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Abstract. Richard Kadison showed that not every commutative von Neumann subalgebra of a
factor von Neumann algebra is equal to its relative double commutant. We prove that every
commutative C*-subalgebra of a centrally prime C*-algebra % equals its relative approximate
double commutant. If % is a von Neumann algebra, there is a related distance formula.

One of the fundamental results in the theory of von Neumann algebras is von Neu-
mann’s classical double commutant theorem, which says that if . = .* C B(H), then
S =W* (). In 1978 [3] the author proved an asymptotic version of von Neumann’s
theorem, the approximate double commutant theorem. For the asymptotic version, we
define the approximate double commutant of .# C B(H), denoted by Appr(S)”, to be
the set of all operators 7' such that

|A,T —TA;|| —0
for every bounded net {A, } in B(H) for which
|43S = SAx[ =0

for every S € .. More generally, if Z is a unital C*-algebra and . C 4, we define
the relative approximate double commutant of S in %, denoted by Appr (S, %)”, in
the same way but insisting that the 7' ’s and the A, ’s be in . The approximate double
commutant theorem in B(H) [3] says that if . =.%*, then Appr(.¥)" = C*(.%).
Moreover, if we restrict the {A; }’s to be nets of unitaries or nets of projections that
asymptotically commute with every element of .7, the resulting approximate double
commutant is still C* (.).

A von Neumann algebra Z is hyperreflexive if there is a constant K > 1 such that,
forevery T € B(H)

dist (T, ) < Ksup{||TP—PT|| : P € %', P a projection} .
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The smallest such K is called the constant of hyperreflexivity for 9. The inequality
sup{||TP—PT| : P € .4 P aprojection} < dist (T, . )

is always true. The question of whether every von Neumann algebra is hyperreflexive
is still open and is equivalent to a number of other important problems in von Neumann
algebras (see [60]). It was proved by the author [4] that every unital C*-subalgebra <7
of B(H) is approximately hyperreflexive; more precisely, if T € B(H), then there is a
net {P; } of projections such that

|APy, — P Al — 0
forevery A € &7, and

dist (T, /) < 291im||TF — ,T)|.

If we replace the role of B (H) with a factor von Neumann algebra, then the double
commutant theorem fails, even when the subalgebra is commutative. Suppose .& is a
subset of a ring % . We define the relative commutant of . in %, the relative double
commutant of . in %, and the relative triple commutant of . in % , respectively, by

(SR ={T € #:NS€./,TS=ST},

(S R)" ={T €#:NA€ (S %) ,TA=AT},

and
(S R)" ={TeR:VAe (S R)" TA=AT}.

It is clear from general Galois nonsense that
(7 2)" = (S, %)".
Following R. Kadison [8] we will say a subring .# of a unital ring & is normal if
M= (M, B) = (M'NB) NB.

R. Kadison [8] proved that if .# is type I von Neumann subalgebra of a von Neumann
algebra %, then .# is normal in 2 if and only if its center 2 (/) = . # N.A" is
normal if and only if 2 (.#) is an intersection of masas (maximal abelian selfadjoint
subalgebras) of 2. See the paper of B. J. Vowden [14] for more examples. We see
that the part of Kadison’s result concerning abelian C*-subalgebras is true in the C*-
algebraic setting. We prove a general version for rings, which applies to commutative
nonselfadjoint subalgebras of a C*-algebra or von Neumann algebra.

LEMMA 1. Suppose .# is a unital abelian subring of a unital ring %. The fol-
lowing are equivalent:

L= (M, B).
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2. . is an intersection of maximal abelian subrings of 2.

3. . is an intersection of subrings of the form (., %) for subsets . of A.

Proof. First note that every maximal abelian subring & has the property that & =
(&,%)", which implies & = (&,%)" and the implication (2) = (3). It is also clear
that if {.% : i € I'} is a collection of nonempty subsets of 2, then

U4,2) € (Nier s, 2)',
icl
and
(Nier 74, B)" V(1. 2)".
iel
This, and the fact that (.7, 2)" = (.7, %) always holds, yields (3) = (1).

