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Abstract. Let A be a unital complex (Banach) algebra and M be a unital (Banach) A -
bimodule. The main results describe (continuous) derivations or Jordan derivations D : A →M
through the action on zero products, under certain conditions on A and M . The proof is based
on the consideration of a (continuous) bilinear map satisfying a related condition.

1. Introduction

Throughout this paper all algebras and vector spaces will be over the complex field
C and all algebras are associative with unity, unless indicated otherwise. All modules
are unital. Let A be an algebra and M be an A -bimodule. Recall that a linear map
D : A → M is said to be a Jordan derivation (or generalized Jordan derivation) if
D(a ◦ b) = D(a)• b+a •D(b) (or D(a ◦ b) = D(a)• b+a •D(b)−aD(1)b−bD(1)a )
for all a,b ∈ A .

Here and subsequently, ′◦′ denotes the Jordan product a◦b = ab+ba on A and
′•′ denotes the Jordan product on M :

a •m = m• a = am+ma, a ∈ A , m ∈ M .

D is called a derivation (or generalized derivation) if D(ab) = D(a)b + aD(b) (or
D(ab)= D(a)b+aD(b)−aD(1)b ) for all a,b∈A . Clearly, each (generalized) deriva-
tion is a (generalized) Jordan derivation. The converse is, in general, not true.

The question of characterizing derivations or Jordan derivations on algebras through
the action on zero products has attracted the attention of many authors over the last few
years. We refer the reader to [2, 8] for a full account of the topic and a list of references.

In this paper, we consider the subsequent conditions on a linear map D from an
algebra A into an A -bimodule M :

(d1) ab = 0 ⇒ aD(b)+D(a)b = 0.

(d2) ab = ba = 0 ⇒ aD(b)+D(a)b = 0.
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(d3) a ◦ b = 0 ⇒ a •D(b)+D(a)• b= 0.

(d4) ab = ba = 0 ⇒ a •D(b)+D(a)• b= 0.

Our purpose is to investigate whether these conditions characterizes derivations or Jor-
dan derivations.

The above questions and the question of characterizing linear maps that preserve
zero products, Jordan product, etc. on algebras can be sometimes effectively solved by
considering bilinear maps that preserve certain zero product properties (for instance,
see [1, 2, 3, 5, 7]). Motivated by these reasons Brešar et al. [4] introduced the concept
of zero product (Jordan product) determined algebras, which can be used to study the
linear maps preserving zero product (Jordan product) and derivable (Jordan derivable)
maps at zero point.

In this context one is usually involved with the following condition on a bilinear
map φ : A ×A → X , where X is an arbitrary linear space:

a,b ∈ A , ab = ba = 0 ⇒ φ(a,b) = 0. (G)

A way to unify and generalize both of the concepts of zero product determined and zero
Jordan product determined consists in considering bilinear maps satisfying (G) .

The paper is organized as follows. In section 2 we introduce the notation and ter-
minology, and then a class of (Banach) A -bimodules satisfying a condition M (M′ ).
Also we give several classes of bimodules which satisfy this condition. Section 3 is
concerned with bilinear maps. We will consider the condition (G) for bilinear maps
in this section. Also we present some results concerning the notions of zero (Jordan)
product determined algebras. In section 4 we study the linear maps satisfying (d1)–(d4)
for modules with property M (M′ ), by using the results of section 3.

2. Preliminaries

In this section we introduce the notation and terminology, and then a special class
of (Banach) bimodules.

Let A be an algebra, then ℑ(A ) denotes the set of all linear combinations of
idempotents in A . Let M be an A -bimodule. We say that M satisfies M , if there
is an ideal J in A such that J ⊆ ℑ(A ) and

{m ∈ M |xmx = 0 f orall x ∈ J } = {0}. (2.1)

If A is a Banach algebra, M is a Banach A -bimodule and there is an ideal J in A

such that J ⊆ ℑ(A ) and (2.1) holds, then we say that M satisfies M′ .
Note that if (Banach) A -bimodule M satisfies M (M′ ), then we have

{m ∈ M |xm = mx = 0 f orall x ∈ J } = {0}.
Now we introduce the class of (Banach) bimodules with the property M (M′ ).

