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PRE–IMAGES OF BOUNDARY POINTS OF THE NUMERICAL RANGE

TIMOTHY LEAKE, BRIAN LINS AND ILYA M. SPITKOVSKY

Abstract. This paper considers matrices A ∈ Mn(C) whose numerical range contains boundary
points generated by multiple linearly independent vectors. Sharp bounds for the maximum num-
ber of such boundary points (excluding flat portions) are given for unitarily irreducible matrices
of dimension � 5 . An example is provided to show that there may be infinitely many for n = 6 .
For matrices unitarily similar to tridiagonal, however, a finite upper bound is found for all n .
A somewhat unexpected byproduct of this is an explicit example of A ∈ M5(C) which is not
tridiagonalizable via a unitary similarity.
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