To prove (1) = (2), suppose (1) holds, and let /" be a maximal abelian subring
of % such that .4 C % . Foreach W € #\.# ,by (1), thereis a Ty € (.#, %)’ such
that TwW # W Ty . Since the ring generated by .# U{Ty } is abelian, it is contained in
a maximal abelian subring %y, and W ¢ % . Hence

MM=WN m S,
weW\u

which proves (2) holds. O

If in the statement and proof of the preceding lemma we replace “ring” with “C*-
algebra”, and the ring generated by .# U{Tw} with C* (.# U{Tw}), we obtain the
following result for C*-algebras.

COROLLARY 1. Suppose # is a unital commutative C*-subalgebra of a unital
C*-algebra A. The following are equivalent:

1. A isnormalin A.

2. . is an intersection of maximal abelian subalgebras of 4.

3. M is an intersection of masas in A.

4. . is an intersection of algebras of the form (., B)" for subsets ./ of B.

We now know that every masa in a C*-algebra is normal. If .# is a masa in a von
Neumann algebra 4, then the double commutant theorem holds even with a distance
formula. The proof is a simple adaptation of the proof of Lemma 3.1 in [13].

LEMMA 2. Suppose . is a masa in a von Neumann algebra B and T € A.
Then

dist (T,.#) <sup{|UT —TU|:U=U" € B,U*=1}
=2sup{||TP—PT||: P=P*=P* € &)}
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Proof. Let R denote the right-hand side of the inequality, and let D be the closed
ball in & centered at T with radius R. Suppose .# is a finite orthogonal set of projec-
tions in .# whose sumis 1. Let G(.%#) be the set of all sums of the form

2 ApP
PeF
witheach Ap in {—1,1}. Then G (.%) is a finite group of unitaries and each U € G (%)
has the form 2Q — 1 with Q a finite sum of elements in .% . Moreover, if U =20 — 1,

2||TQ-QT| = [ITU - UT|| = T -UTU"||.
It follows that UTU* € D forevery U € G(.%). Define

1

Sg=——— UTU".
4 cardG (F) 2

UeG(F)
Since G (%) is a group, it easily follows that, for every Uy € G (%),
UoSzUs =S7.

This implies that S5 = Y, PTP € (#,8) = (G(F),#) . Choose a subnet {Sz, }
PeF

that converges in the weak operator topology to S € D. Then S € (.#,%)' N D. Since

(M, B) = ., we conclude

dist (T,.#) < ||T —S||<R. O

We now address the approximate double commutant relative to a C*-algebra. If
. is a subset of a C*-algebra 4, we know that Appr(.#,%)" must contain the center
Z(B)=BNA . Hence if & is a unital C*-subalgebra of a C*-algebra %, then

C (AU Z (B)) C Appr (o, 5)" .

When .o/ is commutative, we will prove that equality holds in certain cases, including
when % is a von Neumann algebra.

The following result is based on S. Macado’s generalization [ 1] of the Bishop-
Stone-Weierstrass theorem. If K is a compact Hausdorff space and ¥ is a unital closed
subalgebra of C(K), a subset E of K is called ¥ -antisymmetric if, for every g € 4,
the restriction g|g is real-valued implies g|g is constant. Machados’s theorem [1 1] says
that if 7 € C(K), then there is a closed ¢ -antisymmetric set £ C K such that

dist (h, %) = dist (hg,9|E),

where ¥|p = {g|g : g € 4}. A beautiful, short, elementary proof of Machado’s theo-
rem was given by T. J. Ransford in [12].

LEMMA 3. Suppose W is a unital C*-subalgebra of a commutative C*-algebra
2,and S=S*€ 2 and S ¢ W . Then there are multiplicative linear functionals o, 3
on 9 and nets {A,},{By},{X,} and {Y,} in @ such that
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1. 0<X; <A, <1,0<Y, <B, <1,

XY, =0,A, X, =X,, Y, B, =7),

|DA, —a(D)A,|| — 0 and ||DB) — B (D) B, || — 0 forevery D € 2,
o (A) =B (A) forevery Ac W,

o(Xy) =B (Yy) =1 forevery A,

B(S)—o(S)=2dist (S, 7).

A I N

Proof. Let K be the maximal ideal space of & and let I': 2 — C(K) be the
Gelfand map, which must be a *-isomorphism since & is a commutative C*-algebra.
Let g =T(S) =T(S*) = g. It follows from Machado’s theorem [11] that there is a
' (#)-antisymmetric set E C K such that

dist (S, %) =dist (g, T (W) =dist (glg,T(#)|E).

