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ON DERIVATIONS AND JORDAN

DERIVATIONS THROUGH ZERO PRODUCTS

HOGER GHAHRAMANI

Abstract. Let A be a unital complex (Banach) algebra and M be a unital (Banach) A -
bimodule. The main results describe (continuous) derivations or Jordan derivations D : A →M
through the action on zero products, under certain conditions on A and M . The proof is based
on the consideration of a (continuous) bilinear map satisfying a related condition.
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