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VLADIMIR LOTOREICHIK

(Communicated by B. Jacob)

Abstract. Let Ω ⊂ Rd be a bounded or an unbounded Lipschitz domain. In this note we address
the problem of continuation of functions from the Sobolev space H1(Ω) up to functions in the
Sobolev space H1(Rd) via a linear operator. The minimal possible norm of such an operator
is estimated from below in terms of spectral properties of self-adjoint Robin Laplacians on do-
mains Ω and Rd \Ω . Another estimate of this norm is also given, where spectral properties of
Schrödinger operators with the δ -interaction supported on the hypersurface ∂Ω are involved.
General results are illustrated with examples.

1. Introduction

Let Ω ⊆ Rd , d � 2, be a domain with the Lebesgue space L2(Ω) and the Sobolev
space H1(Ω) defined in the usual way. We use the following standard norm on H1(Ω)

‖ f‖2
1 := ‖∇ f‖2

L2(Ω;Cd) +‖ f‖2
L2(Ω).

A linear extension operator is defined below.

DEFINITION 1.1. A linear operator E : H1(Ω) → H1(Rd) satisfying the condi-
tions

(E f )|Ω = f and ‖E‖1 := sup
‖ f‖1=1

‖E f‖1 < ∞ (1.1)

is called an extension operator.

The operator E provides a continuation of functions in H1(Ω) up to functions
in H1(Rd) . An extension operator can be constructed, in particular, for any bounded
Lipschitz domain or for a hypograph of a uniformly Lipschitz function. There are
different constructions known. For hypographs one can do a “crude” construction as
in [18, Theorem A.1] via reflection of the function with respect to the boundary. For
bounded Lipschitz domains first construction is due to Calderón [8]. More involved
construction is due to Stein [25], which has some additional important properties. In
the case of bounded C∞ -smooth domains there is a simpler construction due to Seeley
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[24]. Note that for some domains with cusps at the boundary it can be shown that no
extension operator exists [18, Exercise A.4].

For particular extension operators one can compute or estimate ‖E‖1 . Clearly, one
can claim that ‖E‖1 ∈ (1,+∞) . It turns out that the restriction (E f )|Ω = f does not
allow to construct the extension operator E with the norm as close to 1 as one wants. It
was probably Mikhlin who first posed the following problem.

PROBLEM. Given a domain Ω for which there exist some extension operators.
Compute

E (Ω) := inf
E
‖E‖1, (1.2)

where the infinum is taken over all extension operators.
In [21, 22] Mikhlin proposed an algorithm for finding E (Ω) . He computed E (D)

exactly with the aid of this algorithm, where D = {(x,y) ∈ R2 : x2 + y2 < 1} . For
general domains it seems to be impossible to compute E (Ω) and only estimates can be
provided. In this paper we are interested in the lower bounds on E (Ω) . For a bounded
Lipschitz domain Ω ⊂ R

d the estimate

E (Ω) �
√

capΩ
mesΩ

(1.3)

is known, where capΩ is the capacity of Ω . This estimate is used by Maz’ya and
Poborchii in [20] and by Kalyabin in [14]. Also it is formulated as an independent
statement in [7, Lemma 3.5]. We present a way to estimate the value E (Ω) for a
bounded or an unbounded domain Ω without employing capacity. Instead we use the
knowledge of the spectra of self-adjoint Robin Laplacians and of the spectra of self-
adjoint Schrödinger operators with δ -interactions. This connection has not appeared
before in an explicit form, and it might be of some interest also taking into account
recent progress on Robin Laplacians, see [1, 2, 13, 16] and the references therein, and
recent progress on Schrödinger operators with δ -interactions, see the review paper [12]
and also [3, 4]. Using this connection we give two different estimates of the value E (Ω)
from below. However we do not claim that our estimates are always sharper than (1.3)
in the case of bounded domains.

So let Ω be a bounded or an unbounded Lipschitz domain as in Definition 2.2.
Consider the densely defined symmetric sesquilinear form

tΩ
β [ f ,g] := (∇ f ,∇g)L2(Ω;Cd) −β ( f |∂Ω,g|∂Ω)L2(∂Ω), dom tΩ

β := H1(Ω),

with β � 0. The form tΩ
β is closed and lower-semibounded [1, 2]. Therefore, it induces

by the first representation theorem a self-adjoint operator in the Hilbert space L2(Ω)
denoted by −ΔΩ

β and usually called Robin Laplacian. We define the function

FΩ(β ) := infσ(−ΔΩ
β ).

It turns out that the equation
FΩ(β ) = −1
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has a unique strictly positive solution, which we denote by β (Ω) . Let the value β (Rd \
Ω) > 0 be a unique solution of the complementary equation

F
Rd\Ω(β ) = −1

corresponding to the self-adjoint Robin Laplacian acting on Rd \Ω . We prove that

E (Ω) �

√
1+

β (Rd \Ω)
β (Ω)

(1.4)

with E (Ω) as in (1.2). This result implies, in particular, that

max{E (Ω),E (Rd \Ω)} �
√

2.