Since I' (%) is self-adjoint and E is T (#') -antisymmetric, every functionin I'(#) is
constant. Hence dist (g|g, T (#) |g) is the distance from g|g to the constant functions.
It is clear that the closest constant function to g|g is

g(B)+e()
2 )

where o, € E, g(B) =maxycg g(x) and g (o) = minyer g (x). Let A be the directed
set of all pairs A = (U,, V) of disjoint open sets with o € U; and f € V; , ordered by
M < Az if and only if Uy, C Uy, and Vj, CV;,, . For each A € A choose continuous
functions ry,sy,7,,uy : K — [0,1] such that

a. n(a)=nB)=1,
b. Ogl"l:r)LS)L <Sl<1’

c. 0<y

thuy <uy <1,
d. supps, C U, and suppuy C V).

If we choose A, B;,X,,Y, € &/ such that F(X)L) =7y, F(A)L) =53, F(YQL) =1,
and I'(B,) = u,,, then statements (1)-(6) are clear. [

A C*-algebra A is primitive if it has a faithful irreducible representation. A C*-
algebra A is prime if, for every x,y € Z, we have

x#By ={0} = x=0o0ry=0.

Every primitive C*-algebra is prime, and it was proved by Dixmier [2] that every sepa-
rable prime C*-algebra is primitive. N. Weaver [15] gave an example of a nonseparable
prime C*-algebra that is not primitive.
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We define Z to be centrally prime if, whenever x,y € &, 0 < x,y < 1 and xZBy =
{0}, thereis an e € 2 (A) suchthat x < e < 1 and y < 1 —e < 1. The centrally prime
algebras include the prime ones, von Neumann algebras, and H,%- / 2,%- or a C*-

i€l el
o
ultraproduct H,%- when {%;:i €1} is a collection of unital primitive C*-algebras
icl
(see the proof of Theorem 4) .

We characterize Appr (.27, %)" for every commutative C*-subalgebra .7 of a cen-
trally prime C*-algebra %, and we show that there is a distance formula for every com-
mutative unital C*-subalgebra if and only if every masa in % has a distance formula.
In particular, when 2 is a von Neumann algebra, we obtain a distance formula.

REMARK 1. Here is a useful comment on distance formulas. If % is a unital C*-
algebraand .9 = ¥* C £, then (.7, %)/ is a unital C*-algebra, so, by the Russo-Dye
theorem, the closed unit ball of (.#,%)" is the norm-closed convex hull of the set of
unitary elements in (., %)’ . Hence, for any T € 2,

sup{|[TW —WT||:W € (#.8)', |W] < 1}

=sup{||TU—UT|:U € (#,%)",U is unitary} .

A similar result holds in the approximate case. Suppose (A, <) is a directed set. Then

H A is a unital C*-algebra and the set
LeA

5:{{WA} € H(%’:VSey,liinHWAS—SWAH :o}
LEA

is a unital C*-algebra and the closed unit ball &7 of & is the closed convex hull of its
unitary group. Hence

sup {limsupTW;L —WT||:W={W} €&, ||W| < 1}
A

= sup{limsup”TU,l —UpT|:U={U,} €&, Uis unitary} .
A

THEOREM 1. Suppose A is a centrally prime unital C*-algebra and % (%) C
W C D are unital commutative C*-subalgebras of B. Suppose S =S8* € 9. Then
there is a net {W, } in B such that

1. W), is unitary for every A,
2. limy [|[AW), — W, A|| =0 for every Ac W,

3. limy ||SW; — W,S| = 2dist (S, 7).
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Moreover, if 2 is a von Neumann algebra, then there is a net { P} of projections
in B such that

4. limy ||[AP, —P)A|| =0 forevery Ac W,
5. limy ||SPA _PJLS” =dist (&W).

Proof. Let # =C* (A UL (B)), 2 =C"(FUZL(AB)U{S}). Now choose
o,B and nets {A,},{B,},{X,} and {Y;} in & asin Lemma 3. We first show that
X, BY) # {0}; otherwise, since & is centrally prime, there is an e € 2 (%) such
that X; <e<landY, <l—e< 1. Hence ax(e)=1and B(l—e)=1,0r B(e) =0.
However, e € # and, by part (4) of Lemma 3, we get o (¢) = 3 (¢) . This contradiction
shows that X; Y, # {0}. Hence there is a C; € 9 such that |X; C, Y, || = 1. Define
W), =X, C Y, =AW, =W, B, . Lemma 3 implies that, for every D € 2,

|DW), — o (D)W, || = | DA W), — o (D) Ay Wy || < [[[D — e (D)] Ax || W2 || — O,
and
[WoD — B (D)W, || = [[Wy,ByD — B (D)W, B, || < [[Wy ||| By [D— o (D)]|| — 0.

