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Abstract. Let T = N + u⊗ v be a rank-one perturbation of a normal operator N acting on a
separable, infinite dimensional, complex Hilbert space H . It is proved that the hyponormality
of T is equivalent to the normality of T . Some characterizations of hyponormality[normality]
of T are obtained.

1. Introduction and notation

Let H be a separable, infinite dimensional, complex Hilbert space and let L (H )
be the algebra of all bounded linear operators on H . For nonzero vectors u and v in
H we shall write u⊗ v for the rank-one operator in L (H ) defined by (u⊗ v)(x) =
〈x,v〉u, x ∈ H . For X ,Y ∈ L (H ) , we denote by [X ,Y ] = XY −YX . An operator
T ∈ L (H ) is normal if [T ∗,T ] = 0, and T ∈ L (H ) is hyponormal if [T ∗,T ] is
positive, i.e., [T ∗,T ] � 0. An operator T in L (H ) is called a rank-one perturbation
of a normal operator if there exist nonzero vectors u,v in H and a bounded normal
operator N ∈ L (H ) such that T equals the operator N + u⊗ v. The rank-one per-
turbations of a bounded (unbounded) operators can be applied to several related areas
in mathematical physics ([1], [8], [11]). Since an invariant subspace problem about
rank-one perturbations of diagonal operators was introduced in [10], several operator
theorists have been studied the structure of rank-one perturbations of diagonal operators
to detect their invariant subspaces ([3], [4], [5]). The rank-one perturbations of diagonal
operators have been developed well by several authors ([6], [3], [4], [5]). Especially, E.
Ionascu ([6]) obtained some general properties of rank-one perturbations of diagonal
operators. In [12], J. Stampfli characterized the isometry of rank-one perturbations of
normal operators in L (H ) , and proved that certain such operators of small norm split
off a unitary piece from the shift. Also, in [9] one detected the structure of rank-one
perturbations of unilateral shifts operators. Moreover, in [2] one considered rank-one
perturbations of weighted shifts to examine distinctions between various sorts of weak
hyponormalities; see [7] for weak hyponormalities.

In this note we prove that the hyponormality and normality of a rank-one pertur-
bation of normal operator T = N + u⊗ v in L (H ) are equivalent. In addition, we
obtain some characterizations of hyponormality[normality] of such an operator T with
vectors u and v in H .
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Throughout this note, we write N, R , and C for the sets of positive integers,
real numbers, and complex numbers, respectively. For A ∈ L (H ) , ranA denotes
the range of A as usual. Since (Au)⊗ v = A(u⊗ v) , we denote it by Au⊗ v . For a
subspace M of H , ∨M is the subspace of H spanned by M , and PM denotes an
orthogonal projection to M . Here, subspace means always “closed subspace”. For a
rank-one perturbation T = N +u⊗ v of a normal operator N in L (H ) , without loss
of generality we assume that ‖u‖ = ‖v‖ = 1 in this note.

2. Equivalence

Let u and v be vectors in H and let T = N +u⊗ v be a rank-one perturbation of
a normal operator N in L (H ) . Then it can be obtained easily that

[T ∗,T ] = N∗u⊗ v+ v⊗N∗u+ v⊗ v−Nv⊗u−u⊗Nv−u⊗u. (2.1)

For brevity, we denote the subspace by

Ru,v := ∨{u,v,N∗u,Nv}. (2.2)

Then, by (2.1) we have that ran([T ∗,T ]) ⊂ Ru,v obviously.
We first discuss a matrix structure of the commutator [T ∗,T ] of T under the inde-

pendence condition of u and v as following.

LEMMA 2.1. Let T = N +u⊗v be a rank-one perturbation of a normal operator
N in L (H ) and let u and v be linearly independent. Then there exists an orthonor-
mal system {ei}4

i=1 in H with e1 = u such that
( i) ∨{u,v} = ∨{e1,e2} ,
( ii) Ru,v ⊂ ∨{ei}4

i=1 (:= Mu,v) , where Ru,v is as in (2.2) ,
( iii) [T ∗,T ] ∼= A⊕0H �Mu,v relative to Mu,v ⊕ (H �Mu,v) , where