PROPOSITION 2.1. Let A be an (Banach) algebra with A = ℑ(A ) (A = ℑ(A ) ).
Then every (Banach) A -bimodule M satisfies M (M′ )
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Proof. Let m ∈ M and ama = 0 for all a ∈ A . Since A is unital, it follows
that m = 0. Now if we consider A as an ideal, then by hypothesis any (Banach)
A -bimodule M satisfies M (M′ ). �

If A is a W ∗ -algebra, then the linear span of projections is norm dense in A , so
A = ℑ(A ) .

Let H be a Hilbert space and B(H ) denotes the algebra of all bounded linear
operators on H . Then from [9, Lemma 3.2] and [11, Theorem 1], we have B(H ) =
ℑ(B(H )) . Recall that a W ∗ -algebra is called properly infinite if it contains no nonzero
finite central projection. Since every element in a properly infinite W ∗ -algebra A is a
sum of at most five idempotents [11, Theorem 4], it follows that A = ℑ(A ) .

Let A be an algebra. Recall that a non-zero ideal I of A is called essential if
it has non-zero intersection with every non-zero ideal of A . The socle of A , Soc(A) ,
is the sum of all minimal left ideals of A , or minimal right ideals of A , if they exists;
otherwise it is zero. From Remark 2 of [6] we have the next proposition.

PROPOSITION 2.2. Let A be a semisimple Banach algebra with non-zero socle.
If Soc(A ) is essential, then A as an A -bimodule satisfies M .

Let X be a Banach space. We denote by B(X ) the algebra of all bounded linear
operators on X , and F (X ) denotes the algebra of all finite rank operators in B(X ) .
Recall that a subalgebra A of the algebra B(X ) is called standard if A contains the
identity and the ideal F (X ) . If A is a standard operator algebra on a Banach space
X , then A is primitive and Soc(A ) = F (X ) is essential. Thus, Proposition 2.2
applied for standard operator algebras.

A nest N on a Banach space X is a chain of closed (under norm topology) sub-
spaces of X which is closed under the formation of arbitrary intersection and closed
linear span (denoted by ∨), and which includes {0} and X . The nest algebra asso-
ciated to the nest N , denoted by AlgN , is the weak closed operator algebra of the
form

AlgN = {T ∈ B(X ) |T (N) ⊆ N forall N ∈ N }.
When N 
= {{0},X} , we say that N is non-trivial. It is clear that if N is trivial,
then AlgN = B(X ) . Denote AlgFN := AlgN ∩F (X ) , the set of all finite rank
operators in AlgN and for N ∈ N , let N− = ∨{M ∈ N |M ⊂ N} .

PROPOSITION 2.3. Let N be a nest on a Banach space X . If N ∈ N is com-
plemented in X whenever N− = N , then B(X ) as a AlgN -bimodule satisfies M .

Proof. AlgFN is an ideal of AlgN and from [9], it is contained in the ℑ(AlgN ) .
Suppose that T ∈ B(X ) and FTF = 0 for each F ∈ AlgFN . So we have (F1 +
F2)T (F1 + F2) = 0 and hence F1TF2 + F2TF1 = 0, for any F1,F2 ∈ AlgFN . By

[12] we have AlgFN
SOT = AlgN . Therefore there is a net (Fγ )γ∈Γ in AlgFN

converges to the identity operator I with respect to the strong operator topology. So
FTFγ + FγTF = 0 for each γ ∈ Γ and F ∈ AlgFN . Thus FT + TF = 0 for all
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F ∈ AlgFN and hence FγT +TFγ = 0 for all γ ∈ Γ . So T = 0 and B(X ) satisfies
M . �

It is obvious that the nests on Hilbert spaces, finite nests and the nests having
order-type ω +1 or 1+ ω∗ , where ω is the order-type of the natural numbers, satisfy
the condition in Proposition 2.3 automatically.

3. Bilinear maps vanishing on zero products

In this section we concern with bilinear maps on algebras. From this point up to
the last section A is an algebra.

The algebra A is called zero product determined if for every linear space X and
every bilinear map φ : A ×A → X , the following holds. If φ(a,b) = 0 whenever
ab = 0, then there exists a linear map T : A → X such that φ(a,b) = T (ab) for all
a,b ∈ A . If the ordinary product is replaced by the Jordan product, then it is said that
A is zero Jordan product determined.

