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DISCRETE DIRAC SYSTEM: RECTANGULAR WEYL

FUNCTIONS, DIRECT AND INVERSE PROBLEMS

B. FRITZSCHE, B. KIRSTEIN, I. YA. ROITBERG AND A. L. SAKHNOVICH

(Communicated by F. Gesztesy)

Abstract. A transfer matrix function representation of the fundamental solution of the general-
type discrete Dirac system, corresponding to rectangular Schur coefficients and Weyl functions,
is obtained. Connections with Szegö recurrence, Schur coefficients and structured matrices are
treated. A Borg-Marchenko-type uniqueness theorem is derived. Inverse problems on the inter-
val and semi-axis are solved.

1. Introduction

In this paper we deal with a discrete Dirac-type (or simply Dirac) system:

yk+1(z) = (Im + iz jCk)yk(z) (k ∈ N0) , (1.1)

where N0 stands for the set of non-negative integers, Im is the m×m identity matrix,
“i” is the imaginary unit ( i2 = −1) and the m×m matrices {Ck} are positive and
j -unitary:

Ck > 0, Ck jCk = j, j :=
[

Im1 0
0 −Im2

]
(m1 +m2 = m; m1, m2 �= 0). (1.2)

Discrete systems are of great interest and their study is sometimes more complicated
than the study of the corresponding continuous systems (see, e.g., [1, 2, 3, 7, 12] and ref-
erences therein). The subcase m1 = m2 of system (1.1) (satisfying (1.2)) corresponds to
the self-adjoint Dirac-type systems, which were studied in [13] (and the subcase j = Im
of system (1.1) corresponds to the skew-self-adjoint Dirac-type systems, an important
subclass of which was investigated in [20, 23]). The analogies between system (1.1)
and continuous Dirac-type systems are also discussed in [13, 20, 23] in detail. Here we
follow the paper [14] on the continuous case, where m1 does not necessarily equal m2

and the m2×m1 Weyl matrix functions are, correspondingly, rectangular.
It is essential that Dirac system (1.1), (1.2) is equivalent to the very well-known

(see, e.g., [10, 28]) Szegö recurrence. This connection is discussed in detail in Section
2. Inverse problems for the subcase of the scalar Schur (or Verblunsky) coefficients
were studied, for instance, in [5, 28] (see also various references therein), and here we
deal with the rectangular matrix Schur coefficients.

In this paper Im denotes the image of a matrix (or an operator), σ(A) stands for
the spectrum of A and “span” stands for the linear span.
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2. Dirac system and Szegö recurrence

The following simple proposition sets up an important fact we will later make
use of, and could be of independent interest in the theory of functions (and powers,
in particular) of matrices, which is developed in a series of works (see, e.g., [6, 29]
and references therein) . We always assume that non-negative powers of matrices are
chosen.

PROPOSITION 2.1. Let an m×m matrix C satisfy the relations

C > 0, C jC = j ( j = j∗ = j−1). (2.1)

Then the following relations hold for all s ∈ R:

Cs > 0, Cs jCs = j. (2.2)

Proof. Since C > 0, it admits a representation

C = u∗Du, Cs = u∗Dsu, (2.3)

where D is a diagonal matrix and

D > 0, u∗u = uu∗ = Im. (2.4)

We substitute (2.3) into the second equality in (2.1) to derive

u∗Du ju∗Du = j,

or, equivalently,

DJD = J, J = J∗ = J−1 := u ju∗. (2.5)

Formula (2.5) yields D−1 = JDJ and, taking power s of both parts of this equality, we
obtain

D−s = JDsJ, DsJDs = J. (2.6)

Finally, using (2.4)–(2.6) we have

u∗Dsu ju∗Dsu = j. � (2.7)

We substitute s = 1/2 and apply Proposition 2.1 to the matrices Ck in order to
obtain the next proposition.

PROPOSITION 2.2. Let matrices Ck satisfy (1.2). Then they admit representations

Ck = 2β (k)∗β (k)− j, β (k) jβ (k)∗ = Im1 , (2.8)

Ck = j +2γ(k)∗γ(k), γ(k) jγ(k)∗ = −Im2 , (2.9)

where β (k) and γ(k) are m1 ×m and m2 ×m matrices given by (2.10) and (2.11),
respectively.
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Proof. We note that matrices Ck satisfy the conditions of Proposition 2.1, and so
(2.2) holds for C = Ck . Next we put

β (k) :=
[
Im1 0

]
C1/2

k (2.10)

and take into account the equality

Ck = C1/2
k

(
2
[
Im1 0

]∗ [
Im1 0

]− j
)
C1/2

k .