A ∼=

⎛
⎜⎝

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 0 0
a14 a24 0 0

⎞
⎟⎠ (2.3)

with

a11 = 2Re(〈N∗u,u〉〈u,v〉− 〈Nv,u〉)+ |〈u,v〉|2−1; (2.3a)

a12 = 〈e2,v〉〈N∗u,u〉+ 〈e2,N
∗u+ v〉〈v,u〉− 〈e2,Nv〉; (2.3b)

a13 = 〈e3,N
∗u〉〈v,u〉− 〈e3,Nv〉; (2.3c)

a14 = 〈e4,N
∗u〉〈v,u〉− 〈e4,Nv〉; (2.3d)

a22 = 2Re(〈N∗u,e2〉〈e2,v〉)+ |〈v,e2〉|2; (2.3e)

a23 = 〈e3,N
∗u〉〈v,e2〉; (2.3f)

a24 = 〈e4,N
∗u〉〈v,e2〉. (2.3g)

Proof. Since u and v are linearly independent, by Gram-Schmidt orthogonal pro-
cess ([13, Th. 3.5]), we get an orthonormal system {e1,e2} with e1 = u such that
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∨{e1,e2} = ∨{u,v}. Let {ei}4
i=1 be an orthonormal system in H such that Ru,v ⊂

∨{ei}4
i=1. We denote by Mu,v := ∨{ei}4

i=1. Recall from (2.1) that

[T ∗,T ]h = 〈h,v〉N∗u+ 〈h,N∗u+ v〉v−〈h,u〉Nv−〈h,Nv+u〉u, ∀h ∈ H . (2.4)

Thus [T ∗,T ]Mu,v ⊂ Ru,v ⊂ Mu,v, and so Mu,v is a reducing subspace for [T ∗,T ]. We
now consider an orthonormal basis {ei}∞

i=1 of H containing Mu,v . Since Ru,v ⊂
Mu,v , by using (2.4), we get [T ∗,T ]e j = 0, j � 5. Hence we have a decomposition
[T ∗,T ]∼= A⊕0H �M u,v relative to Mu,v⊕(H �M u,v) , where A is unitarily equivalent
to a 4×4 complex matrix (ai j)1�i, j�4 . Without loss of generality, we can consider as
A = (ai j)1�i, j�4 now. Substituting e j for h in (2.4), 1 � j � 4, we obtain that, for
1 � i, j � 4,

ai j =
〈
[T ∗,T ]e j,ei

〉
(2.5)

= 〈e j,v〉〈N∗u,ei〉+ 〈e j,N
∗u+ v〉〈v,ei〉− 〈e j,u〉〈Nv,ei〉− 〈e j,Nv+u〉〈u,ei〉.

Simplifying ai j in (2.5) for i, j = 1,2,3,4, the equalities ai j in (2.5) can be expressed
as (2.3a-g) easily. It is obvious that ai j = a ji . Thus the proof is complete. �

The following is a parallel result of Lemma 2.1 when u and v are linearly depen-
dent.

LEMMA 2.2. Let T = N +u⊗v be a rank-one perturbation of a normal operator
N in L (H ) . Let u and v be linearly dependent and suppose v = eiθ u for some
θ ∈ [0,2π) . Then there exists an orthonormal system { fi}3

i=1 in H with u = f1 such
that

(i) Ru,v ⊂ ∨{ fi}3
i=1 (:= Nu) ,

(ii) [T ∗,T ] ∼= B⊕0H �Nu relative to Nu⊕ (H �Nu) , where

B ∼=
⎛
⎝ 0 b12 b13

b12 0 0
b13 0 0

⎞
⎠ (2.6)

with

b12 = eiθ 〈 f2,N
∗u〉− e−iθ 〈 f2,Nu〉 , (2.6a)

b13 = eiθ 〈 f3,N
∗u〉− e−iθ 〈 f3,Nu〉 . (2.6b)

Proof. By the same method as the proof of Lemma 2.1, we may prove that there
exists an orthonormal system { fi}3

i=1 in H with f1 = u such that Ru,v ⊂ ∨{ fi}3
i=1.