Now consider another densely defined symmetric sesquilinear form

t∂Ω
α [ f ,g] := (∇ f ,∇g)L2(Rd ;Cd)−α( f |∂Ω,g|∂Ω)L2(∂Ω), domt∂Ω

α := H1(Rd),

with α � 0. The form t∂Ω
α is closed and lower-semibounded [3, 6]. Therefore, it

induces by the first representation theorem a self-adjoint operator in the Hilbert space
L2(Rd) denoted by −Δ∂Ω

α and usually called the Schrödinger operator with δ -interac-
tion. We define the function

F∂Ω(α) := infσ(−Δ∂Ω
α ).

It turns out as well that the equation

F∂Ω(α) = −1

has a unique strictly positive solution denoted by α(∂Ω) and the estimate

E (Ω) �
√

α(∂Ω)
β (Ω)

(1.5)

holds.
The bounds, which are proved in this paper, work for bounded and unbounded

domains simultaneously in the same form. In some cases the spectra of Robin Lapla-
cians and δ -operators are known explicitly or can be easily estimated, as we will see
in our examples, that implies also explicit lower bounds on the smallest possible norm
of extension operators.

Our general results are applied to the extension problems for the wedge-type do-
main Ωϕ ⊂ R

2 with angle ϕ ∈ (0,π ] and for the rectangle Πa,b = (0,a)× (0,b) with
a,b > 0. In these examples elementary computations lead to explicit estimates of
E (Ωϕ) and E (Πa,b) from below. For the wedges we get

E (Ωϕ) �
√

1+
1

sin(ϕ/2)
.
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For the rectangles we obtain

E (Πa,b) �
√

1+2
(1

a
+

1
b

)
.

In the case of wedges we also compare our lower bound with an upper bound on
E (Ωϕ) , which is obtained via estimation of the norm of the reflection operator. In
particular, we get the approximate asymptotic behaviour

√
2+

√
2

32
θ 2 +o(θ 2) � E (Ωπ−θ ) �

√
2+

√
2

4
θ +o(θ ), θ → 0+ . (1.6)

Previously known results on the asymptotics of the value E (Ω) were proved in the case
that some metric parameter of the domain tends to zero. Namely, Mikhlin obtained
in [23] asymptotic behaviour of E (Br) for a ball Br of a radius r > 0 in the limit
r → 0+ . Maz’ya and Poborchiy [20] considered asymptotic behaviour of E (Ωω ) for
cylinder-type domain Ωω with a cross section ω in the limit, when ω shrinks to a
point. Kalyabin [14] estimated E (Ω) for planar convex domains in the limit diamΩ →
0+ . In all these papers the value E (Ω) tends to +∞ as the parameter tends to zero
and upper and lower bounds have the same order of growth. Our asymptotics (1.6) for
wedges is of a slightly different nature. It can be computed that E (Ωπ) =

√
2 and we

show how the minimal possible norm of the extension operator changes under small
deformation of the boundary of the domain.

It remains to outline the structure of the paper. In Section 2 we introduce self-
adjoint Robin Laplacians on Lipschitz domains and self-adjoint Schrödinger operators
with δ -interactions on Lipschitz hypersurfaces and prove some of their basic proper-
ties. In Section 3 we obtain our main results on the estimation of the value E (Ω) . Sec-
tion 4 is devoted to examples: in Subsection 4.1 we consider an example with wedges
and in Subsection 4.2 we give an example with rectangles.

2. Preliminaries

In this section we define a class of Lipschitz domains. Further, we introduce self-
adjoint Robin Laplacians on these domains and self-adjoint Schrödinger operators with
δ -interactions supported on manifolds, which separate the Euclidean space into two
such Lipschitz domains. Certain elementary spectral properties of these self-adjoint
operators are proved.

2.1. Lipschitz domains

First we define special Lipschitz domains.

DEFINITION 2.1. The domain Ω ⊂ Rd with d � 2 is called special Lipschitz do-
main if there exist a coordinate system and a uniformly Lipschitz function1 ϕ : Rd−1 →

1There exists L > 0 such that for any x,y ∈ Rd−1 the condition |ϕ(x)−ϕ(y)| � L‖x− y‖ holds.
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R such that in this coordinate system

Ω =
{
(x,t) ∈ R

d : x ∈ R
d−1,t > ϕ(x)

}
. (2.1)

Throughout the paper we deal with a class of domains with Lipschitz boundary as
in [25, §VI.3].

DEFINITION 2.2. The domain Ω ⊂ Rd is called Lipschitz domain or minimally
smooth domain if there exist ε > 0, a natural number N , a constant M > 0 and a
countable family {Uj} j of open sets such that:

(i) if x ∈ ∂Ω , then Bε(x) ⊂Uj for some j ; Bε(x) is the ball in Rd with the center
x and the radius ε > 0;

(ii) at most N of the Uj ’s have nonempty intersection;

(iii) for each j there exists a special Lipschitz domain Ω j such that Uj∩Ω =Uj∩Ω j

and ‖∇ϕ j‖L∞ � M , where Ω j is defined by ϕ j as in (2.1).

The Sobolev space H1(Ω) is defined as usual, see [18, Chapter 3], with the norm

‖ f‖2
1 := ‖∇ f‖2

L2(Ω;Cd) +‖ f‖2
L2(Ω).