Now, representation (2.8) is apparent from (2.2) taken with s = 1/2. In a similar way,
formula (2.2) and equality Im = j +2

[
0 Im2

]∗ [
0 Im2

]
imply representation (2.9) for

γ(k) =
[
0 Im2

]
C1/2

k . � (2.11)

Now, we will consider interrelations between Dirac system (1.1), (1.2) and Szegö
recurrence, which is given by the formula

Xk+1(λ ) = DkHk

[
λ Im1 0

0 Im2

]
Xk(λ ), (2.12)

where

Hk =
[

Im1 ρk

ρ∗
k Im2

]
, Dk = diag

{(
Im1 −ρkρ∗

k

)− 1
2 ,

(
Im2 −ρ∗

k ρk
)− 1

2
}
, (2.13)

and the m1×m2 matrices ρk are strictly contractive, that is,

‖ρk‖ < 1. (2.14)

Here diag{d1,d2} stands for the block diagonal matrix with the blocks d1 and d2 on
the main diagonal.

REMARK 2.3. When m1 = m2 = 1, the factor (1− |ρk|2)−1/2 in (2.12) can be
easily removed and we obtain systems as in [4, 5], where direct and inverse problems for
the case of scalar strictly pseudo-exponential potentials have been treated. The square
matrix version ( i.e., the version where m1 = m2) of Szegö recurrence, its connections
with Schur coefficients and applications are discussed in [8, 9] (see also references
therein) . For the rectangular matrices ρk see, for instance, [10]. We note that DkHk

is the Halmos extension of ρk (see [10, p. 167]) , and that the matrices Dk and Hk

commute (which easily follows, e.g., from [10, Lemma 1.1.12]) . The matrix DkHk is
j -unitary and positive, that is,

DkHk jHkDk = HkDk jDkHk = j, (2.15)

DkHk > 0. (2.16)
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According to [11, Theorem 1.2], any j -unitary matrix C admits a representation,
which is close to the Halmos extension. More precisely, partitioning C into blocks
C = {cik}2

i,k=1 we see that the m1 ×m1 block c11 and the m2 ×m2 block c22 are
invertible. Then, putting

ρ = c12c
−1
22 = (c−1

11 )∗c∗21, u1 =
(
Im1 −ρρ∗)1/2

c11, u2 =
(
Im2 −ρ∗ρ

)1/2
c22,

we have the respresentation:

C = DH

[
u1 0
0 u2

]
, u∗i ui = uiu

∗
i = Imi ; H =

[
Im1 ρ
ρ∗ Im2

]
, (2.17)

D = diag
{(

Im1 −ρρ∗)− 1
2 ,

(
Im2 −ρ∗ρ

)− 1
2
}

, ρ∗ρ < Im2 . (2.18)

Although relations (2.15)–(2.17) are well-known, it does not appear that the converse
to (2.15), (2.16) has been shown. Hence, we prove it below.

PROPOSITION 2.4. Let an m×m matrix C be j -unitary and positive. Then it
admits a representation

C = DH, (2.19)

where H and D are of the form (2.17) and (2.18) ( i.e., the last factor on the right-hand
side of the first equality in (2.17) is removed) .

Proof. Recall that C admits representation (2.17). We fix a unitary matrix Ũ such
that DH = ŨD̃Ũ∗ , where D̃ is a diagonal matrix, D̃ > 0. Then, relations C = C∗ and
(2.17) yield the equality

ŨD̃Ũ∗
[
u1 0
0 u2

]
=

[
u∗1 0
0 u∗2

]
ŨD̃Ũ∗,

which we rewrite in the form

D̃Û = Û∗D̃, Û := Ũ∗
[
u1 0
0 u2

]
Ũ . (2.20)

According to (2.20), D̃Û is a selfadjoint matrix, and so D̃1/2ÛD̃−1/2 is a selfadjoint
matrix as well. Thus, there is a representation

