poles of û). Hence for any
f ∈ H , f̃ = r f̂ , so that for any f ,g ∈ H ,

〈 f ,g〉 =
∫ ∞

−∞
f̃ (x)g̃(x)

1
|E(x)|2 dx =

∫ ∞

−∞
f̂ (x)ĝ(x)

∣∣∣∣ r(x)
E(x)

∣∣∣∣2 dx. (2.3)

The following theorem of Krein then implies that this measure σ defined by

dσ(x) :=
∣∣∣∣ r(x)
E(x)

∣∣∣∣2 dx

is in fact a u -spectral measure for T [4, Theorem 2.1.1, pg. 49].

THEOREM 3. (Krein) A Borel measure ν on � is a u−spectral measure if and
only if 〈 f ,g〉 =

∫ ∞
−∞ f̂ (x)ĝ(x)dν(x) for all f ,g ∈ H .

Note that since E(x) has no real zeroes and r has no real zeroes or poles, that σ
is in fact equivalent to Lebesgue measure on � , and that σ ′, 1

σ ′ are both locally L∞ .
The following theorem on u−spectral measures (the form below is valid for T ∈

SymR
1 (H ) , and for our choice of gauge u ∈ Ker(T ∗ − i)) is also due to Krein [4,

Corollary 2.1, pg. 16]:

THEOREM 4. (Krein) Suppose that T ∈ SymR
1 (H ) , and 0 �= u ∈ Ker(T ∗ − i) .

Let Q be the POVM obtained by compression of the PVM of some densely defined self-
adjoint extension T ′ ⊃ T to H , and let ν(·) := 〈Q(·)u,u〉 be a u−spectral measure
of T . Then for any Borel set Ω ,

〈Q(Ω) f ,g〉 =
∫

Ω
f̂ (x)ĝ(x)dν(x). (2.4)

REMARK 2. Krein’s theorems, Theorem 2, Theorem 3 and Theorem 4, were orig-
inally stated for densely defined T ∈Sym1(H ) [4]. However, the extended statements
above hold for non-densely defined T with essentially no modification of Krein’s orig-
inal proofs.

Now suppose that S ⊂ L2(�) and that T = MS ∈ SymR
1 (S) is a restriction of M .

Then M is a self-adjoint extension of MS , so that we can define the u -spectral measure
μ(Ω) := 〈χΩ(M)u,u〉 . Since M is multiplication by x in L2(�) , the measure μ is ab-
solutely continuous with respect to Lebesgue measure so that dμ(x) = μ ′(x)dx . Hence
if

〈 f̂ , ĝ〉μ :=
∫ ∞

−∞
f̂ (x)ĝ(x)μ ′(x)dx,
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then 〈 f̂ , ĝ〉μ = 〈 f ,g〉 by Theorem 3.
Moreover, Theorem 4 implies that for any f ,g ∈ S ,

〈χΩ(M) f ,g〉 =
∫

Ω
f̂ (x)ĝ(x)μ ′(x)dx (2.5)

=
∫

Ω

∣∣∣∣E(x)
r(x)

∣∣∣∣2 μ ′(x) f̃ (x)g̃(x)
1

|E(x)|2 dx (2.6)

= 〈R(M̃)χΩ(M̃) f̃ , g̃〉E , (2.7)

where R(x) :=
∣∣∣E(x)

r(x)

∣∣∣2 μ ′(x) is locally L1 . Here M̃ denotes multiplication by the inde-

pendent variable in L2(�, |E(x)|−2dx) ⊃ H (E) = H̃ .

REMARK 3. In fact μ ′(x) > 0 a.e. . Otherwise there would be a Borel subset
Ω ⊂ � of non-zero Lebesgue measure such that 〈χΩ(M̂) f̂ , ĝ〉μ = 0 for all f ,g ∈ H ,
where M̂ denotes multiplication by the independent variable in L2(�,dμ) . But this
would imply that 〈∣∣∣∣∣E(M̃)

r(M̃)
χΩ(M̃)

∣∣∣∣∣
2

f̃ , g̃

〉
E

= 0, (2.8)

for all f̃ , g̃ ∈ H (E) , where M̃ denotes multiplication by the independent variable in
L2(�, |E(x)|−2dx) . Since E(x)/r(x) is non-zero almost everywhere with respect to
Lebesgue measure, this would imply that elements of H (E) vanish almost everywhere
on Ω . This is impossible as elements of H (E) are entire functions. In conclusion
μ ′ > 0 almost everywhere. The fact that μ ′ > 0 almost everywhere where μ(Ω) =
〈χΩ(M)u,u〉 also shows that the gauge u is non-zero almost everywhere. This shows
that the subspace S contains an element which is non-zero almost everywhere with
respect to Lebesgue measure so that S is cyclic (and separating) for the von Neumann
algebra generated by bounded functions of M . The fact that μ ′ > 0 almost everywhere
also implies that R(x) > 0 a.e. . These facts will be useful later.