We will show that any unital Banach algebra spanned by idempotents is zero prod-
uct determined and zero Jordan product determined.

THEOREM 3.1. Let X be a linear space and let φ : A ×A → X be a bilinear
map satisfying

a,b ∈ A , ab = 0 ⇒ φ(a,b) = 0.

Then
φ(a,x) = φ(ax,1) and φ(x,a) = φ(1,xa)

for all a ∈ A and x ∈ ℑ(A ) . Indeed, if A = ℑ(A ) , then A is zero product deter-
mined.

Proof. Let a ∈ A . For arbitrary idempotent p ∈ A , let q = 1− p . We have

φ(a, p) = φ(ap, p)+ φ(aq, p) = φ(ap, p),

since (aq)p = 0. On the other hand we have

φ(ap,1) = φ(ap, p)+ φ(ap,q) = φ(ap, p).

By comparing the two expressions for φ(ap, p) , we arrive at φ(a, p) = φ(ap,1) . Since
every x ∈ ℑ(A ) is a linear combination of idempotent elements in A , we get

φ(a,x) = φ(ax,1)

for all a ∈ A and x ∈ ℑ(A ) . Similarly, we get φ(x,a) = φ(1,xa) for all a ∈ A and
x ∈ ℑ(A ) .

Now suppose that A = ℑ(A ) . Let X be a linear space, and let φ : A ×A →X
be a bilinear map such that for all a,b ∈ A , ab = 0 implies φ(a,b) = 0. From above
identity we have

φ(a,b) = φ(ab,1)
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for all a,b ∈ A , since A = ℑ(A ) . If we define the linear map T : A → X by
T (a) = φ(a,1) , then T satisfies all the requirements in the definition of zero product
determined algebras. Thus A is a zero product determined algebra. �

PROPOSITION 3.2. Let A be a Banach algebra, let X be a Banach space and
let φ : A ×A → X be a continuous bilinear map satisfying

a,b ∈ A , ab = 0 ⇒ φ(a,b) = 0.

Then
φ(a,x) = φ(ax,1) and φ(x,a) = φ(1,xa)

for all a∈A and x∈ ℑ(A ) . If A = ℑ(A ) , then there exists a continuous linear map
T : A → X such that φ(a,b) = T (ab) for all a,b ∈ A .

Proof. A similar proof as that of Theorem 3.1 and the fact that φ is continuous,
shows that φ(a,x) = φ(ax,1) for all a ∈ A and x ∈ ℑ(A ) . If A = ℑ(A ) , we find

φ(a,b) = φ(ab,1)

for all a,b ∈ A . Now we define the linear mapping T : A → X by T (a) = φ(a,1) .
So we have φ(a,b) = T (ab) for all a,b ∈ A , and since φ is continuous, T is contin-
uous. �

THEOREM 3.3. Let X be a linear space and let φ : A ×A → X be a bilinear
map satisfying

a,b ∈ A , a ◦ b = 0 ⇒ φ(a,b) = 0.

Then

φ(a,x) =
1
2

φ(ax,1)+
1
2

φ(xa,1)

for all a ∈ A and x ∈ ℑ(A ) . Indeed, if A = ℑ(A ) , then A is zero Jordan product
determined.

Proof. Let a, p∈A with p2 = p and let q= 1− p . We have (p−q)◦ paq= 0 and
(p−q)◦ qap = 0. So φ(paq, p−q) = 0 and φ(qap, p−q) = 0. Hence φ(paq, p) =
φ(paq,q) and φ(qap, p) = φ(qap,q) . Therefore

φ(paq, p) =
1
2

φ(paq,1); and

φ(qap, p) =
1
2

φ(qap,1).

By these identities and the fact that pap ◦ q = 0 and qaq ◦ p = 0, we have

1
2

φ(ap,1)+
1
2

φ(pa,1)

=
1
2

φ(pap, p)+
1
2

φ(qap, p)+
1
2

φ(qap,q)+
1
2

φ(pap, p)+
1
2

φ(paq, p)+
1
2

φ(paq,q)

=φ(pap, p)+
1
2

φ(qap,1)+
1
2

φ(paq,1) = φ(pap+qap+ paq+qaq, p)= φ(a, p).
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Since every x ∈ ℑ(A ) is a linear combination of idempotent elements in A , we get

