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Abstract. The question whether every operator on H has an hyperinvariant subspace is one of
the most difficult problems in operator theory. The purpose of this paper is to make a beginning
on the hyperinvariant subspace problems for another class of operators closely related to the
normal operators namely, the class of k-quasi-class A operators. A necessary and sufficient
condition for the hypercyclicity of the adjoint of a quasi-class A operator is also presented.

1. Introduction and Preliminaries

Let B(H) be the algebra of all bounded linear operators acting on infinite di-
mensional separable complex Hilbert space H. Let T be an operator in B(H). An
operator is said to be positive (denoted 7 > 0) if (Tx,x) > 0 for all x € H. The op-
erator T is said to be a p— hyponormal operator if and only if (T*T)? > (TT*)?
for a positive number p. In [30] is defined the class of log-hyponormal operators as
follows: T is a log-hyponormal operator if it is invertible and satisfies the follow-
ing relation log7*T > logTT*. Class of p-hyponormal operators and class of log-
hyponormal operators were defined as extension class of hyponormal operators, i.e,
T*T > TT*. It is well known that every p-hyponormal operator is a ¢- hyponormal
operator for p > g > 0, by the Lowner-Heinz theorem “A > B > 0 ensures A% > B%
for any a € [0,1]”, and every invertible p-hyponormal operator is a log-hyponormal
operator since log is an operator monotone function. An operator 7 is paranormal if

[17x][2 < {172 ]|

for all x € H. Let T be an operator whose polar decomposition T = U|T|, where
|T| = (T*T)% and U is a partial isometry with kerU = ker(|T|) = kerT . Associated

with T is a related operator |T| ‘U |T|% called the Aluthge transform of 7' denoted by
T [2]. For every T € B(H) the sequence {T ("} of Aluthge iterates of 7' is defined
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by TO=T and Tt =T® for every nonnegative integer n. Aluthge an Wang [3]
introduced @ -hyponormal operators defined as follows: An operator T is said to be
@-hyponormal if |T| > |T| > |T*|. An operator T such that |T2| < |T|? is called of
class A. In [9] authors, Furuta, Ito, Yamazaki introduced the class A operators which
includes the class of log-hyponormal operators (see Theorem 2, in [9]) and is included
in the class of paranormal operators (see Theorem 1 in [9]). L. Jean and I. Kim [18]
introduced quasi-class A operators which includes class A operators. An operator T is
said to be quasi-class A if
T(|T% ~|T]*)T > 0.

As a further generalization of both class A operators and quasi-class A operators F.
Gao and X. Fang [14] introduced the notion of k-quasi-class A operators. An operator
T is called k-quasi-class A if

(T = |TP)T* > 0
where k is a natural number. It is clear that

hyponormal C p — hyponormal C class A operators

C quasi-class A operators C k — quasi-classA operators.

EXAMPLE 1.1. Given a bounded sequence of positive numbers {0;}, and let
T be the unilateral weighted shift operator on /> with the canonical orthonormal basis
{en}7 ) defined by Te, = oye,41 forall n >0, that is,

0
0

op 0
o 0

Otz'

Straightforward calculations show that T is a k-quasi-class A operator if and only if
O < Oy < Oy Soif oy < O < Ogyz--- and o > vy, then T isa (k+
1)-quasi-class A operator, but is not a k-quasi-class A operator. Thus the following
inclusions are strict:

hyponormal operator C p —hyponormaloperator C classA operator
C quasi-classA operator C k — quasi-classA operator.

An operator T € B(H) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f: G — H such that
(T—2)f(z) =0 on G,wehave f(z)=0on G. For T € B(H) and x € H, the set pr(x)
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is defined to consist of elements zo € C such that there exists an analytic function f(z)
defined in a neighborhood of zy, with values in H, which verifies (T —z)f(z) = x, and
it is called the local resolvent set of T at x. We denote the complement of pr(x) by
or(x), called the local spectrum of T at x, and define the local spectral subspace of
T, Hr(F)={x€ H:or(x) C F} for each subset F of C. An operator T € B(H) is
said to have Bishop’s property (3) if for every open subset G of C and every sequence
fn: G — H of H-valued analytic functions such that (T —z) f,(z) converges uniformly
to 0 in norm on compact subsets of G, f,(z) converges uniformly to 0 in norm on
compact subsets of G. An operator T € B(H) is said to have Dunford’s property (C)
if Hr(F) is closed for each closed subset F of C. It is well known that

Bishop’s property () = Dunford’s property(C) = SVEP.

For more details about Bishop’s property (). The interested reader is referred to [23,
24] for more details.