Observe that

〈R(M̃) f̃ , g̃〉E =
∫ ∞

−∞

f̃ (x)
r(x)

g̃(x)
r(x)

μ ′(x)dx (2.9)

= 〈 f̂ , ĝ〉μ = 〈 f ,g〉 = 〈 f̃ , g̃〉E . (2.10)

This calculation shows that R1/2(M̃)PE is a partial isometry in L2(�, |E(x)|−2dx) with
initial space H (E) .

Now let

θ :=
E∗

E
, (2.11)

a meromorphic inner function. Then multiplication by 1
E is an isometry of L2(�,

|E(x)|−2dx) onto L2(�) that takes H (E) onto K2
θ , and which intertwines M̃ and
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M , the operators of multiplication by the independent variable in L2(�, |E(x)|−2dx)
and L2(�) . Let

V : S → K2
θ

be the isometry defined by

V f :=
f̃
E

,

and let V0 := VPS be the corresponding partial isometry on L2(�) .

REMARK 4. Since V implements a unitary equivalence between MS ∈ SymR
1 (S)

and Mθ ∈ SymR
1 (K2

θ ) , the symmetric linear transformation of multiplication by z in
K2

θ , it follows that

θS :=
θ −θ (i)
1−θ (i)θ

is the Livšic characteristic function of MS [9].

It then follows from equation (2.7) that given any Borel set Ω and f ,g ∈ L2(�) ,

〈PSχΩ(M)PS f ,g〉 = 〈Pθ R(M)χΩ(M)PθV0 f ,V0g〉. (2.12)

Let vN(M) denote the von Neumann algebra of L∞ functions of M , and let R :=
R(M) � 0, which is affiliated with vN(M) . It follows that for any m ∈ vN(M) .

PSmPS =V ∗
0 Pθ

√
Rm

√
RPθV0. (2.13)

Given a projector P , we let P denote the completely positive map P(A) = PAP ,
and if B ∈ B(L2(�)) , the Banach space of bounded linear operators on L2(�) , let AdB

denote the completely positive map AdB(A) = BAB∗ . The above equation shows that

AdV∗
0
◦Pθ ◦Ad√R

∣∣
vN(M) = PS

∣∣
vN(M) . (2.14)

Note that since, by equation (2.10), R1/2Pθ is a partial isometry, that the com-
pletely positive map

Φ1 := Pθ ◦Ad√R : B(L2(�)) → B(K2
θ )

is unital.
In the next section we will use the dilation theory of completely positive maps

to show that equation (2.14) implies that the partial isometry V ∗
0 : K2

θ → S acts as the
restriction of an element affiliated with vN(M) to S , i.e. V ∗

0 acts as multiplication by
a function v(x) . It will follow easily from this that S is nearly invariant.
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3. Application of Dilation Theory

It will be convenient to use a number of acronyms. CP means completely positive,
CPU means CP and unital, TP means trace preserving. A CPTPU map is a completely
positive unital and trace preserving map, which is also sometimes called a quantum
channel. SSD stands for Stinespring dilation.

The following lemma can be proven using Stinespring’s theorem.

LEMMA 2. Let A be a unital C∗ algebra. Suppose that φ1 : A → B(H1) and
φ2 : Ran(φ1) → B(H2) are CP maps such that Hi are separable. If π1 and π2 are
the minimal Stinespring dilations of the Φ1 = φ1 and Φ2 := φ2 ◦ φ1 , then there is a
contractive ∗ -homomorphism π such that π ◦π1 = π2 .

One can prove this by inspecting the proof of Stinespring’s theorem as presented
in [11].