φ(a,x) =
1
2

φ(ax,1)+
1
2

φ(xa,1)

for all a ∈ A and x ∈ ℑ(A ) .
Now let A = ℑ(A ) , X be a linear space, and let φ : A ×A →X be a bilinear

map such that for all a,b ∈ A , a ◦ b = 0 implies φ(a,b) = 0. If we define the linear
map T : A → X by T (a) = 1

2 φ(a,1) , then T satisfies all the requirements in the
definition of zero Jordan product determined algebras. Thus A is a zero Jordan product
determined algebra. �

PROPOSITION 3.4. Let A be a Banach algebra, let X be a Banach space and
let φ : A ×A → X be a continuous bilinear map satisfying

a,b ∈ A , a ◦ b = 0 ⇒ φ(a,b) = 0.

Then

φ(a,x) =
1
2

φ(ax,1)+
1
2

φ(xa,1)

for all a∈A and x∈ ℑ(A ) . If A = ℑ(A ) , then there exists a continuous linear map
T : A → X such that φ(a,b) = T (a ◦ b) for all a,b ∈ A .

Proof. By using similar arguments as that in the proof of Theorem 3.3 and the fact
that φ is continuous, it follows that φ(a,x) = 1

2φ(ax,1)+ 1
2 φ(xa,1) for all a ∈ A and

x ∈ ℑ(A ) . If A = ℑ(A ) , we get

φ(a,b) =
1
2

φ(ab,1)+
1
2

φ(ba,1)

for all a,b ∈ A . Define T : A → X by T (a) = 1
2 φ(a,1) . Then T is continuous and

φ(a,b) = T (a ◦ b) for all a,b ∈ A . �

We continue by studying the condition (G) .

THEOREM 3.5. Let X be a linear space and let φ : A ×A → X be a bilinear
map satisfying (G) . Then

φ(a,x)+ φ(x,a) = φ(ax,1)+ φ(1,xa) and φ(x,1) = φ(1,x)

for all a ∈ A and x ∈ ℑ(A ) . Indeed, if A = ℑ(A ) , then

φ(a,b)+ φ(b,a) = φ(ab,1)+ φ(1,ba) and φ(a,1) = φ(1,a)

for all a,b ∈ A .
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Proof. Let a, p ∈ A with p2 = p and let q = 1− p . Since pq = qp = 0, we see
that

φ(p,q) = φ(p,1)−φ(p, p) = 0 and φ(q, p) = φ(1, p)−φ(p, p) = 0.

So φ(p,1) = φ(1, p) . By linearity, it shows

φ(x,1) = φ(1,x)

for all x ∈ ℑ(A ) . Now we have (p+ paq)(q− paq) = (q− paq)(p+ paq) = 0 and
(p+qap)(q−qap)= (q−qap)(p+qap)= 0. So φ(p+ paq,q− paq) = 0 and φ(p+
qap,q−qap)= 0. Hence

φ(paq, p) = φ(q, paq) and φ(p,qap) = φ(qap,q).

By these identities and the fact that (pap)q = q(pap) = 0 and (qaq)p = p(qaq) = 0,
we have

φ(a, p)+ φ(p,a) = φ(pap, p)+ φ(paq, p)+ φ(qap, p)
+ φ(p, pap)+ φ(p, paq)+ φ(p,qap)

= φ(pap, p)+ φ(q, paq)+ φ(qap, p)
+ φ(p, pap)+ φ(p, paq)+ φ(qap,q)

= φ(ap,1)+ φ(1, pa)

Since every x ∈ ℑ(A ) is a linear combination of idempotent elements in A , we get

φ(a,x)+ φ(x,a) = φ(ax,1)+ φ(1,xa)

for all a ∈ A and x ∈ ℑ(A ) . �

COROLLARY 3.6. Let A be a Banach algebra, let X be a Banach space and
let φ : A ×A → X be a continuous bilinear map satisfying (G) . Then

φ(a,x)+ φ(x,a) = φ(ax,1)+ φ(1,xa) and φ(x,1) = φ(1,x)

for all a ∈ A and x ∈ ℑ(A ) . Indeed, if A = ℑ(A ) , then

φ(a,b)+ φ(b,a) = φ(ab,1)+ φ(1,ba) and φ(a,1) = φ(1,a)

for all a,b ∈ A .