For brevity, we set Nu : =∨{ fi}3
i=1. Considering an orthonormal basis { fi}∞

i=1 of H
containing Nu , we see that [T ∗,T ] ∼= B⊕ 0H �Nu relative to a decomposition Nu ⊕
(H �Nu) , where B is unitarily equivalent to a 3× 3 complex matrix (bi j)1�i, j�3 .
Without loss of generality, we say B = (bi j)1�i, j�3 as in the proof of Lemma 2.1. Then
it follows from (2.4) that, for 1 � i, j � 3,

bi j = e−iθ 〈 f j,u〉〈N∗u, fi〉+ eiθ 〈 f j,N
∗u〉〈u, fi〉− eiθ 〈 f j,u〉〈Nu, fi〉− e−iθ 〈 f j,Nu〉〈u, fi〉.

(2.7)
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A direct computation shows that the matrix B and its coefficient bi j can be represented
as in (2.6) and (2.6a,b), respectively. �

Now we are ready to prove the main theorem of this section.

THEOREM 2.3. Let T = N +u⊗ v be a rank-one perturbation of a normal oper-
ator N in L (H ) . Then T is hyponormal if and only if T is normal.

Proof. It is sufficient to see that if T is hyponormal, then T is normal. So we
suppose that T is hyponormal. To claim the normality of T , we consider two cases of
linear independence and dependence of u and v .

First we assume that u and v are linearly independent. Then it follows from
Lemma 2.1 that there exists an orthonormal system {ei}4

i=1 in H with e1 = u such
that [T ∗,T ] ∼= A⊕ 0H �Mu,v , where A and Mu,v are as in Lemma 2.1. It is obvious
that A � 0. We denote Ki j for a subspace spanned by vectors ei and e j, and denote
Pi j := PKi j [T

∗,T ]|Ki j for a compression of [T ∗,T ] to Ki j, where 1 � i, j � 4. Then
the matrix form of P13 is represented by

P13
∼=

(
a11 a13
a13 0

)
. (2.8)

Obviously P13 is positive definite if and only if a11 � 0 and a13 = 0. Since matrices
corresponding to P14,P23, and P24 are positive definite, we have that a22 � 0 and a14 =
a23 = a24 = 0. Considering P12 , we obtain the condition

a11a22−|a12|2 � 0 (2.9)

by the positivity of P12. In particular, if we take e2 in H such that

e2 =
v−〈v,u〉u
‖v−〈v,u〉u‖ (2.10)

via the Gram-Schmidt orthogonal process as in the proof of Lemma 2.1, we may use
the same conclusion of Lemma 2.1. Hence, by using (2.10), the formula of (2.3e) can
be represented by

a22 = 2Re(〈N∗u,v〉− 〈u,v〉〈N∗u,u〉)+ δ , (2.11)

where δ := 1−|〈u,v〉|2 . Since a11 � 0 and a22 � 0, by (2.3a) and (2.11), we have

2Re(〈N∗u,u〉〈u,v〉− 〈Nv,u〉) � δ � 2Re(〈u,v〉〈N∗u,u〉− 〈N∗u,v〉).
By the property of complex numbers that Re(z+w) = Re(z+w) for all z,w ∈ C , we
have that

δ = 2Re(〈N∗u,u〉〈u,v〉− 〈Nv,u〉) = 2Re(〈u,v〉〈N∗u,u〉− 〈N∗u,v〉).
By (2.3a) and (2.11), a11 = a22 = 0. It follows from (2.9) that a12 = 0. Thus we obtain
finally that A = 0, i.e., [T ∗,T ] = 0H .

Next we consider the case that u and v are linearly dependent. Using Lemma
2.2, there exists an orthonormal system { fi}3

i=1 in H with u = f1 such that [T ∗,T ] ∼=
B⊕ 0H �Nu , where B and Nu are as in Lemma 2.2. Since (bi j)1�i, j�3 in (2.6) is
positive definite, obviously b12 = b13 = 0, i.e., [T ∗,T ] = 0H . Hence the hyponormality
of T is equivalent to the normality and the proof is complete. �
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3. Characterizations

In this section we characterize the hyponormality[normality]of rank-one perturba-
tions of normal operators in L (H ) by using notations in Section 2. We first consider
the case of linear dependence of u and v as following.