Proof. Begin by constructing the representations πi as in the proof of Stinespring’s
theorem. Consider the algebraic tensor products A ⊗Hi =: K ′

i . Then define inner
products on the K ′

i by (a⊗ xi,b⊗ yi)i = 〈Φi(b∗a)xi,yi〉i where a,b ∈ A , xi,yi ∈ Hi .
Then as per the usual proof, the Cauchy-Schwarz inequality can be applied to show
that Ni := {u ∈ K ′

i | (u,u)i = 0} is a vector subspace of K ′
i . One then defines

the Hilbert spaces Ki to be the completions of K ′
i /Ni with respect to the inner

product 〈u j +Ni,v j +Ni〉i := (u j,v j)i . Now for a ∈ A define πi(a) : Ki → Ki by
πi(a)∑ak ⊗ xk = ∑aak ⊗ xk . The usual proof of Stinespring’s theorem shows that this
yields (not necessarily minimal) Stinespring dilations of the CP maps Φi .

Now,

‖π1(a)‖ = sup
u=∑a j⊗x j+N1∈K1/N1 ‖u‖1=1

(
π1(a)∑a j ⊗ x j,π1(a)∑a j ⊗ x j

)
1

= sup∑〈Φ1(a∗i a
∗aa j)x j,xi〉H1 (3.1)

It follows that if π1(a) = 0 that for any (a1, ...,aN) ∈ A (N) =
⊕N

i=1 A , and

any �x = (x1, ...xN) ∈ H
(N)

1 :=
⊕N

i=1 H1 that 〈Φ(N)
1 ([a∗i a∗aa j])�x,�x〉H (N)

1
= 0 so that

[a∗i a∗aa j] ∈ Ker(Φ(N)
1 ) . Here, Φ(N)

1 = Φ1⊗�N . Hence

[a∗i a
∗aa j] ∈ Ker(Φ(N)

2 ) = Ker(φ (N)
2 ◦Φ(N)

1 )

for any N ∈ � , which in turn shows that ‖π2(a)‖ = 0. Hence Ker(π1) ⊂ Ker(π2) .
Define π : π1(A )→ π2(A ) by π ◦π1 = π2 . The above calculation shows that π is

a well-defined ∗−homomorphism. Also π1(a) ∈ Ker(π) if and only if a ∈ Ker(π2) ⊃
Ker(π1) . Hence Ker(π) is closed and is isomorphic to Ker(π2)

Ker(π1)
. If we define the map

π̂ : π1(A )/Ker(π) → π2(A ) by π̂(π1(a) + Ker(π)) = π(π1(a)) then this is an iso-
morphism of C∗ algebras and is hence isometric. It follows that π is a contractive
∗−homomorphism. �

This basic fact will now be used to prove the following lemma:
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LEMMA 3. Let B ⊂ A be C∗ -algebras. Let Φi be CP maps from A into
B(Hi) . Let Φ : B(H1)→ B(H2) be a CPU map such that Φ◦Φ1|B = Φ2|B . Further
assume that Φi and Φi|B have the same minimal Stinespring dilations. Let (πi,Vi,Ki)
be the minimal SSD’s of the Φi , (π ′,V ′,K ′) the minimal SSD of Φ◦Φ1 . Then K2 ⊂
K ′ is reducing for π ′|B and there is an onto ∗ -homomorphism π : π1(A ) → π ′(A )
such that π ◦π1|B = π2|B = PK2 ◦π ′|B .

Proof. If (π ′,V ′,K ′) is the minimal SSD of Φ ◦ Φ1 , then it is automatically
an SSD of Φ ◦ Φ1|B = Φ2|B . Since Φ2 and its restriction to B have the same
minimal SSD (π2,V2,K2) it follows that we can assume K2 ⊂ K ′ , that K2 is re-
ducing for π ′|B and that PK2 ◦ π ′|B = π2|B . By the previous lemma, there is an
onto ∗ -homomorphism π : π1(A ) → π ′(A ) such that π ◦π1 = π ′ . Hence π ◦π1|B =
PK2 ◦π ′|B = π2|B . �

Define Θ := PK2 ◦π ′ . This is a CPU map which is a contractive ∗ -homomorphism
when restricted to B .

LEMMA 4. If S ⊂ L2(�) contains a function which is cyclic and separating for
vN(M) , i.e. a function f which is non-zero almost everywhere with respect to Lebesgue
measure, and P is the projection onto S , then the minimal SSD of P : vN(M) ⊂
B(L2(�)) → B(S) is the identity map on B(L2(�)) .