It is known that for any f ∈ H1(Ω) its trace f |∂Ω is well-defined as a function in
L2(∂Ω) , see [9, 10, 19].

2.2. Self-adjoint Robin Laplacians

We start with a standard statement on the Neumann sesquilinear form.

LEMMA 2.3. [11, §VII.1.2]. The densely defined, non-negative symmetric sesqui-
linear form

tΩ
N[ f ,g] := (∇ f ,∇g)L2(Ω;Cd), dom tΩ

N := H1(Ω),

is closed.

Consider the perturbation of the form tΩ
N living on the boundary

tΩ
β [ f ,g] := (∇ f ,∇g)L2(Ω;Cd) −β ( f |∂Ω,g|∂Ω)L2(∂Ω), dom tΩ

β := H1(Ω), (2.2)

with β ∈ R . Note that tΩ
0 = tΩ

N . The form tΩ
β is already known to be closed and

lower-semibounded for bounded Lipschitz domains, see [2, Theorem 3.3, Proposition
4.1] and also [1]. In the next theorem we prove this fact for domains precisely as in
Definition 2.2. This result is, of course, expected and for us it is only an auxiliary fact.
Our proof of this fact uses a result contained in [3], which is proved with the aid of
Stein’s extension operator.
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LEMMA 2.4. [3, Lemma 2.6] Let Ω ⊂ Rd be a bounded or an unbounded Lips-
chitz domain as in Definition 2.2. Then for any ε > 0 there exists a constant C(ε) > 0
such that

‖ f |∂Ω‖2
L2(∂Ω) � ε‖∇ f‖2

L2(Ω;Cd) +C(ε)‖ f‖2
L2(Ω)

holds for all f ∈ H1(Ω) .

PROPOSITION 2.5. The symmetric, densely defined sesquilinear form tΩ
β from

(2.2) is closed and lower-semibounded in L2(Ω) for all β ∈ R .

We denote by −ΔΩ
β the self-adjoint operator in L2(Ω) corresponding to the ses-

quilinear form tΩ
β via the first representation theorem [15, Theorem VI.2.1].

Proof of Proposition 2.5. By Lemma 2.4 the symmetric sesquilinear form

t′β [ f ,g] := −β ( f |∂Ω,g|∂Ω)L2(∂Ω), domt′β := H1(Ω),

is bounded with respect to the form tΩ
N with arbitrarily small form bound. Hence, by

[15, Theorem VI.1.33] the symmetric densely defined sesquilinear from tΩ
β = tΩ

N + t′β
is closed and lower-semibounded. �

Define for β � 0 the function

FΩ(β ) := infσ(−ΔΩ
β ) = inf

f∈H1(Ω)
‖ f‖L2(Ω)=1

tΩ
β [ f , f ]. (2.3)

In the next proposition we collect some properties of the function FΩ .

PROPOSITION 2.6. Let Ω be a bounded or an unbounded Lipschitz domain as in
Definition 2.2. Let the function FΩ : [0,+∞) → R be defined as in (2.3).

(i) FΩ is non-increasing. Moreover, if FΩ(β1) < 0 , then for any β2 > β1 the strict
inequality FΩ(β2) < FΩ(β1) holds.

(ii) FΩ is continuous.

(iii) FΩ(0) � 0 .

(iv) limβ→+∞ FΩ(β ) = −∞ .

Proof.
(i) Choose parameters β2 > β1 � 0. The relation

FΩ(β2) � FΩ(β1)

holds straightforwardly in view of definition (2.3). It remains to show the strict inequal-
ity under the assumption FΩ(β1) < 0. Suppose that FΩ(β1) < 0. Then for any ε > 0
there exists fε ∈ H1(Ω) with ‖ fε‖L2(Ω) = 1 such that

tΩ
β1

[ fε , fε ] � FΩ(β1)+ ε.
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That implies the estimate

‖ fε |∂Ω‖2
L2(∂Ω) � −FΩ(β1)+ ε

β1
.

Therefore, we arrive at

tΩ
β2

[ fε , fε ] = tΩ
β1

[ fε , fε ]+ (β1−β2)‖ fε |∂Ω‖2
L2(∂Ω)

�
(
FΩ(β1)+ ε

)(
1+ β2−β1

β1

)
.

As a result by the choice of sufficiently small ε > 0 we obtain

FΩ(β2) � tΩ
β2

[ fε , fε ] < FΩ(β1).

(ii) Let us define left and right limits of FΩ(·)

FΩ,−(β ) := lim
x→β−

FΩ(x) and FΩ,+(β ) := lim
x→β+

FΩ(x),

which are well-defined because of monotonicity of FΩ . Then we carry out the proof of
this item into two steps.

Step I. Suppose that for some β0 > 0 the inequality

FΩ,−(β0) > FΩ(β0) (2.4)

holds. Let us fix sufficiently small value ε > 0 and choose a function fε ∈H1(Ω) with
‖ fε‖L2(Ω) = 1 such that

tΩ
β0

[ fε , fε ] � FΩ(β0)+ ε.

