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LOCALLY QUASI–NILPOTENT ELEMENTARY OPERATORS

NADIA BOUDI AND MARTIN MATHIEU

Abstract. Let A be a unital dense algebra of linear mappings on a complex vector space X . Let
φ = ∑n

i=1 Mai ,bi be a locally quasi-nilpotent elementary operator of length n on A . We show that,
if {a1, . . . ,an} is locally linearly independent, then the local dimension of V(φ) = span{bia j :

1 � i, j � n} is at most n(n−1)
2 . If ldimV (φ) = n(n−1)

2 , then there exists a representation of φ
as φ = ∑n

i=1 Mui ,vi with viu j = 0 for i � j . Moreover, we give a complete characterization of
locally quasi-nilpotent elementary operators of length 3 .
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