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STRONG COMMUTATIVITY PRESERVING
GENERALIZED DERIVATIONS ON TRIANGULAR RINGS
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(Communicated by P. Semrl)

Abstract. Let % =Tri(A,M,B) be a triangular ring such that either A or B has no nonzero cen-
tral ideals. It is shown that every pair of strong commutativity preserving generalized derivations
21,82 of Z (ie., [g1(x),82(y)] = [x,y] forall x,y € % ) is of the form g; (x) = A~ 'x+[x,u] and
g2(x) =A%g1(x), where A € Z(% ), the center of % ,and u € % with u[% , %|=0= U, % u.
As consequences, every pair of strong commutativity preserving generalized derivations on up-
per triangular matrix rings and nest algebras is determined.

1. Introduction

Let R be a ring with center Z(R). For x,y € R, we set [x,y] = xy —yx. By
[R,R] we denote the additive subgroup of R generated by all [x,y], where x,y € R.
An additive map g : R — R is called a generalized derivation of R if there exists a
derivation d of R such that g(xy) = g(x)y+xd(y) for all x,y € R. Basic examples
are derivations and generalized inner derivations (i.e., maps of type x — ax +xb for
some a,b € R). The notion of generalized derivations was introduced by BreSar in
[5] and these maps have been studied extensively in rings and operator algebras (see
[1,4, 13, 14, 15, 16, 17]).

Let S be a subset of R. A map f:S — R is said to be strong commutativity
preserving on S if [f(x), f(y)] = [x,y] forall x,y € S. In [2] Bell and Daif investigated
strong commutativity preserving derivations on semiprime rings. In [6] BreSar and
Miers proved that if f is a strong commutativity preserving map on a semiprime ring
R, then there exist an invertible element A € C with > = 1 and additive map & :
R — C such that f(x) = Ax+ & (x) for all x € R, where C is the extended centroid
of R. They also proved that if f,g: R — R is a pair of additive maps of a semiprime
ring R such that f is onto and [f(x),g(x)] = [x,y] for all x € R, then there exist an
invertible element A € C and additive maps &,1 : R — C such that f(x) = Ax+ & (x)
and g(x) =2~ 'x+n(x) forall x € R [6, Theorem 2]. Strong commutativity preserving
maps on rings have been discussed in several directions (see [10, 18, 19, 20, 21]).

In 2001, Cheung [7] initiated the study of mapping problems on triangular alge-
bras; he described commuting maps of these algebras. This result has been extended in
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[3, 11, 12]. Recently, Qi and Hou [22] investigated surjective additive strong commu-
tativity preserving maps of triangular rings.

In the present paper, we shall investigate strong commutativity preserving general-
ized derivations on triangular rings. As consequences strong commutativity preserving
generalized derivations on upper triangular matrix rings and nest algebras are deter-
mined.

2. The main results

Let A and B be unital rings with unit elements 14 and 1p, respectively. Let M
be a unital (A, B)-bimodule, which is faithful as a left A-module and also as a right
B-module. The ring

am

U =Tri(A,M,B) :z{( b) |a€A,mEM,bEB}

under the usual matrix operations is said to be a triangular ring (see [12, 22, 23]). Let
us define two natural projections 7y : &/ — A and g : &/ — B by

Ty - (arg)Ha and 7p: (arg>»—>b.

Any element of the form
a0
( b) 4

will be denoted by a@®b. By [23, Proposition 1.1] we know that the center Z(%) of
7 coincides with
{a®b|am=mb forallmeM}.

Moreover, ms(Z(</)) C Z(A) and mp(Z(/)) C Z(B), and there exists a unique ring
isomorphism 7 : ma(Z(%/)) — mp(Z(/)) such that am = mt(a) for all m € M. The
most important examples of triangular rings are upper triangular matrix rings and nest
algebras.

We begin with a description of generalized derivations of triangular rings.

PROPOSITION 2.1. Let % be atriangular ring. Let g be a generalized derivation
of % . Then

am\ [ apa+pa(a) as+tb+apm+ f(m)
S\ b)) bob + pp(b)

forallace A, be B, me M, where ag € A, by € B, s,t € M, and
(i) pa is aderivation of A, f(am) = pa(a)m+af(m);

(ii) pg is a derivation of B, f(mb) =mpg(b)+ f(m)b.
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Proof. Since g be a generalized derivation of %/ we have that

g(xy) = g(x)y +xd(y)

for all x,y € % , where d is a derivation of % . Let x =1 we get g(y) = g(1)y+d(y)
forall y € 7 . In view of [8, Theorem 2.2.1] we have that

d(“ r;;) _ (m(a) aS-;i&r))f(ﬂl))

foralla€ A, be B, me M, where s € M and
(i) pa is aderivation of A, f(am) = pa(a)m+af(m);
(ii) pp is a derivation of B, f(mb) = mpg(b) + f(m)b.

sy =(“p).