THEOREM 3.1. Let T = N + u⊗ v be a rank-one perturbation of a normal op-
erator N in L (H ). Let u and v be linearly dependent with v = eiθ u for some
θ ∈ [0,2π) . Then the following conditions are equivalent:

( i) T is hyponormal [normal],
( ii) one of the following conditions a) and b) holds:

a) ∨{u} ⊃ {N∗u,Nu} ,
b) Nu ∈ ∨{u,N∗u} and

〈N∗u,Nu〉− 〈N∗u,u〉2 = e2iθ‖N∗u−〈N∗u,u〉u‖2, (3.1)

( iii) there exists α ∈ C such that e−iθ N∗u− eiθNu = αu.

Proof. ( i) ⇒ ( ii) It follows from Lemma 2.2 that there exists an orthonormal
system { fi}3

i=1 in H with u = f1 such that Ru,v ⊂ Nu = ∨{ fi}3
i=1 and [T ∗,T ] ∼=

B⊕ 0H �Nu , where B as in (2.6) and bi j are as in (2.6a,b). Since T is normal via
Theorem 2.3, obviously b12 = b13 = 0. We consider two cases of the linear dependence
and independence of u and N∗u.

If u and N∗u are linearly dependent, i.e., N∗u = 〈N∗u,u〉u , then b12 = −e−iθ 〈 f2,
Nu〉 = 0 and b13 = −e−iθ 〈 f3,Nu〉 = 0. Thus Nu ∈ ({ f2, f3})⊥ . Since Nu ∈ Nu, we
have Nu ∈ ∨{u} . On the other hand, if u and N∗u are linearly independent, then
‖N∗u−〈N∗u,u〉u‖ �= 0. Consider f1 = u as usual. By the Gram-Schmidt orthogonal
process, we may take f2 ∈ H such that

f2 =
N∗u−〈N∗u,u〉u

‖N∗u−〈N∗u,u〉u‖ . (3.2)

Then there exists an orthonormal basis { fi}∞
i=1 in H such that Ru,v ⊂ ∨{ fi}3

i=1 and
[T ∗,T ] ∼= B⊕ 0H �Nu , where B is as in (2.6) and its coefficients bi j satisfy (2.6a,b).
Since b13 = 0, by (2.6b), we have that

b13 = eiθ 〈 f3,N∗u〉− e−iθ 〈 f3,Nu〉 = −e−iθ 〈 f3,Nu〉 = 0. (3.3)

Hence Nu is a linear combination of f1 and f2 , which proves the first part of (ii)-b).
According to (2.6a), we may get

b12 = eiθ 〈 f2,N∗u〉− e−iθ 〈 f2,Nu〉 = 0. (3.4)

Substituting equation (3.4) for f2 in (3.2), we get the condition (3.1).
(ii)⇒(iii) If (ii)-a) holds, obviously e−iθ N∗u− eiθ Nu = αu for some α ∈ C . So

we only consider the case (ii)-b). We know that there exists an orthonormal system
{ fi}3

i=1 in H with u = f1 such that f2 satisfies (3.2), Ru,v ⊂ Nu = ∨{ fi}3
i=1, and

[T ∗,T ] ∼= B⊕0H �Nu with (2.6) and (2.6a,b). By (3.1) and the definition of f2 , we see
that

eiθ 〈 f2,N∗u〉 = e−iθ 〈 f2,Nu〉 . (3.5)
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By using the first part of condition b), we have

e−iθ N∗u− eiθNu = e−iθ
2

∑
j=1

〈
N∗u, f j

〉
f j − eiθ

2

∑
j=1

〈
Nu, f j

〉
f j

(3.5)= (e−iθ 〈N∗u,u〉− eiθ 〈Nu,u〉)u.

The number α = e−iθ 〈N∗u,u〉− eiθ 〈Nu,u〉 is the value required in (iii).
(iii)⇒(i) Suppose that e−iθ N∗u− eiθ Nu = αu for some a ∈ C . Recall from

Lemma 2.2 that there exists an orthonormal system { f1, f2, f3} in H with u = f1
such that, Ru,v ⊂ Nu = ∨{ fi}3

i=1 and [T ∗,T ] ∼= B⊕ 0H �Nu with (2.6) and (2.6a,b).
If u and N∗u are linear dependent, since Ru,v = ∨{u} , we have b12 = 0 = b13. If u
and N∗u are linear independent, we can take an orthonormal system { f1, f2, f3} in H
such that u = f1, f2 satisfies (3.2), Ru,v ⊂ ∨{ fi}3

i=1, and [T ∗,T ] ∼= B⊕0H �Nu with
(2.6) and (2.6a,b), as in the proof of “(i)⇒(ii)”. Note that