Substituting this function into the form tΩ
x with x < β0 we get

FΩ(x) � tΩ
x [ fε , fε ] = tΩ

β0
[ fε , fε ]+ (β0− x)‖ fε |∂Ω‖2

L2(∂Ω)

� FΩ(β0)+ ε +(β0− x)‖ fε |∂Ω‖2
L2(∂Ω).

Passing to the limit x → β0− we get

FΩ,−(β0) � FΩ(β0)+ ε,

but that contradicts (2.4) for sufficiently small ε > 0.
Step II. Suppose that for some β0 � 0 the inequality

FΩ(β0) > FΩ,+(β0) (2.5)

holds. Let us fix arbitrarily small ε > 0. Note that due to Lemma 2.4 we get the
estimate ∣∣tΩ

β0
[ f , f ]

∣∣ � (1−β0ε)‖∇ f‖2
L2(Ω;Cd)−β0C(ε)‖ f‖2

L2(Ω),
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which is equivalent to

‖∇ f‖2
L2(Ω;Cd) � 1

1−β0ε
∣∣tΩ

β0
[ f , f ]

∣∣+ β0C(ε)
1−β0ε

‖ f‖2
L2(Ω) (2.6)

Choose a sequence of non-negative values {βn} such that βn → β0+ monotonously.
According to (2.6) and using Lemma 2.4 the forms tΩ

βn
and tΩ

β0
satisfy the estimate

∣∣∣tΩ
βn

[ f , f ]− tΩ
β0

[ f , f ]
∣∣∣ � ε|βn −β0|‖∇ f‖2

L2(Ω;Cd) +C(ε)|βn−β0|‖ f‖2
L2(Ω)

� ε|βn −β0|
1−β0ε

∣∣tΩ
β0

[ f , f ]
∣∣+ |βn−β0|

1−β0ε
C(ε)‖ f‖2

L2(Ω)

for all f ∈ H1(Ω) . By [15, Theorem VI.3.6, Theorem IV.2.23] the sequence of opera-
tors −ΔΩ

βn
converges to the operator −ΔΩ

β0
in the norm resolvent sense. Obviously the

inclusion (−∞,FΩ(β0)) ⊂ ρ(−ΔΩ
β0

) holds. By [15, Theorem IV.3.1] for all ε > 0 there
exists N ∈ N such that for all n � N the inclusion

(−∞,FΩ(β0)− ε) ⊂ ρ(−ΔΩ
βn

).

holds. By choosing ε > 0 such that FΩ(β0)−ε > FΩ,+(β0) we arrive at a contradiction
with (2.5). Hence, concluding both steps for all β ∈ R+ the equality

FΩ(β ) = FΩ,±(β )

holds, and the function FΩ is continuous.
(iii) In view of the definition of FΩ in (2.3) we may conclude that FΩ(0) � 0.
(iv) Clearly, there exists a function f ∈ H1(Ω) such that ‖ f‖L2(Ω) = 1 and that

‖ f |∂Ω‖2
L2(∂Ω) > 0, that yields

lim
β→+∞

FΩ(β ) � lim
β→+∞

tΩ
β [ f , f ] = −∞. �

REMARK 2.7. The results of Proposition 2.6 for bounded Lipschitz domains fol-
low from [1, Proposition 3]. We require this fact also for unbounded domains and for
this reason the full proof is provided.

COROLLARY 2.8. Let FΩ be as in (2.3). Then the equation

FΩ(β ) = −1 (2.7)

on β has a unique strictly positive solution denoted by β (Ω) .

Proof. The existence and strict positivity of the solution follow from FΩ(0) � 0,
limβ→+∞ FΩ(β ) = −∞ and from the continuity of FΩ . Uniqueness of the solution
follows from the monotonicity properties of FΩ . �
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2.3. Self-adjoint Schrödinger operators with δ -interactions

Let Σ ⊂ Rd be a (d − 1)-dimensional manifold, which separates the Euclidean
space Rd into two Lipschitz domains Ω and Rd \Ω , where ∂Ω = Σ . We consider the
symmetric, densely defined sesquilinear form

t∂Ω
α [ f ,g] := (∇ f ,∇g)L2(Rd ;Cd )−α( f |∂Ω,g|∂Ω)L2(Σ), domt∂Ω

α = H1(Rd).

According to [3, Proposition 3.1] and [6] the form t∂Ω
α is closed and lower-semibounded.

The self-adjoint operator corresponding to the form t∂Ω
α via the first representation the-

orem will be denoted by −Δ∂Ω
α . Let us introduce the function

F∂Ω(α) := infσ(−Δ∂Ω
α ) := inf

f∈H1(Rd)
‖ f‖

L2(Rd )=1

t∂Ω
α [ f , f ]. (2.8)

Next we formulate without proofs complete analogues of Proposition 2.6 and Corol-
lary 2.8 for the function F∂Ω .

PROPOSITION 2.9. Let Ω ⊂Rd be a bounded or an unbounded Lipschitz domain
as in Definition 2.2 with its boundary ∂Ω . Let the function F∂Ω : R+ → R be defined
as in (2.3).