Recall that a bilinear map φ : A ×A → X , where X is a linear space, is called
symmetric if φ(a,b) = φ(b,a) holds for all a,b ∈ A .

PROPOSITION 3.7. Let A = ℑ(A ) (A = ℑ(A )), let X be a linear (Banach)
space and let φ : A ×A → X be a (continuous) bilinear map. The following condi-
tions are equivalent:
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(i) φ is a symmetric bilinear map satisfying the condition

a,b ∈ A , ab = ba = 0 ⇒ φ(a,b) = 0;

(ii) φ satisfies
a,b ∈ A , a ◦ b = 0 ⇒ φ(a,b) = 0;

(iii) there exists a (continuous) linear map T : A → X such that φ(a,b) = T (a ◦ b)
for all a,b ∈ A .

Proof. (iii)⇒ (i) and (iii)⇒ (ii) are clear. (ii)⇒ (iii) obtains from Theorem 3.3
(Proposition 3.4). We show that (i) ⇒ (ii) holds.

By Theorem 3.5 (Corollary 3.6), we have

φ(a,b)+ φ(b,a) = φ(ab,1)+ φ(1,ba)

for all a,b ∈ A . So φ(a,b) = 1
2 φ(ab + ba,1) , since φ is symmetric. If we define

the linear mapping T : A → X by T (a) = 1
2 φ(a,1) , then φ(a,b) = T (a ◦ b) for all

a,b ∈ A . (It is obvious if φ is continuous, then T is continuous). �

4. Characterizing derivations and Jordan derivations through zero products

In this section for M bimodule over A , and D : A → M a linear map, we will
consider the following conditions:

(d1) ab = 0 ⇒ aD(b)+D(a)b = 0.

(d2) ab = ba = 0 ⇒ aD(b)+D(a)b = 0.

(d3) a ◦ b = 0 ⇒ a •D(b)+D(a)• b= 0.

(d4) ab = ba = 0 ⇒ a •D(b)+D(a)• b= 0.

THEOREM 4.1. Let A be an (Banach) algebra, M be an (Banach) A -bimodule
and J be an ideal of A such that J ⊆ ℑ(A ) (J ⊆ ℑ(A ) ) and

{m ∈ M |xm = mx = 0 f orall x ∈ J } = {0}.

Assume that D : A → M is a (continuous) linear map satisfying (d1). Then D is a
generalized derivation and aD(1) = D(1)a for all a ∈ A .

Proof. Define a bilinear map φ : A ×A → M by φ(a,b) = aD(b) + D(a)b .
Then φ(a,b) = 0 for all a,b ∈ A with ab = 0. By applying Theorem 3.1, we obtain
φ(a,x) = φ(ax,1) for all a ∈ A and x ∈ ℑ(A ) . So

aD(x)+D(a)x = axD(1)+D(ax), (4.1)
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for all a ∈ A and x ∈ ℑ(A ) . Letting a = 1 in (4.1), we arrive at D(1)x = xD(1) , for
all x ∈ J . So we have aD(1)x = axD(1) = D(1)ax and xaD(1) = D(1)xa = xD(1)a ,
for all a ∈ A and x ∈ J . Hence (aD(1)−D(1)a)J = J (aD(1)−D(1)a) = {0} ,
for each a ∈ A . From hypothesis it follows that

D(1)a = aD(1), (4.2)

for all a ∈ A .
Let a,b ∈ A and x ∈ ℑ(A ) . By applying (4.1) and (4.2), we obtain

D(abx) = abD(x)+D(ab)x−aD(1)bx,

and on the other hand

D(abx) = aD(bx)+D(a)bx−abxD(1)
= abD(x)+aD(b)x+D(a)bx− 2aD(1)bx.