αu = e−iθ N∗u− eiθNu

= e−iθ 〈N∗u,u〉u− eiθ 〈Nu,u〉u+ e−iθ 〈N∗u, f2〉 f2 − eiθ 〈Nu, f2〉 f2

= αu+ e−iθ 〈N∗u, f2〉 f2 − eiθ 〈Nu, f2〉 f2.

Then eiθ 〈 f2,N∗u〉 = e−iθ 〈 f2,Nu〉 , which implies that b12 = 0. It follows from the
hypothesis of (iii) that b13 = 0. Hence [T ∗,T ] = 0H , i.e., T is normal. �

We now discuss the case of linear independence of u and v for the hyponormality
[normality] of rank-one perturbations of normal operators.

THEOREM 3.2. Let T = N + u⊗ v be a rank-one perturbation of a normal op-
erator N in L (H ) . Suppose that u and v are linearly independent. Then T is
hyponormal [normal] if and only if the following two conditions hold:

(i) ∨{u,v} ⊃ {N∗u,Nv} and
(ii) α = δ and β = 0 , where δ := 1−|〈u,v〉|2 and

α = 2Re(〈N∗u,u〉〈u,v〉− 〈Nv,u〉), (3.6a)

β = 2〈v,u〉 ·Re(〈v,N∗u〉)−〈v,u〉2〈u,N∗u〉− 〈v,Nv〉+ δ (〈N∗u,u〉+ 〈v,u〉). (3.6b)

Proof. (⇒) Suppose that T is normal. Consider e1 = u as usual. By the Gram-
Schmidt orthogonal process, take

e2 =
v−〈v,u〉u

‖v−〈v,u〉u‖ . (3.7)

Then there exists an orthonormal basis {ei}∞
i=1 in H such that Ru,v ⊂Mu,v :=∨{ei}4

i=1,
and [T ∗,T ]∼= A⊕0H �Mu,v , where A is as in (2.3) and the entries ai j of A satisfy (2.3a-
g). Since T is normal, obviously ai j = 0 for all i, j . Since a13 = a14 = a23 = a24 = 0,
(i) holds. On the other hand, since a11 = a22 = a12 = 0, we see easily that α = δ and
β = 0.
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(⇐) Suppose that conditions (i) and (ii) hold. Let {ei}∞
i=1 be an orthonormal basis

for H such that e1 = u , e2 is as in (3.7), Ru,v ⊂ Mu,v := ∨{ei}4
i=1, and [T ∗,T ] ∼=

A⊕0H �Mu,v with (2.3) and (2.3a-g), as usual. By using (i), (2.3c,d), and (2.3f,g), it is
obvious that a13 = a14 = a23 = a24 = 0. Observe that two conditions α = δ and β = 0
imply a11 = a22 = a12 = 0. Hence [T ∗,T ] = 0H . Thus the proof is complete. �

We now give an example for a normal[hyponormal] operator T = N + u⊗ v by
using Theorems 3.1 and 3.2 as following.

EXAMPLE 3.3. Let H be a separable, infinite dimensional, complex Hilbert
space and let {e j}∞

j=0 be an orthonormal basis of H . Let u = 1√
x2+1

∑∞
i=0 αiei with

α0 = x and α j =(1/
√

2) j , j � 1, and let v = 1√
y2+1

∑∞
i=0 βiei with β0 = y and β j = α j ,

j � 1, where x and y are real variables. Consider N = 1√
x2+1

√
y2+1

Diag{z,1,1, ...},
where z is a real variable, and define T = N +u⊗ v . We consider two cases of linear
dependence and independence of u and v as following:

1◦ Dependent case. Note that if x = y , then u and v are linearly dependent.
Setting

D1 = {(x,1) : x ∈ R}∪{(0,z) : z ∈ R},
it follows from a direct computation that T satisfies the condition (ii)-a) [resp., (ii)-
b)] in Theorem 3.1 if and only if (x,z) ∈ D1 [resp., (x,z) ∈ R2\D1 ]. Hence T is
normal[hyponormal] if and only if (x,y,z) ∈ {(t,t,s) : t,s ∈ R} in this case.