Here, as before P(A) = PAP for any A ∈ B(L2(�)) .

Proof. Straightforward: the identity map on B(L2(�)) is clearly an SSD of P|vN(M) .
To show that it is minimal one just needs to check that vN(M)S is dense in L2(�) . As
S contains an element which is cyclic for M , this is clear. �

Applying this to our specific situation yields:

PROPOSITION 1. Suppose that Si ⊂ L2(�) are cyclic (and hence separating) for
vN(M) with projections Pi , and that there exists a CPU map Φ1 : B(L2(�)) → B(S1)
with minimal SSD (id,V,L2(�)) for some contraction V : B(S1) → B(L2(�)) . If there
exists a CPU map Φ : B(S1) → B(S2) such that Φ◦Φ1|vN(M) = P2|vN(M) , then there
is a CPTPU map Θ : B(L2(�)) → B(L2(�)) , such that Θ(m) = m for all m ∈ vN(M)
so that the effects of Θ belong to vN(M) and P2 ◦Θ = Φ◦Φ1 .

Recall here that any completely positive map Φ : B(H ) → B(H ) can be ex-
pressed as Φ(A) = ∑i EiAE∗

i where the Ei are contractions in B(H ) and ∑EiE∗
i � � .

If Φ is unital then it follows that ∑EiE∗
i = � . These operators are called the effects of

Φ , or sometimes the Kraus operators of Φ and we write Φ ≡ {Ei} . The set of effects
of Φ is not unique, but two different sets of effects for Φ are related as described in
Lemma 5 below.

Proof. Let H := L2(�) . We apply Lemma 3 with Φ2 = P2 . By Lemma 4
the minimal SSD of P2 is (id,P2,L2(�)) . By Lemma 3, there is a ∗ -isomorphism
π : B(L2(�)) → B(L2(�)) such that π ◦ id = π ′ , where π ′ is the minimal SSD of Φ◦
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Φ1 , and π |vN(M) = π ◦ id|vN(M) = id|vN(M) . Hence Θ := PL2(�) ◦π ′ = PL2(�) ◦π ◦ id

is a CPU map (π1 is the identity map) Θ : B(L2(�)) → B(L2(�)) and we have that
Θ|vN(M) = π2|vN(M) = id|vN(M) .

In other words Θ(m) = m for all m ∈ vN(M) and hence if {Ei} are the effects
of Θ , then the Ei commute with spectral projections of M and must belong to vN(M)
(this is not hard to show, see [7, pgs. 7–8]). In particular the effects of Θ are normal
operators. Such a CP map is called hermitian. Given a completely positive map Φ on
B(H ) , one can define its dual Φ† : T (H )→ T (H ) , with respect to the canonical trace
on B(H ) by Φ†(T )∈ T (H ) is the unique trace-class operator obeying Tr(TΦ(A)) =
Tr(Φ†(T )A) for all A ∈ B(H ) . Here T (H ) denotes the trace-class operators. It is
easy to show that Φ is unital if and only if Φ† is trace-preserving, and vice versa. Since
Θ is hermitian, it follows that Θ† is also unital. It follows that Θ is trace-preserving
and unital, hence Θ is a CPTPU map, i.e. a quantum channel of B(L2(�)) .

Now
P2 ◦Θ = P2 ◦π ◦π1 = P2 ◦π ′ = Φ◦Φ1, (3.2)

and this completes the proof. �
We will need the following fact which relates two different sets of effects which

define the same CP map acting on B(H ) when H is separable.

LEMMA 5. Let Φ : B(H ) → B(H ) be a normal CPU map and let (El)k
l=1 and

(Fj)l
j=1 be two sets of effects for Φ . Then there is an isometry U : l2k (H ) → l2l (H )

whose entries are scalars multiplied by the identity in H such that U (E∗
l ) = (F∗

j ) .
Here (E∗

l ) denotes the column vector with entries E∗
l . In particular the two sets of

effects have the same closed linear span.

Proof. In finite dimensions this is well-known to experts in quantum error cor-
rection, and the proof for the separable case is virtually identical. Here we sketch the
proof.