By comparing the two expressions for D(abx) , we arrive at

(D(ab)−aD(b)−D(a)b+aD(1)b)x= 0 (4.3)

for all a,b ∈ A and x ∈ ℑ(A ) . By Theorem 3.1, we have φ(x,a) = φ(1,xa) for all
a ∈ A and x ∈ ℑ(A ) . Now by this identity and using similar arguments as above it
follows that

x(D(ab)−aD(b)−D(a)b+aD(1)b)= 0 (4.4)

for all a,b ∈ A and x ∈ ℑ(A ) . Hence from (4.3) and (4.4), we find that (D(ab)−
aD(b)−D(a)b+aD(1)b)J = J (D(ab)−aD(b)−D(a)b+aD(1)b)= {0} , for each
a,b ∈ A . From hypothesis it follows that

D(ab) = aD(b)+D(a)b−aD(1)b,

for all a,b ∈ A .
By Proposition 3.2 and using similar arguments as that in the above proof , we get

the result in case of Banach algebras. �
In order to prove next theorem we will adopt the following notational convention

[a,m,b] = amb+bma and [a,b,m] = [m,b,a] = abm+mba

for all a,b∈ A and m ∈ M , where A is an algebra and M is an A -bimodule. Also
we need the following lemma, the proof of which is routine and will be omitted.

LEMMA 4.2. Let A be an algebra and M be an A -bimodule. For all a,b,c ∈
A and m ∈ M we have

(i)
2[a,m,b] = a • (b •m)+b • (a•m)− (a◦b)•m

and
2[a,b,m] = a • (b •m)+ (a ◦b)•m−b• (a•m);
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(ii)
[m,a ◦ b,c] = [b •m,a,c]+ [m,a,b ◦ c]− [m,a,c]•b

and

[a,b •m,c] = [a •m,b,c]+ [a,b,c•m]− [a,b,c]•m

= [a ◦ b,m,c]+ [a,m,b ◦ c]− [a,m,c]•b.

THEOREM 4.3. Let A be an (Banach) algebra, M be an (Banach) A -bimodule
satisfying M (M′ ). Suppose that D : A → M is a (continuous) linear map. Then the
following conditions are equivalent:

(i) D is a generalized Jordan derivation and aD(1) = D(1)a for all a ∈ A ;

(ii) D satisfies (d3);

(iii) D satisfies (d4).

Proof. Clearly (i) implies (ii) and (ii) implies (iii). We show that (iii) implies (i).
Let J be an ideal of A such that J ⊆ ℑ(A ) (if A is a Banach algebra we

assume that J ⊆ ℑ(A )) and

{m ∈ M |xmx = 0 f orall x ∈ J } = {0}.
Let p be a idempotent of A . As p(1− p) = (1− p)p = 0 it follows that

2D(p)+ pD(1)+D(1)p = 2pD(p)+2D(p)p.

By multiplying this identity on the left and right by p , respectively, we arrive at

pD(1)p+D(1)p = 2pD(p)p,

pD(1)+ pD(1)p = 2pD(p)p,

which implies pD(1) = D(1)p . By linearity, it shows xD(1) = D(1)x for all x ∈ J .
Hence aD(1)x = D(1)ax and xD(1)a = xaD(1) for each a∈A and x∈J . Therefore
x(aD(1)−D(1)a)x = 0 for all x ∈ J and by hypothesis we have

aD(1) = D(1)a

for all a ∈ A .
Define Δ : A → M by Δ(a) = D(a)− aD(1) . Then Δ is a linear map which

satisfies (d4) and Δ(1) = 0. We will show that Δ is a Jordan derivation. So D is a
generalized Jordan derivation.

Now define a bilinear map φ : A ×A →M by φ(a,b) = a•Δ(b)+Δ(a)•b . So
φ(a,b) = 0 for all a,b ∈ A with ab = ba = 0, and by Theorem 3.5, we get φ(a,x)+
φ(x,a) = φ(ax,1)+ φ(1,xa) for all a ∈ A and x ∈ J . Hence

Δ(a ◦ x) = a •Δ(x)+ Δ(a)• x (4.5)
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for all a ∈ A and x ∈ J .
Claim 1. For all a ∈ A and x,y ∈ J , we have

Δ([x,a,y]) = [Δ(x),a,y]+ [x,Δ(a),y]+ [x,a,Δ(y)]

Reason. Let x,y ∈ J and a ∈ A . From Lemma 4.2 and (4.5), we obtain

2Δ([x,a,y]) = Δ(x◦ (a ◦ y))+ Δ(y◦ (a ◦ x))−Δ((x◦ y)◦a)
= x•Δ(a ◦ y)+ Δ(x)• (a ◦ y)+ y•Δ(a◦ x)

+ Δ(y)• (a ◦ x)− (x◦ y)•Δ(a)−Δ(x◦ y)•a

= x• (y•Δ(a))+ x• (Δ(y)• a)+Δ(x)• (y◦a)
+ y• (Δ(x)• a)+ y• (Δ(a)• x)+Δ(y)• (x◦a)
− (x◦ y)•Δ(a)− (x•Δ(y))•a− (Δ(x)• y)•a

= 2[Δ(x),a,y]+2[x,Δ(a),y]+2[x,a,Δ(y)].