Since o (A) = B(A) for every A € #, it follows that ||AW), —W,A|| — 0. It also
follows that

lim|[|W7.S — SWa || =Tim|B (S) — ()| [IWa ]| = B (S) — e ()] = 2dist (S, 7).

We now appeal to Remark 1 to replace the net {W) } with a net of unitaries.

Now suppose # is a von Neumann algebra. Once we get X, AY, # 0 we know
that there is a partial isometry V, in % whose final space is contained in the closure of
ranX; and whose initial space is contained in (kerY; )" . Then (3) holds with {W, } re-
placed with {V, }. Also, VZ =0 (since X3 ¥; =0),50 P, =5 (Vo + Vi + V3V +V;Vy)
is a projection. Using the above arguments gives us

|DViVi =B (D) ViVa || = 0,||ViVaD =B (D) ViVy | — 0

and
|DVLV; — (D) V. V5 || — 0,

VaViD—a(D)V,Vi|| — 0,

which implies
|DV; V3, — ViVaD+ DV, Vy — V3 ViD|| — 0

for every D € #. Thus
. l . * *
lim [P, — P15]| = 3 lim (e (5) Vi = VB (5)) + (B (S) Vi — Vit (S))|

= lim 2B ($) ~ a($)][V; ~ Va| = 5 1B (S) ~ e (8)] = dist (5.7),

since HV}’L‘ —VAH =1 forevery A. O
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THEOREM 2. Suppose </ is a unital commutative C*-subalgebra of a centrally
prime unital C*-algebra %. Then

Appr (o, B)" =C* (FUZ (B)).

Hence </ is normal if and only if % (8) C .

Proof. Itis clear that # = C* (/' U 2 (#)) C Appr (<, %)" . Choose a masa 7
of & with o/ C 9. Then

W C Appr(o,B)" C Appr(2,8)" = 2.

If we choose S = S* € Appr (<7, %)" and apply Theorem 1 we see that S € #/ . Since
Appr (7, %B)" is a C*-algebra, we have proved that Appr (<7, 28)" C#. O

COROLLARY 2. If A is a centrally prime C*-algebra with trivial center, e.g., a
factor von Neumann algebra or the Calkin algebra, then o/ = Appr (<7, B)" for every
commutative unital C*-subalgebra </ of AB.

In the von Neumann algebra setting, we get a distance formula. We have not tried
to get the best constant.

THEOREM 3. Suppose </ is a unital commutative C*-subalgebra of a von Neu-
mann algebra % and T € PB. Then there is a net {Py} of projections in A such
that,

1. forevery A € <,
AP, — R A| — 0,

and
dist (T,C* (UL (A))) < 101i/{n||TP;L —PT|.

Proof. Let W =C* (/' UZ (%)). We define the seminorm A on % by setting
A (V) to be the supremum of limy, ||V P, — P, V|| taken over all nets {P, } of projections
in A for which ||AP) — PyA|| — 0 forevery A € o7 and lim, ||V Py — P, V|| exists. Let
2 be amasain & suchthat # C 2.
We first assume T = 7. It follows from Lemma 2 that there is an S € & such
that
|S—T| <2sup{||ITP—PT||:P=P"=P*€ 2} <2A(T).

If we apply Theorem 1, we obtain a net {P, } of projections in .2 such that

lim [ WP, — P, W =0
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forevery W € %, and such that
lganhS——SfﬁH::dhtﬂl%V)

It follows that

dist (T, %) < dist (S, ) +||S —T|| < A(S)+2A(T)

(S=T)+A(T)+2A(T) < ||S—T||+3A(T) < 5A(T).

N IN

whenever T = T*.
For the general case,

dist (T, ) < dist (ReT, /) +dist (ImT, )
<5A(ReT)+5A(ImT) <5 %A(T—i— )+ %A(T —T)
<S[A(T)+A(T")] = 10A(T),
since A(T) =A(T*). O

In some cases our results yield information on relative double commutants.