(i) F∂Ω is non-increasing. Moreover, if F∂Ω(α1) < 0 , then for any α2 > α1 the
strict inequality F∂Ω(α2) < F∂Ω(α1) holds.

(ii) F∂Ω is continuous.

(iii) F∂Ω(0) = 0 .

(iv) limα→+∞ F∂Ω(α) = −∞ .

COROLLARY 2.10. Let F∂Ω be as in (2.8). Then the equation

F∂Ω(α) = −1 (2.9)

on α has a unique strictly positive solution denoted by α(∂Ω) .

3. Lower bounds on the norms of extension operators

In this section we estimate the value E (Ω) from below using the unique roots
of the equations FΩ(β ) = −1, F

Rd\Ω(β ) = −1 and F∂Ω(α) = −1. In the first lower
bound on E (Ω) the unique roots of the equations FΩ(β ) = −1, F

Rd\Ω(β ) = −1 are
employed.

THEOREM 3.1. Let Ω ⊂ Rd be a bounded or an unbounded Lipschitz domain
as in Definition 2.2. Let the values β (Ω) > 0 and β (Rd \Ω) > 0 be defined as the
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solutions of the equation (2.7) for the domains Ω and Rd \Ω , respectively. Let the
value E (Ω) be defined as in (1.2). Then the following estimate

E (Ω) �

√
1+

β (Rd \Ω)
β (Ω)

holds. In particular, max{E (Ω),E (Rd \Ω)} �
√

2 .

Proof. Suppose that β (Ω)> 0 is the unique solution of the equation FΩ(β ) =−1.
Then for any ε > 0 there exists a function fε ∈ H1(Ω) such that

tΩ
β (Ω)[ fε , fε ] = ‖∇ fε‖2

L2(Ω;Cd) −β (Ω)‖ fε |∂Ω‖2
L2(∂Ω) � (−1+ ε)‖ fε‖2

L2(Ω).

This inequality can be rewritten in a more suitable form

‖ fε |∂Ω‖2
L2(∂Ω) � 1

β (Ω)
‖∇ fε‖2

L2(Ω;Cd) +
1− ε
β (Ω)

‖ fε‖2
L2(Ω). (3.1)

Suppose that E is an arbitrary extension operator for the domain Ω as in Definition 1.1.
Let us apply this operator to the function fε and denote

gε := (E fε)|Rd\Ω ∈ H1(Rd \Ω).

Recall that β (Rd \ Ω) > 0 is the unique solution of the equation F
Rd\Ω(β ) = −1.

Therefore, in view of (2.2), we get

‖∇gε‖2
L2(Rd\Ω;Cd)−β (Rd \Ω)‖gε |∂Ω‖2

L2(∂Ω) � −‖gε‖2
L2(Rd\Ω).

The latter can be rewritten as

‖gε |∂Ω‖2
L2(∂Ω) � 1

β (Rd \Ω)
‖∇gε‖2

L2(Rd\Ω;Cd) +
1

β (Rd \Ω)
‖gε‖2

L2(Rd\Ω). (3.2)

Note that by the definition of the operator E and the properties of the Sobolev space
H1(Rd) we can state that

gε |∂Ω = fε |∂Ω. (3.3)

Now estimates (3.1), (3.2) and observation (3.3) imply

1
β (Ω)

‖∇ fε‖2
L2(Ω;Cd) +

1− ε
β (Ω)

‖ fε‖2
L2(Ω)

� 1

β (Rd \Ω)
‖∇gε‖2

L2(Rd\Ω;Cd)+
1

β (Rd \Ω)
‖gε‖2

L2(Rd\Ω),

which leads to

‖∇ fε‖2
L2(Ω;Cd) + (1− ε)‖ fε‖2

L2(Ω)

� β (Ω)
β (Rd \Ω)

‖∇gε‖2
L2(Rd\Ω;Cd) +

β (Ω)
β (Rd \Ω)

‖gε‖2
L2(Rd\Ω)
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That yields

(1− ε)‖ fε‖2
1 � β (Ω)

β (Rd \Ω)
‖gε‖2

1.

Note that E fε = fε ⊕gε , and hence for all sufficiently small ε > 0

‖E‖2
1 � 1+

(
1− ε

)β (Rd \Ω)
β (Ω)

.

Passing to the limit ε → 0+ we arrive at

‖E‖1 �

√
1+

β (Rd \Ω)
β (Ω)

.

That finishes the proof. �

REMARK 3.2. We should say a few words on the sharpness of the obtained lower
bound. For the half-space

R
d
+ = {(x1,x2, . . . ,xd) ∈ R

d : xd > 0}
it is known that F

Rd
+
(β ) = −β 2 , that is β (Rd

+) = 1 and analogously β (Rd−) = 1.
Hence, Theorem 3.1 yields

E (Rd
+) �

√
2.

On the other hand the reflection operator

(E f )(x) :=

{
f (x1,x2, . . . ,xd), xd > 0,

f (x1,x2, . . . ,−xd), xd < 0,

is an extension operator in the sense of Definition 1.1 and

‖E‖1 =
√

2.

So in fact E (Rd
+) =

√
2 and in this respect the bound in Theorem 3.1 is sharp.