(1) (R)(3) (4 )

B <a0a+pA(a) as—|—tb—|—a0m—|—f(m)>
B bob+ pp(D)

Set

Then

foralac A, be B, me M, where t =my—s. [

We are in a position to present the main result of this paper.

THEOREM 2.1. Let % be a triangular ring such that either A or B has no
nonzero central ideals. If g1,g> are a pair of generalized derivations such that

[g1(x),82()] = [,y
forall x,y € %, then g1(x) = A~ 'x+ [x,u] and g2(x) = A’gy(x) forall x € U , where
AeZ(U) and u € U with u|% , U =0= U, U u.

Proof. We assume without loss of generality that A has no nonzero central ideals.
In view of Proposition 2.1 we assume that

am\ _ (apa+ pa(a) as+tb+aom+ f(m)
S\ v )~ bob + pp(b)

and
am\  (ayd+py(d)ds +1'0 +aym' + f'(m)
82 X b(/)b/—l—p%(b/)

forall a,d’ € A, b,b' € B, m,m' € M, where ag,a, € A, by,by € B, s,5',t,/' € M and
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(i) pa,p) arederivationsof A, f(am)= pa(a)m~+af(m),and f'(a'm") = p/,(a")m’ +
df'(m);

(i) pg,pj are derivationsof B, f(mb) =mppg(b)+ f(m)b,and f'(m'b’") =m'pl(b')+
f (o'

By our assumption we have that

3 ()R ()] e

for all a,d’ € A, b,b’ € B, and m,m' € M. We prove the result in the following five
steps:

Step 1. we prove that

ao(agm’ + f'(m'))

m', ()
ag(agm+ f(m)) =m

3)

for all m,m’ € M. Setting a=14, b=m=0, and @’ = b' =0 in (1) we get that

(o) ()= 100)- ()]

forall m’ € M. This implies that
ao(aym’ + f'(m')) =m’
for all m’ € M. Similarly, setting a=b =0, d’ = 14, b’ =m’ =0 in (1) we get that
dagm + f(m)) = m

forall me M.

Step 2. We prove that ag @ by, a(, &by € Z(% ). Setting a =14, b= 15, m=0,
a =b' =0 1in (1) we get that

ap s+t 0 aym’ + f'(m')
; =0
by 0
for all m’ € M. This implies that
ag(agm’ + f'(m')) — (@om’ + f'(m'))bo = 0
for all m € M. Multiplying the last relation by a¢ from the left hand side we get

ao(ao(@om’ + f'(m'))) = (ao(apm' + f'(m")))bo
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for all m’ € M. Substituting (2) into the last relation yields agm’ = m'bg forall m’ € M.
Hence, ag® by € Z(% ). By the symmetry of g; and g we obtain that aj, & b[, € Z(% ).

Step 3. We prove that
aopy(a) =0, bopp(b) =0, appa(a)=0, byps(b)=0
forall a € A and b € B. Replacing m’' by m'b in (2) yields
ao(aym'b+ f'(m' )b+ m'pi(b)) = m'b
forall b € B, m' € M. Multiplying (2) by b € B from the right hand side we obtain
ao(apm’ + f'(m"))b=m'b

forall b € B, m" € M. Comparing the last two relations yields aom’pj(b) = 0. Since
ao®bo € Z(% ) we get that m’'bply(b) =0 forall b € B and m’ € M. The faithfulness
of right B-module M yields that bypj(b) =0 for all b € B. Similarly, replacing m’ by
am’ in (2) yields

ao(apam’ +af'(m') + ply(a)m') = am’
forall a € A, m' € M. Multiplying (2) by a € A from the left hand side we get
/

ao(apam’ +af'(m')) = am

forall a € A, m' € M as ag,a), € Z(A). Comparing the last two relations yields
aop)y(a)m’ =0 forall a € A and m’ € M. The faithfulness of left A-module M yields
that agp/y(a) = 0 for all a € A. In view of the symmetry of g; and g, we obtain that
appa(a) =0 and bypp(b) =0 forall a € A and b € B.
Step 4. We prove that afy = a, ' and by = b, ' and
f=f=0, pa=py=0, pp=pp=0.