THEOREM 4. Suppose {%,} is a sequence of primitive C*-algebras and

o
B = H‘@"/ Z‘%"' If o7 is a separable commutative unital C*-subalgebra of A,
n>1 n>1
then

(o, B)" =C" (4 VZ (B)),
e, C* (A UL (A)) is normal.

Proof. We first show that % is centrally prime. Since each %, is primitive,
we can assume, for each n € N, that there is a Hilbert space H,, such that %, is
an irreducible unital C*-subalgebra of B(H,). Suppose A,B € %, 0 < A,B< 1 and
AZB =0. We can lift A, B, respectively to a sequences {A,},{B,} in []%,. Hence,

n>1
for every bounded sequence {7,,} € [[%, . we have
n=1

lim ||A, T,,B,|| = 0.
Nn—oo
Choose unit vectors e, f, € H, so that ||Aye,|| = [|A4ll /2 and ||Bufall = ||Bnll /2. 1t

follwos from the irreducibility of %8, and Kadison’s transitivity theorem [9] that there
isa T, € %, such that ||T,|| =1 and T,,B,,f, = ||Bnfn| en- It follows that

1
0 = lim ||A,T,,B,|| > lim ||A,T,B,fy| = limZ |Au| 1| Bal| -

Hence
Jlim min ([|A,], IB.])* < im [A, [ [|By]| = 0.
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For each n € N we define

o [T B < A
"0 A < B

Then {P,} is in the center of []%, and

n>1

nli_l:I;loHPanH :nlEEQH(l _Pn)AnH =0.

If P is the image of {P,} in the quotient A, then P is a central projection and PA = P
and (1 — P)B = B. Hence & is centrally prime. So it follows that

Appr (o, B)" =C* (U % (B)).

The proof will be completed with proof of the following claim: If .¥ is a norm-
separable subset of Z, then

Appr (S, B)" = (S, B)".

It is clear from considering constant sequences that the inclusion Appr (.7, %)" C
(#,%)" holds for every unital C*-algebra Z. To prove the reverse inclusion, sup-
pose T ¢ appr(.#,2%)". Then there is and € > 0 and a net {A;} in % such that
|A; S —SA, || — 0 forevery S € .7, and such that ||A, T —TA, || > € forevery A. Let
0 =1{51,82,...} be adense subset of .7". We can lift each S, to {S, (j)} >, € 1%«

k=1
and lift 7 to {7 (j)};5,. It follows that, for every n € N, there is an A, € % with
|An|| = 1 such that

a. ||AnSk — SkAn|| < 1/n for 1 <k < n,
b. [[AnT — TA|| > €/2.
Note that if B € 2 lifts to {B(j)};5; € [[ %k, then ||B|| =limsup;_..[|B(j)]|-

k=1
If we lift each A, to {A,(j)}, it follows that we can find an arbitrarily large j, € N
such that [|A, (jin) Sk (jn) — Sk (jin) An ()|l < 1/n for 1 <k <nand ||Ay (ju) T (jn) —
T (jn)An(ju)l| > €/2. Since j, can be chosen to be arbitrarily large, we can choose
{jn} sothat j; < j» <---. We now define A € A by defining

o JAu(jn) if j= jn forsomen > 1
A7) = { 0 otherwise ’
We see that AS; = S3A forall k> 1 and ||AT — TA|| >€/2. Hence T ¢ (&, %)". O
We conclude with some questions.

1. If .# is anormal von Neumann subalgebra of a factor von Neumann algebra %,
is there a constant K > 1 such that, forevery T € A,

dist (T,.#) < Ksup{|TP—PT||: P=P* =P € .#'N#}?

When % = B(H), this question is equivalent to Kadison’s similarity problem.
What about factors not of type 17
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2. Is there an analog of Theorem 3 for arbitrary C*-subalgebras of a factor von

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]

[14]
[15]

Neumann algebra?

. It seems likely that a version of parts (4) and (5) of Theorem 1 might hold under

assumptions weaker than % being a von Neumann algebra. Is it true when %4
has real-rank zero? What if we include nuclear and simple? The key is getting the
partial isometries V; in the proof of Theorem 1. When does a unital C*-algebra
2 have the property that whenever X,Y,A,B >0 arein % and AX =X, BY =7,
AB =0 and XAY # {0}, there is a nonzero partial isometry V € Z such that
AV =VB=V?
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