A closed subspace of H is said to be hyperinvariant for 7 if it is invariant under
every operator in the commutant {T}/ of T'. The question whether every operator on
H has an hyperinvariant subspace is one of the most difficult problems in operator the-
ory. Our principal objective in the present paper is to derive the existence of nontrivial
hyperinvariant subspace of k-quasi-class A operators. It is known that Every operator
which commutes with a (nonzero) compact operator has a (proper closed) hyperinvari-
ant subspace [29]. In [17] it is shown that every non scalar n-normal operators has
nontrivial hyperinvariant subspace (cf. also [26, p.76] and [20]). The corresponding
problem for subnormal operators remains unsolved (cf.[20]). (Recall that an n-normal
operator may be defined as an n X n operator matrix with entries are mutually commut-
ing normal operators, and a subnormal operator is the restriction of a normal operator
to an invariant subspace.) But, in [12] the authors study the hyperinvariant subspace
problem for subnormal operators. They showed that every normalized subnormal op-
erator such that either {S*”S”}% does not converge in the SOT to the identity operator

or {S"S*”}% does not converge in the SOT to zero has a nontrivial hyperinvariant sub-
space. The purpose of this paper is to make a beginning on the hyperinvariant subspace
problem for another class of operators closely related to the normal operators namely,
the class of k-quasi-class A operators.

2. Main Results

In the sequel we need the following lemmas.

LEMMA 2.1. [14] Let T € B(H) be k-quasi-class A operator, the range of T*
be not dense and

_ (O _ k K
T_<0 T3) on H=[anT"|&N(T™).

Then Ty is a class A operator, T¥ =0 and o(T) = o(T;) U{0}.
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LEMMA 2.2. [14] Let .4 be a closed T -invariant subspace of H. Then the
restriction T p of a k-quasi-class A operator T to M is a k-quasi-class A operator.

THEOREM 2.1. Every k-quasi-class A operator has Bishop’s property (3).

Proof. 1f the range of T* is dense, then T is a class A operator. Hence, T has
Bishop’s property (B) by [19]. So, we assume that the range of T* is not dense. Let
(T —2) fu(z) — O uniformly on every compact subset of D for analytic functions f,(z)
on D. Then we can write

(Tl -z T ) (fnl(Z)) _ ((Tl _Z)fnl(Z)+T2fn2(Z)> 0

0 T3—z)\f(2) (T3 =2)fx(2) .
Since T3 is nilpotent, 73 has Bishop’s property (). Hence f,2(z) — O uniformly on
every compact subset of D. Then (77 —z)f,1(z) — 0. Since Tj is a class A operator,

T has Bishop’s property () by [19]. Hence f,1(z) — O uniformly on every compact
subset of D. Thus T has Bishop’s property (f). O

For k > 1, a nilpotent operator is k-quasi-class A. This shows that operators in
this class need not be normaloid. But a quasi-class A operator is normaloid as we will
show in the following theorem. For this we need the following lemma.

LEMMA 2.3. If T is k-quasi-class A, then r(T) > H‘Il.l,,ﬂill‘l‘ for every positive in-
tegern > k+1.

Proof. Since

[ [Exal

[Tk = JTeen=2)] = 7 jTE]]

I ><|Tk+1|)"
=i = \ )

Thus

or

Letting n — oo, we get

[Exal
rT) > ] (2.1)
Similarly
Tk+2

T
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In general,
17"
|7"=1]

rT) >
for every positive integer n > k+1. [

THEOREM 2.2. Every quasi-class A operator is normaloid, that is, ||T|| = r(T)
(the spectral radius of T ).

Proof. Tt suffices to take k=1 in (2.1). U

Recall that an operator X € B(H,K) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S € B(H) is said to be a quasiaffine transform of 7' €
B(K) if there is a quasiaffinity X € B(H,K) such that XS = TX . Furthermore, S and T
are quasisimilar if there are quasiaffinities X and Y such that XS=T7X and SY =YT.

Now we will show that a k-quasi-class A operator with certain conditions has a
nontrivial hyperinvariant subspace.

THEOREM 2.3. Let T € B(H) be a k-quasi-class A operator such that T # zl for
all ze€ C. If S is a decomposable quasiaffine transform of T, then T has a nontrivial
hyperinvariant subspace.

Proof. If S is a decomposable quasiaffine transform of 7', then there exists a
quasiaffinity X such that XS = TX, where S is decomposable. Assume that 7 has
no nontrivial hyperinvariant subspace. Then 0,(T) =0 and Hr(F) = {0} for each
closed set F properin o(T) [21, Lemma 3.6.1]. Let {U,V} be an open cover of C
such that o(T)\U # 0 and o(T)\V #0. Now if x € Hs(U), then os(x) C U. Hence
there exists an analytic H -valued function f defined on C\ U such that (S —z)f(z) = x
forall z€ C\U. So (T —2)Xf(z) = X(S—2z)f(z) = Xx. Therefore, C\ U C pr(Xx).

This implies that Xx € Hr(U), thatis, XHg(V) C Hr (V). Since S is decomposable,
XH =XHs(U)+XHs(V) C Hr(U)+ Hr (V) = {0}.