Let (K ,V,π) denote the minimal SSD of Φ so that V : H → K is an isometry
such that Vπ(A)V ∗ = Φ(A) . Since Φ is normal it follows that π is normal. Also since
π is a minimal SSD of Φ , it is an irreducible normal representation of the type I factor
B(H ) .

It follows from the representation theory of factors of type I that we can assume
that K = l2k (H ) � H ⊗ l2k for some k ∈ �∪{∞} where l2k is the Hilbert space of
square summable sequences of length k , and that π(A) = A⊗ � . Since V : H →
l2k (H ) we can define E∗

k : H → H by choosing E∗
k h = hk where Vh = (h1,h2, ...) .

The {Ek} are a set of effects for Φ , i.e. Φ(A) = ∑k EkAE∗
k , ‖Ek‖� 1 and ∑k EkE∗

k = � .
Now suppose that {Fj}n

j=1 are another set of effects for Φ . Then we can construct

a SSD of Φ by letting π ′(A) = A⊗� on l2n(H ) =: K ′ and defining V ′ : H →K ′ by
V ′h = (F∗

1 h,F∗
2 h, ...) . Now (K ′,V ′,π ′) contains a minimal SSD (K2,V ′,π2) (when

constructing the minimal SSD from an arbitrary SSD, this does not change the isometry
V ′ , this can be observed from [11, pg. 46]) such that π ′(B(H ))V ′H = K2 .

By the uniqueness of the minimal SSD, there is a unitary operator U : K =
l2j (H ) → K2 ⊂ l2n(H ) such that AdU ◦ π = π2 and UV = V ′ . The first equation
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implies that if we write U as an n× j matrix with entries in B(H ) , then each entry
Uik belongs to the commutant of B(H ) and hence must be a scalar times the identity.
The second equation tells us that this scalar matrix multiplying the column vector {E∗

i }
equals the column vector {F∗

j } . In particular the {Ei} and {Fi} have the same closed
linear span. �

To apply the result of the previous proposition to the situation of the previous
section, equation (2.14), we will need one final lemma:

LEMMA 6. Consider Φ1 := Pθ ◦Ad√R : B(L2(�)) → B(K2
θ ) . Then the minimal

SSD’s of both Φ1 and Φ1|vN(M) are both equal to (id,
√

RPθ ,L2(�)) , where id denotes
the identity isomorphism.

Proof. Recall that V =
√

RPθ : K2
θ → L2(�) is an isometry. For any A∈ B(L2(�) ,

we have that V ∗id(A)V = Pθ ◦Ad√R(A) = Φ1(A) , this shows that id is a SSD of
Φ1 , and hence of Φ1|vN(M) . To show that this is minimal we need to show that both
B(L2(�))VK2

θ and vN(M)VK2
θ are dense in L2(�) . Clearly the first set is dense in

L2(�) . Now it is not difficult to show that L2(�) =
⊕

k∈� θ kK2
θ . Since

√
R is non-zero

almost everywhere with respect to Lebesgue measure, it follows that vN(M)VK2
θ is

dense in L2(�) . �

We now have all the necessary tools to provide a proof of the main theorem of this
paper:

THEOREM 1. Let S ⊂ L2(�) be a closed subspace. The multiplication operator
M has a symmetric restriction MS ∈ SymR

1 (S) if and only if S = uhK2
θS

is nearly in-
variant for some meromorphic inner function θS . Moreover if M has such a restriction
MS then θS is the Livšic characteristic function of MS .

In the above u is a unimodular function and h is an isometric multiplier of K2
θ

onto uS (so that h
z+i ∈ uS ). Recall that if θ is defined as in equation (2.11) of Section

2, that

θS =
θ −θ (i)
1−θ (i)θ

,

as discussed in Remark 4. Also recall that as discussed at the end of Subsection 1.1,
if S = uhK2

φ is nearly invariant for some meromorphic inner φ , then it is clear that M

has a symmetric restriction MS ∈ SymR
1 (S) . Also since MS is unitarily equivalent to

Mφ , the symmetric operator of multiplication by z in K2
φ , it follows as in Remark 4

that the characteristic function of MS will be φ . Hence to complete the proof of the
above theorem it suffices to prove that MS ∈SymR

1 (S) implies that S = uhK2
θS

for some

unimodular u , and h an isometric multiplier of K2
θS

into H2 .