In the next theorem we obtain a lower bound on E (Ω) in terms of the roots of the
equations F∂Ω(α) = −1 and FΩ(β ) = −1.

THEOREM 3.3. Let Ω ⊂ Rd be a bounded or an unbounded Lipschitz domain as
in Definition 2.2 with the boundary ∂Ω . Let the value β (Ω) > 0 be defined as the
solution of the equation (2.7) for the domain Ω , and let the value α(∂Ω) be defined
as the solution of the equation (2.9) for the hypersurface ∂Ω . Let the value E (Ω) be
defined as in (1.2). Then the following estimate

E (Ω) �
√

α(∂Ω)
β (Ω)

holds.
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Proof. Suppose that β (Ω)> 0 is the unique solution of the equation FΩ(β ) =−1.
Then for any ε > 0 there exists a function fε ∈ H1(Ω) such that

tΩ
β (Ω)[ fε , fε ] = ‖∇ fε‖2

L2(Ω;Cd) −β (Ω)‖ fε |∂Ω‖2
L2(∂Ω) � (−1+ ε)‖ fε‖2

L2(Ω).

This inequality can be rewritten in a more suitable form

‖ fε |∂Ω‖2
L2(∂Ω) � 1

β (Ω)
‖∇ fε‖2

L2(Ω;Cd) +
1− ε
β (Ω)

‖ fε‖2
L2(Ω). (3.4)

Suppose that E is an arbitrary extension operator for the domain Ω as in Definition 1.1.
Let us apply this operator to the function fε and define

hε := E fε ∈ H1(Rd).

Clearly, the relation
fε |∂Ω = hε |∂Ω (3.5)

holds. Since α(∂Ω) > 0 is the root of F∂Ω(α) = −1 we arrive at the inequality

‖∇hε‖2
L2(Rd ;Cd)−α(∂Ω)‖hε |∂Ω‖2

L2(∂Ω) � −‖hε‖2
L2(Rd),

which can be rewritten as

α(∂Ω)‖hε |∂Ω‖2
L2(∂Ω) � ‖∇hε‖2

L2(Rd ;Cd) +‖hε‖2
L2(Rd), (3.6)

Combining the estimates (3.4), (3.6) and the observation (3.5) we get

α(∂Ω)
β (Ω)

‖∇ fε‖2
L2(Rd ;Cd) +

α(∂Ω)
β (Ω)

(1− ε)‖ fε‖2
L2(Rd)

� ‖∇hε‖2
L2(Rd ;Cd) +‖hε‖2

L2(Rd).

Hence, we obtain the estimate

α(∂Ω)
β (Ω)

(1− ε)‖ fε‖2
1 � ‖hε‖2

1,

which implies for all sufficiently small ε > 0

‖E‖2
1 � α(∂Ω)

β (Ω)
(1− ε).

That leads to

‖E‖1 �
√

α(∂Ω)
β (Ω)

in the limit ε → 0+ and the claim is proved. �

REMARK 3.4. Similar argumentation as in Remark 3.2 and the fact that F∂Rd
+
(α)

= −α2/4 give sharpness of the estimate in Theorem 3.3 for half-spaces.
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4. Examples

We supplement our general estimates with two examples. One example with do-
mains of infinite measure and one example with domains of finite measure.

4.1. Extension operators on wedges

In this subsection our aim is to illustrate obtained general estimates in the case of
wedges, which are domains of infinite measure. The wedge with angle ϕ ∈ (0,π) can
be defined as a hypograph

Ωϕ :=
{
(x1,x2) ∈ R

2 : x2 > cot(ϕ/2)|x1|
}
. (4.1)

That is a special Lipschitz domain as in Definition 2.1, whose boundary is defined by
the function

ξ (x1) := cot(ϕ/2)|x1|,
see Figure 1.

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�

Ωϕ

Σ2 Σ1

ϕ

�

�

x2

x1

Figure 1: A wedge Ωϕ ⊂ R2 with angle ϕ ∈ (0,π) having sides Σ1 and Σ2 .

Using Theorem 3.1 and spectral results of [16] we obtain a lower bound on E (Ωϕ)
and by means of reflection operator we obtain an upper bound on E (Ωϕ) . Having a
two-sided estimate of E (Ωϕ) we compute its asymptotic behaviour in the limit ϕ →
π− . We make use of the following result contained in [16].

LEMMA 4.1. [16, Lemma 2.6, Lemma 2.8] Let Ωϕ ⊂ R2 be a wedge with ϕ ∈
(0,π) . Let the functions FΩϕ and F

R2\Ωϕ
be defined as in (2.3). Then the following

statements hold:

(i) FΩϕ (β ) = − β 2

sin2(ϕ/2)
;

(ii) F
R2\Ωϕ

(β ) = −β 2 .

A lower bound on E (Ωϕ) follows from Theorem 3.1 and Lemma 4.1.
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PROPOSITION 4.2. Let Ωϕ ⊂ R2 be a wedge with ϕ ∈ (0,π) . Let E (Ωϕ ) be
defined as in (1.2). Then the following estimate

E (Ωϕ) �
√

1+
1

sin(ϕ/2)

holds. In particular, limϕ→0+ E (Ωϕ) = +∞ .