2◦ Independent case. Note that if x �= y , then u and v are linearly independent.
In this case we can see that T := N +u⊗ v satisfies Theorem 3.2(i) easily. By a direct
computation, we obtain that

α = δ ⇐⇒ x3 − yx2 +(3−2z)x− y = 0, (3.8a)

β = 0 ⇐⇒ yx3 + zx2 + yx− z+2 = 0, (3.8b)

and that the common roots of two equations in (3.8a,b) are exactly the line D2 :=
{(t,−t, t2 + 2) : t ∈ R\{0}} in R3 . Hence T is normal[hyponormal] if and only if
(x,y,z) ∈ D2 in this case.

We close this note with the following remark.

REMARK 3.4. Changing the order of the vectors u, v, N∗u, and Nv, the condi-
tions in Theorems 3.1 and 3.2 for hyponormality of rank-one perturbation T = N+u⊗v
will be changed slightly; for example, considering u and N∗u as pivots instead of
u and v , we can obtain analogue conditions in Theorems 3.1 and 3.2 for normal-
ity[hyponormality] of T . Of course, we may also consider as pivots “u and Nv”,
(or “v and N∗u”, “v and Nv”, “N∗u and Nv”) instead of “u and v”. We leave them
for interesting readers.

Acknowledgement. The first author was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2009-
0083521). Also the authors express their appreciation to the referee for helpful com-
ments and timely referee’s report.



698 IL BONG JUNG AND EUN YOUNG LEE

RE F ER EN C ES

[1] W. DONOGHUE, On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559–579.
[2] E. EXNER, I. B. JUNG, E. Y. LEE, AND M. R. LEE, Gaps of operators via rank-one perturbations,

J. Math. Anal. Appl. 376 (2011), 576–587.
[3] C. FOIAS, I. B. JUNG, E. KO, AND C. PEARCY, On rank-one perturbations of normal operators, J.

Funct. Anal. 253 (2007), 628–646.
[4] C. FOIAS, I. B. JUNG, E. KO, AND C. PEARCY, On rank-one perturbations of normal operators, II,

Indiana Univ. Math. J. 57 (2008), 2745–2760.
[5] C. FOIAS, I. B. JUNG, E. KO, AND C. PEARCY, Spectral decomposability of rank-one perturbations

of normal operators, J. Math. Anal. Appl. 375 (2011), 602–609.
[6] E. IONASCU, Rank-one perturbations of diagonal operators, Integr. Equat. Oper. Th. 39 (2001), 421–

440.
[7] T. FURUTA, Invitation to Linear Operators, Taylor & Francis Inc., London/New York, 2001.
[8] S. JITOMIRSKAYA AND B. SIMON, Operators with singular continuous spectrum, III; almost periodic

Schrödinger operators, Comm. Math. Phys. 165 (1994), 201–205.
[9] E. KO AND J. E. LEE, On rank-one perturbations of unilateral shift, Commun. Kor. Math. Soc. 26

(2011), 79–88.
[10] C. PEARCY, Some Recent Developments in Operator Theory, C.B.M.S. Regional Conference Series

in Mathematics, No. 36, Amer. Math. Soc., Providence, Rhode Island, 1978.
[11] R. DEL RIO, N. MAKAROV AND B. SIMON, Operators with singular continuous spectrum, II; rank

one operators, Comm. Math. Phys. 165 (1994), 59–67.
[12] J. G. STAMPFLI, One-dimensional perturbations of operators, Pacific J. Math., 115 (1984), 481–491.
[13] J. WEIDMANN, Linear Operators in Hilbert Spaces, Springer-Verlag, Berlin, Heidelberg, New York,

1980.

(Received April 30, 2013) Il Bong Jung
Department of Mathematics

Kyungpook National University
Daegu 702–701, Korea

e-mail: ibjung@knu.ac.kr

Eun Young Lee
Department of Mathematics

Kyungpook National University
Daegu 702–701, Korea

e-mail: eunyounglee@knu.ac.kr

Operators and Matrices
www.ele-math.com
oam@ele-math.com