Setting m =m' =0 and b =b' =0 in (1) we get that

(o) (D]

forall a,a’ € A. It follows from (4) that
laoa+ pa(a),apd’ + pj(d')] = [a,d] 5)
for all a,a’ € A. Multiplying (5) with ag € Z(A) we get that

aolapa+ pa(a),apd’ + pi(a')] = aola,d]
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forall a,a’ € A. Since ag,a € Z(A), app)y(a’) = appa(a) =0 forall a,d’ € A, we get
from the last relation that

laoa, a/} = aplaga+ pa(a),apd’ + py(d'))]
apa+ pa(a),apana’ + app)y(a’)]
= [apa —|—pA( ), aoaé)a’}

and so [apa — apada,a’] =0 for all a,a’ € A. This implies that

ao(1a — apag)a € Z(A)

forall a € A. Thatis, ag(la — apao)A is a central ideal of A. By our assumption we
infer that ag(14 — apao) = 0. Multiplying (2) with (14 —apao) we get that

(14 — apao)m’ = (14 — apag)ao (apm’ + f'(m')) =0

for all m" € M. Thatis, (14 —agag)M = 0. The faithfulness of left A-module M
yields 14 —apap =0 and so agap = 14. Hence a = a; ! is an invertible element
of mA(Z(%)). Since ag® bo,al @ bly € Z(%) we easily check that by = b, ' is an
invertible element of 7g(Z(%)).

Thus, the relations (2) and (3) can be rewritten as

m +aof (m')=m' and m+ayf(m)=m

for all m,m" € M. Hence aof'(m") =0 and aj,f(m) =0 and so f(m) = f'(m’) =0 for
all m' € M. Since a) = a," and b) = b, " we get from Step 3 that

pa=pa=0 and pp=pp=0.
Step 5. We prove that s = —t, s’ =1/, s’ = (ag)zs and
[A,A]ls =0=s[B,B].
Setting m = m’ = 0 in (1) we get that

apa+ pala) as+tb apd' + pa(d) ds +1'b
bob +pg(b) )’ bob' + p(b')

[0 (7)

forall a,a’ € A and b,b’ € B. It follows from (6) that

(6)

apa(d's' +1'b") + (as+1tb)byb’ — apd' (as+1b) — (d's' +1'b")bob = 0 (7
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forall a,d’ € A and b,b’ € B. Setting b =b" =0 in (7) we get that
apad's' — a6a’as =0 (8)

for all a,a’ € A. Setting a = a’ = 14 in (8) we get agps’ = aj,s. Thus, the relation (8)
becomes ag(aa’ —d'a)s’ = 0 and then (ad’ —d'a)s’ =0 as aq is an invertible element
of A. Thatis, [A,A]s’ = 0. Recall that aps’ = as. It is easy to check that [A,A]s = 0.
Setting a = a’ = 0 in (7) we get that

tbbyb' —1'b'bob = 0 )
for all b,b" € B. Setting b =0 = 1p in (9) we get tbj, = t'by. Thus, the relation (9)
becomes ¢[b,b']bj, = 0 and so t[b,b'] =0 as by, is an invertible element of B. Hence
1[B,B] =0. Setting a =0, b’ =0, d’ = 14, and b = 1p in (7) we get aqpt = —s'by.
Setting @’ =0, b=0, a=14, and b’ = 1 in (7) we get apt’ = —sbj,. Recall that

aps’ = aps. It is easy to check that s = —7, s’ = —t', and s' = (a{))zs.

Set A = ay @ b,. Then A~1 = ag® by. Using the relations in steps 2, 4, and 5

we obtain that
am)  (apaas+tb+aom
81\ p )7 bob

(5D

and

foralac A, be B, me M. Set u—= 0

ul%, %) =0=[%,%u. This proves the result. [

N ) . In view of Step 5 it is easy to check that

REMARK 2.1. Let % be atriangularring. Suppose that u € % such that u[% , % ]

=0=[%,%]u. Then
= (")

for some mo € M with [A,A]mg =0 =my[B, B].

Applying Theorem 2.1 and Remark 2.1 we have the following result:



780 H. YUAN, Y. WANG, Y. WANG AND Y. DU

COROLLARY 2.1. Let % be a triangular ring such that either 14 € [A,A] or
1p € [B,B]. If g1,82 are a pair of generalized derivations such that

[g1(x):82(0)] =[x
forall x,y € %, then there exists . € Z(% ) such that gi(x) = A~ 'x and gy(x) = Ax
forall x € % .

Proof. We assume without loss of generality that 14 € [A,A]. We claim that A has
no nonzero central ideals. Indeed, if I is a central ideal of A, then I =114 C I[A,A] =
[IA,A] = 0. By Theorem 2.1 we get that g; (x) = A~ 'x+[x,u] and g»(x) = A2g; (x) for
all xe % ,where A € Z(% ) and u € % with u|% , %] =0= %, % Ju. It suffices to
show # = 0. By Remark 2.1 we get that

()
for some mo € M with [A,A]my = 0 = my[B, B]. Since 14 € [A,A] we get mg =0 and
sou=0. O

3. Applications

Let n > 2 be an integer. Let .7,(S) be an upper upper triangular matrix ring over
a unital ring S. Then .7,(S) can be viewed as the triangular ring

S Sn—l
( %1(9) '
Applying Theorem 2.1 we have the following result:

COROLLARY 3.1. Let Z,(S) be an upper triangular matrix ring with n > 3. If
81,82 are a pair of generalized derivations of F,(S) such that

[gl (x),gz(y)] = [x,y}
Sforall x,y € Z,(S), then there exist A € Z(F,(S)) and A € F,(S) with the property
A[T0(S), Tu(S)] = 0= [Zu(S), Zu(S)]A

such that gy (x) = A~ 'x+ [x,A] and g2(x) = A%g1(x) for all x € F,(S).