Proof. By Lemma 4.1 the equation FΩϕ (β ) = −1 has the unique solution

β (Ωϕ) = sin(ϕ/2), (4.2)

and the equation F
R2\Ωϕ

(β ) = −1 has the unique solution

β (R2 \Ωϕ) = 1. (4.3)

Combining (4.2), (4.3) and Theorem 3.1 we get the desired bound on E (Ωϕ) . �
In the next lemma we give a spectral result from [17].

LEMMA 4.3. Let Ωϕ ⊂ R2 be a wedge with ϕ ∈ (0,π) with the boundary ∂Ωϕ .
Let the function F∂Ωϕ be defined as in (2.8). Then the following estimate

F∂Ωϕ (α) � − α2

(1+ sin(ϕ/2))2

holds.

Using Theorem 3.3, Lemma 4.1 and Lemma 4.3 one gets the same lower bound
on E (Ωϕ) as in Corollary 4.2. There is some hope (but we have no proof yet) that

F∂Ωϕ (α) > − α2

(1+ sin(ϕ/2))2 .

Then using Theorem 3.3 one gets better lower bound on E (Ωϕ) than in Proposition 4.2.
In order to estimate E (Ωϕ) from above it suffices to take an arbitrary extension

operator as in Definition 1.1 for the domain Ωϕ and estimate its norm from above. We
take the simplest one, which reflects the function with respect to the boundary. The
reflection with respect to the boundary of Ωϕ is defined as

E : H1(Ωϕ) → H1(R2), (4.4)

(
E f

)
(x1,x2) :=

{
f (x1,x2), x2 > ξ (x1),
f (x1,2ξ (x1)− x2), x2 � ξ (x1).

In the next proposition we estimate the norm of E from (4.4) from above. In the special
case of the wedge this estimation is slightly finer than one can find in [18, Appendix
A].
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PROPOSITION 4.4. Let Ωϕ be a wedge as in (4.1), and let the value E (Ωϕ) be
defined as in (1.2). Then the following estimate

E (Ωϕ) �
√

2
sin(ϕ/2)

√
1+ cos(ϕ/2)

holds.

Proof. In the proof we use that the module of the Jacobian of the substitution

(x1,x2) �→ (x1,2ξ (x1)− x2)

is equal to one. Observe that the equality

‖E f‖2
L2(R2) = 2‖ f‖2

L2(Ωϕ ) (4.5)

holds, where we used that

‖ f‖2
L2(Ωϕ ) =

∫
Ωϕ

|(E f )(x1,x2)|2dx1dx2 =
∫

R2\Ωϕ
|(E f )(x1,x2)|2dx1dx2.

As the next step we compute directly partial derivatives of the function E f :

(∂1E f )(x1,x2) = (∂1 f )(x1,x2), x2 > ξ (x1),
(∂1E f )(x1,x2) =

(
(∂1 + sign(x1)2cot(ϕ

2 )∂2) f
)
(x1,2ξ (x1)−x2), x2 � ξ (x1),

and

(∂2E f )(x1,x2) =

{
(∂2 f )(x1,x2), x2 > ξ (x1),
(−∂2 f )(x1,2ξ (x1)− x2), x2 � ξ (x1).

Further, we estimate the norms of ∂1E f and ∂2E f

‖∂1E f‖2
L2(R2) = ‖∂1 f‖2

L2(Ωϕ ) +‖∂1 f + sign(x1)2cot(ϕ/2)∂2 f‖2
L2(Ωϕ )

� (2+ t)‖∂1 f‖2
L2(Ωϕ ) +4cot2(ϕ/2)(1+1/t)‖∂2 f‖2

L2(Ωϕ ) (4.6)

with any t > 0 and
‖∂2E f‖2

L2(R2) = 2‖∂2 f‖2
L2(Ωϕ ). (4.7)

The equality (4.5) and the estimates (4.6) and (4.7) imply

‖E f‖2
H1(R2) � (2+ t)‖∂1 f‖2

L2(Ωϕ )

+(2+4cot2(ϕ/2)(1+1/t))‖∂2 f‖2
L2(Ωϕ ) +2‖ f‖2

L2(Ωϕ ).

Hence,
‖E f‖2

1 � max{2+ t,2+4cot2(ϕ/2)(1+1/t),2}‖ f‖2
1.
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Optimizing the maximum between three values with respect to the parameter t > 0 we
obtain that the maximum is minimal for

t = 2cot2(ϕ/2)+
√

4cot4(ϕ/2)+4cot2(ϕ/2) = 2cot2(ϕ/2)+
2cot(ϕ/2)
sin(ϕ/2)

.

That gives us the estimate

‖E‖1 �
√

2+ t =
√

2
sin(ϕ/2)

√
1+ cos(ϕ/2)

and, hence, by (1.2)

E (Ωϕ) �
√

2
sin(ϕ/2)

√
1+ cos(ϕ/2). �

COROLLARY 4.5. In the assumptions of the proposition above

√
2+

√
2

32
θ 2 +o(θ 2) � E (Ωπ−θ ) �

√
2+

√
2

4
θ +o(θ ), θ → 0+ .