Proof. Given S , and MS ∈ SymR
1 (S) , let θ be defined as in equation (2.11) of

Section 2.
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Let S1 := K2
θ , S2 = S , with projectors Pi . Let Φ1 := P1 ◦Ad√R , Φ2 = P2 and

Φ = AdV∗
0
. Then by equation (2.14) of the previous section, the previous lemma, and

Remark 3, it follows that the conditions of Proposition 1 are satisfied, so that there is a
quantum channel Θ on B(L2(�)) with effects {Ek} ⊂ vN(M) and P2 ◦Θ = Φ◦Φ1 .
Taking adjoints yields Θ† ◦P2 = Φ†

1 ◦Φ† . Hence both {E∗
k P2} and {√RP1V0} are

sets of effects for the same map, and so by Lemma 5, they must have the same linear
span. This shows that for any k , there is an αk ∈ � so that E∗

k P2 = αi
√

RP1V0P2 (recall
V0 : S2 → S1 is a partial isometry). Hence,(

E∗
k −

αi

α1
E∗

1

)
P2 = 0, (3.3)

and since S = S2 is cyclic and separating for vN(M) , we conclude that E∗
k = αk

α1
E∗

1 .

Since Θ is unital, we have 1 = ∑ |ck|2||E1(x)|2 =: k2|E1(x)|2 . This shows that U := kE1

is a unimodular function such that Θ = AdU , so that Θ is actually a ∗ -isomorphism.
Now {UP2} and {√RP1V0} have the same linear span, and there is an α ∈ � so that

αUP2 =
√

RP1V0 =
√

RV0. (3.4)

Hence V0 = αU√
R
P2 . Actually, since U√

R
P2 and V0 are both partial isometries, it follows

that |α|2 = 1 so we can assume α = 1. This shows that multiplication by the function
U/

√
R is an isometry from S onto K2

θ . Hence multiplication by U
√

R is an isometry
from K2

θ onto S . Also by known results there is a function q such that multiplication
by q is an isometry from K2

θS
onto K2

θ , this mapping is called a Crofoot transform [14,

Section 13]. It follows that if g := qU
√

R , that multiplication by g is an isometry from
K2

θS
onto S . Since θS(i) = 0, ki(z) = i

2π
1

z+i is the point evaluation vector at i in K2
θS

,

it follows that g
z+i ∈ L2(�) . It follows that S = gK2

θS
is nearly invariant, and if uh is

the Beurling-Nevanlinna factorization of g
z+i , h ∈ H2 , u unimodular, that S′ = uS is

a nearly invariant subspace of H2 such that S′ = h(z + i)K2
θS

. Since MS is unitarily
equivalent to MθS , it follows that the characteristic function of MS is θS . �

COROLLARY 1. If R = 1 , then S is seminvariant.

Here S ⊂ L2(�) is called seminvariant if it is seminvariant for the shift (multi-
plication by μ(x) = x−i

x+i ). Recall that a subspace is seminvariant for an operator if it
is the direct difference of two invariant subpsaces, one of which contains the other. A
subspace is seminvariant for the shift if and only if S = uK2

θ where u is unimodular and
θ is an inner function. This follows from the Beurling-Lax theorem, see for example
the proof of [9, Theorem 5.2.2].

Proof. Suppose that R = 1. In this case UP2 =V0 (we can assume α = 1), so that
U∗P1 = V ∗

0 and S = S2 = U∗K2
θ where U∗ ∈ vN(M) is unitary. �

It seems possible that the converse to the above corollary is also true.
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COROLLARY 2. If S ⊂ L2(�) is such that M has a restriction MS ∈ SymR
1 (S) ,

then S is a reproducing kernel Hilbert space with a �-parameter family of total or-
thogonal sets of point evaluation vectors.

Proof. This follows as S is the image of K2
θ under an isometric multiplier and K2

θ
has these properties when θ is inner and meromorphic. �

4. Outlook

We have proven that a subspace S ⊂ L2(�) is nearly invariant with S = hK2
θ , and

θ meromorphic and inner, θ (i) = 0, if and only if the multiplication operator M has a
restriction MS ∈ SymR

1 (S) with meromorphic inner characteristic function θ . We ex-
pect a similar result to hold whenever θ is inner and not necessarily meromorphic, and
perhaps an analogous result could be established for arbitrary contractive analytic θ .
However to generalize the approach presented here would require generalizing Krein’s
results of Section 2 to the case of more general contractive analytic functions.
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