Proof. Tt is easy to check that .7,_;(S) has no nonzero central ideals. Conse-
quently, Theorem 2.1 yields the conclusion. [J

As a consequence of Corollary 2.1 we have the following result:
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COROLLARY 3.2. Let S be a unital noncommutative ring with 1 € [S,S]. Let
Tn(S) be an upper triangular matrix ring with n > 2. If g1,8> are a pair of generalized
derivations of ,(S) such that

[gl (x),gz(y)] = [x,y}

for all x,y € F,(S), then there exists A € Z(F(S)) such that gi(x) = A~ 'x and
g2(x) = Ax for all x € F,(S).

Applying Theorem 2.1 we have the following result:

COROLLARY 3.3. Let S be a unital noncommutative prime ring. Let F,(S) be an
upper triangular matrix ring with n > 2. If g1,8» are a pair of generalized derivations
of T,(S) such that

[g1(x),82(¥)] = [x,)]

for all x,y € F,(S), then there exists A € Z(F,(S)) such that g(x) = A~ 'x and
g2(x) = Ax for all x € F,(S).

Proof. Since S is a noncommutative prime ring we see that S has no nonzero
central ideals and so the condition of Theorem 2.1 is met. It follows from Theorem 2.1
that there exists an invertible element A € Z(.7,(S)) such that g;(x) = 2~ 'x + [x,A]
and g3(x) = A2g;(x) for all x € Z,(S), where A € Z,(S) with A[.Z,(S), Z,(S)]=0=
[Z:(S), Zn(S)]A. Tt suffices to show that A = 0. Set

n
A= Z aijéij,

i,j=1

i<j
where a;; € S and e;; denotes the standard matrix unit of .7,(S). We get from the
property A[.7,(S), 7,(S)] = 0 that in particular, A[S,S] =0 and then a;;[S,S] = 0 for
every a;; in A. Since S is a noncommutative prime ring we easily check that each
ajj=0.Hence A=0. [0

A nest A is a totally ordered set of closed subspaces of a Hilbert space H such
that {0}, H € 4, and ./ is closed under the taking of arbitrary intersections and
closed linear spans of its elements. The nest algebra associated to .4 is the set
T(N)={T € BH)|TNCN forall N € 4 }.

A nest algebra .7 (.4") is called trivial if A4 = {0,H}. A nontrivial nest al-
gebra can be viewed as a triangular algebra. Namely, if N € 4"\ {0,H} and E
is the orthonormal projection onto N, then 4] = E(.4") and A5 = (1 —E)(A)
are nests of N and N, respectively. Moreover, .7 (AN]) = ET(N)E, T (M) =
(1—E)Z(A)(1 —E) are nest algebras. Thus

(M) ET(N)(1—E)
9(‘/”‘( 1 ﬁwz))

is a triangular ring. We refer the reader to [9] for the general theory of nest algebras.
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COROLLARY 3.4. Let A be a nest of a complex Hilbert space H with dim (H) >
2. If g1,82 are a pair of generalized derivations of 7 (A") such that

[g1(x),82(¥)] = [x,]
Sorall x,;y € T (N), then there exist L € C and A € T (N") with the property

AT (W), T (AN =0=[T(N),T(AN)A

such that g1(x) = A~ 'x+ [x,A] and g2(x) = A%g1(x) forall x€ T(N).

Proof. If .4 is a trivial nest, then .7 (.A4") = Z(H) is a prime ring and hence
the conclusion follows from [20, Corollary 2.12]. Thus, we may assume that .4
is a nontrivial nest. Since dim(H) > 2 it follows that either dim(7 (.41)) > 1 or
dim (7 (A3)) > 1. If dim (T (A);) > 1, then either .7 (A1) = B(.4") is a noncom-
mutative prime ring or  (.41) is a triangular algebra. Similarly, if dim (.45) > 1, then
either .7 (A5) = #(43) is a noncommutative prime ring or .7 (.43) is a triangular
algebra. Consequently, either .7 (.41) or .7 (.#;) has no nonzero central ideals (see
[3, Lemma 2.6]). Thus, the result follows from Theorem 2.1. [
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