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SELF–CONJUGATE DIFFERENTIAL AND DIFFERENCE OPERATORS

ARISING IN THE OPTIMAL CONTROL OF DESCRIPTOR SYSTEMS

VOLKER MEHRMANN AND LENA SCHOLZ

Abstract. We analyze the structure of the linear differential and difference operators associated
with the necessary optimality conditions of optimal control problems for descriptor systems in
continuous- and discrete-time. It has been shown in [27] that in continuous-time the associated
optimality system is a self-conjugate operator associated with a self-adjoint pair of coefficient
matrices and we show that the same is true in the discrete-time setting. We also extend these
results to the case of higher order systems. Finally, we discuss how to turn higher order systems
with this structure into first order systems with the same structure.
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