Proof. The expansions in this corollary follow from the bounds in Propositions 4.2
and 4.4. �

REMARK 4.6. Note that upper and lower bounds in Corollary 4.5 have different
order of convergence to

√
2 and exact asymptotics of E (Ωπ−θ ) in the limit θ → 0+

remains an open problem.

REMARK 4.7. In [12, Subsection 7.3] it is conjectured that

F∂Ωπ−θ (α) = −1
4

α2 − c′α2θ 4 +O(θ 5), θ → 0+,

with some constant c′ > 0. Using this conjecture, Lemma 4.1 (i) and Theorem 3.3 one
gets the asymptotic lower bound

E (Ωπ−θ ) �
√

2+
√

2
16

θ 2 +o(θ 2), θ → 0+,

which is slightly sharper than the bound in Corollary 4.5.

4.2. Extension operators on rectangles

In this subsection our aim is to illustrate obtained general estimates in the case of
rectangles, which are Lipschitz domains of finite measure. Let

Πa,b = (0,a)× (0,b)⊂ R
2 (4.8)

be a rectangle with the lengths of the edges a > 0 and b > 0, respectively. We show
how simple one can estimate E (Πa,b) from below using our methods. First we collect
and prove some properties of the functions FΠa,b and F

R2\Πa,b
.
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LEMMA 4.8. Let Πa,b be a rectangle as in (4.8) with a,b > 0 . Let the functions
FΠa,b and F

R2\Πa,b
be defined as in (2.3). Then the following statements hold:

(i) FΠa,b(β ) � −β
(2

a + 2
b

)
;

(ii) F
R2\Πa,b

(β ) � −β 2 .

Proof. In the proof we convent to write Π instead of Πa,b .

(i) Let us take the characteristic function χΠ of the domain Π . Clearly, we have
χΠ ∈ H1(Π) and

tΠ
β [χΠ,χΠ] = −β (2a+2b),

where we used that ∇χΠ = 0 and that |∂Π| = 2a + 2b . Note that ‖χΠ‖2
L2 = ab and

that

infσ(−ΔΠ
β ) �

tΠ
β [χΠ,χΠ]

‖χΠ‖2
L2(R2)

� −β
(

2
a + 2

b

)
,

and the claim is proven.

(ii) Let us split the domain R2 \Π into the partition P = {Ωk}8
k=1 as shown on

Figure 2.

Π

Ω1

Ω2

Ω3

Ω4

Ω5

Ω8

Ω6

Ω7

Figure 2: Partition P = {Ωk}8
k=1 of R2 \Π .
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We use the notation fk := f |Ωk . Consider the sesquilinear form

t
R

2\Π
β ,N [ f ,g] :=

8

∑
k=1

(∇ fk,∇gk)L2(Ωk;C2) −β ( f |∂Π,g|∂Π)L2(∂Π),

dom t
R2\Π
β ,N :=

8⊕
k=1

H1(Ωk).

The above form is clearly, closed, densely defined, lower-semibounded and symmetric.

It generates a self-adjoint operator −ΔR2\Π
β ,N , which is an orthogonal sum of 8 self-

adjoint operators acting in L2(Ωk) with k = 1,2 . . . ,8, respectively. The spectra of the
components corresponding to Ω5 , Ω6 , Ω7 and Ω8 are equal to [0,+∞) . The spectra
of the components corresponding to Ω1 , Ω2 , Ω3 and Ω4 are equal to [−β 2,+∞) ,
which can be seen from separation of variables on these domains. Hence, we get

σ(−ΔR2\Π
β ,N ) = [−β 2,+∞).

Note that the ordering

t
R2\Π
β ,N ⊂ t

R2\Π
β

holds in the sense of [15, §VI.5] and of [5, §10.2] and the estimate

F
R2\Π(β ) = infσ(−ΔR

2\Π
β ) � infσ(−ΔR

2\Π
β ,N ) = −β 2

follows with the help of [5, §10.2, Theorem 4]. �

PROPOSITION 4.9. Let Πa,b be a rectangle as in (4.8), and let the value E (Πa,b)
be defined as in (1.2). Then the following estimate

E (Πa,b) �
√

1+2
(1

a
+

1
b

)
holds. In particular, E (Πa,b) → +∞ as min{a,b}→ 0+ .

Proof. From monotonicity of FΠa,b proven in Proposition 2.9 (i) and from Lemma
4.8 (i) we obtain that

β (Πa,b) � ab
2a+2b

. (4.9)

Analogously, we get with the aid of Lemma 4.8 (ii) that

β (R2 \Πa,b) � 1. (4.10)

Using Theorem 3.1 and estimates (4.9), (4.10) we arrive at

E (Πa,b) �

√
1+

β (R2 \Πa,b)
β (Πa,b)

�
√

1+2
(1

a
+

1
b

)
,

that finishes the proof. �
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REMARK 4.10. The method given in this subsection extends easily to parallele-
pipeds

Πa1,a2,...,ad = (0,a1)× (0,a2)× . . .× (0,ad) ⊂ R
d .
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