This is a contradiction. Hence T has a nontrivial hyperinvariant subspace. [

Note that Theorem 2.3 should be compared with the Theorem 4.5 on p. 56 of the
Colojoara-Foias Book [7].

COROLLARY 2.1. Let T € B(H) be a class A operator such that T # zI for all
z€ C. If S is a decomposable quasiaffine transform of T, then T has a nontrivial
hyperinvariant subspace.

THEOREM 2.4. Let T € B(H) be a k-quasi-class A operator such that T # zl for

. 1 .
all ze C. If lim,_o ||T"x||" < ||T|| for some nonzero x € H, then T has a nontrivial
hyperinvariant subspace.
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Proof. Assume that limn_mHT”xH% < ||T|| for some nonzero x € H. Since T is
a k-quasi-class A operator,

17752 < ||| 7

for every positive integer n and every x € H from [14]. Hence, [5, Proposition 4.6]and
[5, Remark] imply that 7" has a nontrivial hyperinvariant subspace. [

COROLLARY 2.2. Let T € B(H) be a class A operator such that T # zI for all

. 1 .
z€C. If limy—o||T"x||" < ||T|| for some nonzero x € H, then T has a nontrivial
hyperinvariant subspace.

THEOREM 2.5. Let

(T
T= ( 0 T3) €BH®H).

If T has Bishop’s property B and there exists a non zero x € H® H such that or(x) &
o(T). Then T has a nontrivial hyperinvariant subspace.

Proof. Assume that
M ={yeH®H: or(y) Cor(x)},

that is, .# = Hr(or(x)). Since T has Bishop’s property 3, hence T has Dunford’s
property (C). It follows from [7] that .# is a T -hyperinvariant subspace. Since x €
M, we have A # {0}. Now, set .# = H O H. Since T has the single extension
property, we get o(T) = U{or(y) : ye H®H} C or(x) & o(T) from [22]. Thisis a
contradiction. Hence .# is a nontrivial 7 -hyperinvariant subspace. [

Since a k-quasi-class A operator has Bishop’s property 3 by Theorem 2.1, by
applying Lemma 2.1 and Theorem 2.5 we get the following corollary.

COROLLARY 2.3. Let

(T
T= ( 0 T3) €BH®H).

be k-quasi-class A. If there exists a non zero x € H® H such that or(x) & o(T), then
T has a nontrivial hyperinvariant subspace.

Let T € B(H) and x € H. Then {T"x};7_, is called the orbit of x under 7', and is
denoted by O(x,T). If O(x,T) is dense in H, then x is called a hypercyclic vector for
T

Now we are ready to prove a necessary and sufficient condition for the hyper-
cyclicity of the adjoint of a quasi-class A operator. Recall that if 7 is an invertible
quasi-class A operator, then T and T~! are class A operators [14, 15].
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THEOREM 2.6. Let T € B(H) be a quasi-class A operator. Then T* is hyper-
cyclic if and only if or(x) ND # 0 and or(x) N (C\D) # 0 for all nonzero x € H,
where D= {z€ C: |z| < 1}.

Proof. Assume that T* is hypercyclic. By [13, Proposition 2.3], it suffices to
show that o(T) meets both D and C\D. Let S =T |y for some closed T -invariant
subspace M and let x be a hypercyclic vector for T*. Since (S*)"Px = P(T*)"x for
each nonnegative integer n where P is the orthogonal projection of H onto M, we
have

{(S )" (Po)}ig = P{(T*)"x}g) = P(H) = M.

Thus Px is hypercyclic for S*. Since S is quasi-class A and normaloid by Theorem
2.2 and Lemma 2.2, r(S) = ||S|| = ||S*|| > 1 [25]. Hence o(T)N(C\D) # 0. Now
we have to prove that ¢(S) N # 0. For this, assume that o(S) C C\D. Since S~! is
a class A operator [14] and o(S~!) C D, we have, ||S~!|| = r(S~!) < 1. Since S* is
hypercyclic and invertible, (S*)~! is hypercyclic [25]. Hence |[S~!|| = ||(S*)7!|| > 1
[25]. This is a contradiction, and so o(S)ND # @. For the converse, assume that
or(x)ND # 0 and o7 (x) N (C\D) # 0 for all nonzero x € H. Then Hy (C\ D) = {0}
and Hy(D) = {0}. Since T has property () Theorem 2.1, T* has the property (§).
Thus both Hr+(C\ D) and Hr+(D) are dense in H by [22, Proposition 2.5.14]. Hence
T* is hypercyclic by [13, Theorem 3.2]. [J

COROLLARY 2.4. Let T € B(H) be a class A operator. Then T* is hypercyclic
if and only if or(x) ND # 0 and or(x) N (C\ D) # 0 for all nonzero x € H, where
D={zeC: |7/ <1}.
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