Claim 2. For all a ∈ A and x,y ∈ J , we have

Δ([x,a2,y]) = [Δ(x),a2,y]+ [x,a •Δ(a),y]+ [x,a2,Δ(y)]

Reason. Let x,y ∈J and a∈A . From Lemma 4.2, Claim 1 and (4.5), it follows
that

2Δ([x,a2,y]) = Δ([x,a ◦ a,y])
= Δ([x◦ a,a,y])+ Δ([x,a,y◦ a])−Δ([x,a,y]◦a)
= [Δ(x◦ a),a,y]+ [x◦ a,Δ(a),y]+ [x◦a,a,Δ(y)]

+ [Δ(x),a,y◦ a]+ [x,Δ(a),y◦ a]+ [x,a,Δ(y◦a)]
−a •Δ([x,a,y])−Δ(a)• [x,a,y].

So

2Δ([x,a2,y]) = [a •Δ(x),a,y]+ [Δ(x),a,y◦ a]− [Δ(x),a,y]•a

+[Δ(a)• x,a,y]+ [x,a,y•Δ(a)]− [x,a,y]•Δ(a)
+ [x,a,a •Δ(y)]+ [a ◦ x,a,Δ(y)]− [x,a,Δ(y)]•a

+[x◦ a,Δ(a),y]+ [x,Δ(a),y◦ a]− [x,Δ(a),y]•a

= 2[Δ(x),a2,y]+2[x,a •Δ(a),y]+2[x,a2,Δ(y)].

Now by applying Claim 1, we have

Δ([x,a2,x]) = [Δ(x),a2,x]+ [x,Δ(a2),x]+ [x,a2,Δ(x)]

for all a ∈ A and x ∈ J . On the other hand from Claim 2, we see that

Δ([x,a2,x]) = [Δ(x),a2,x]+ [x,a •Δ(a),x]+ [x,a2,Δ(x)]
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for all a ∈ A and x ∈ J . By comparing the two expressions for Δ([x,a2,x]) , we
arrive at

x(Δ(a2)−a •Δ(a))x = 0

for all a ∈A and x ∈ J . Therefore by hypothesis we have Δ(a2) = a•Δ(a) for each
a ∈ A and so Δ is a Jordan derivation.

Similarly, by Corollary 3.6 we have the result in case of Banach algebras and
continuous linear maps. �

THEOREM 4.4. Let A be an (Banach) algebra, M be an (Banach) A -bimodule
satisfying M (M′ ). Suppose that D : A → M is a (continuous) linear map satisfying
(d2). Then D is a generalized Jordan derivation and aD(1) = D(1)a for all a ∈ A .

Proof. Let a,b ∈ A with ab = ba = 0. So

aD(b)+D(a)b = 0 and bD(a)+D(b)a = 0.

Hence aD(b)+D(a)b+bD(a)+D(b)a = 0 and D satisfies (d4). Therefore by Theo-
rem 4.3, D is a generalized Jordan derivation and aD(1) = D(1)a for all a ∈ A . �

REMARK 4.5. In Theorem 4.4 it is not necessarily true that any linear mapping
D : A →M satisfying (d2) is a generalized derivation. Indeed, if D is a anti-derivation,
i.e. D(ab) = D(b)a+bD(a) for all a,b ∈ A , then D satisfies (d2). There are simple
examples on some algebras and their (special) bimodules with anti-derivations such
that they are not derivations. An example is given on the algebra T2 of 2× 2 upper
triangular matrices over C [10]. Let us recall it. We make C an T2 -bimodule by defin-
ing aγ = a22γ and γa = γa11 for all γ ∈ C , a ∈ T2 . A map D : T2 → C defined by
D(a) = a12 is an anti-derivation which is not a derivation. Note that if A = T2 and
M = C , then A , M and D satisfy all the requirements in Theorem 4.4.
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this paper.
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