D̃1/2ÛD̃−1/2 = ŬD1Ŭ
∗, (2.21)

where Ŭ and D1 = D∗
1 are unitary and diagonal matrices, respectively. The definition

of Û in (2.20) implies that Û is unitary. Therefore, in view of (2.21), D1 is linearly
similar to a unitary matrix, that is, its entries are ±1. Moreover D1 > 0, since C > 0
and formulas (2.17), (2.20) and (2.21) yield

C = ŨD̃Ũ∗
[
u1 0
0 u2

]
= ŨD̃ÛŨ∗ = ŨD̃1/2ŬD1Ŭ

∗D̃1/2Ũ∗. (2.22)
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From the inequality D1 > 0 and the fact that the entries of D1 equal either 1 or −1,
we have D1 = Im . Thus, the last equality in (2.22) implies C = ŨD̃Ũ∗ , that is, (2.19)
holds. �

Proposition 2.4 completes Propositions 2.1 and 2.2 which deal with the represen-
tations and properties of Ck . Taking into account (2.15), (2.16) and Proposition 2.4, we
rewrite Szegö recurrence (2.12) in an equivalent form

Xk+1(λ ) = C̃k

[
λ Im1 0

0 Im2

]
Xk(λ ), k ∈ N0, (2.23)

C̃k > 0, C̃k jC̃k = j. (2.24)

Using (2.24) we see that the matrix functions Uk , which are given by the equalities

U0 := Im, Uk+1 := iUkC̃k j =
k

∏
r=0

(iC̃r j) (k � 0), (2.25)

are also j -unitary. From (2.24) and (2.25) we have

(i+ z)Uk+1(Im + iz j)C̃k

[
z−i
z+i Im1 0

0 Im2

]
(Im + iz j)−1U−1

k

= Im + izUk+1 jU−1
k+1. (2.26)

In view of (2.26), the function yk of the form

yk(z) = (i+ z)kUk(Im + iz j)Xk

(
z− i
z+ i

)
(2.27)

satisfies (1.1), where y0(z) = (Im + iz j)X0(z) and Ck = jUk+1 jU−1
k+1 . Since Uk+1 is

j -unitary, we rewrite Ck as

Ck = jUk+1U
∗
k+1 j, (2.28)

and so (1.2) holds. Because of (2.25), (2.28) and the j -unitarity of Uk , we have
jU∗

k CkUk j = C̃2
k , that is,

C̃k = ( jU∗
k CkUk j)1/2. (2.29)

The following theorem describes interconnections between systems (1.1) and (2.23).

THEOREM 2.5. Dirac systems (1.1), (1.2) and Szegö recurrences (2.23), (2.24)
are equivalent. The transformation M : {C̃k} → {Ck} of the Szegö recurrence into
the Dirac system, and the transformation of their solutions, are given, respectively,
by formulas (2.28) and (2.27), where the matrices {Uk} are defined in (2.25). The
mapping M is bijective, and the inverse mapping is obtained by applying (2.29) (and
substitution of the result into (2.25)) for the successive values of k .
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Proof. It was already proved above that the formulas (2.28) and (2.27) describe
a mapping of the Szegö recurrence and its solution into the Dirac system and its solu-
tion, respectively. Moreover, the mapping M is injective, since we can successively
and uniquely recover C̃k and Uk+1 from Ck and Uk using formulas (2.29) and (2.25),
respectively.

Next, we prove that M is surjective. Indeed, given an arbitrary sequence {Ck}
satisfying (1.2), we apply relation (2.29) to the matrices of this sequence (and substitute
the result into (2.25)) for the successive values of k . In this way we construct a sequence
{C̃k} . Since the matrices jU∗

k CkUk j are positive and j -unitary, we see, from (2.29) and
Proposition 2.1, that the matrices C̃k are also positive and j -unitary. Now, we apply
the mapping M to {C̃k} . Taking into account (2.25) and (2.29), we derive

jUk+1U
∗
k+1 j = jUkC̃

2
kU

∗
k j = jUk( jU∗

k CkUk j)U∗
k j = Ck, (2.30)

that is, M maps the constructed sequence {C̃k} into the initial sequence {Ck} . Recall
that we started from an arbitrary {Ck} satisfying (1.2). Hence, M is surjective. �

3. Weyl theory: direct problems

In this section we introduce Weyl functions for matricial discrete Dirac systems
(1.1). Next we prove the Weyl function’s existence and, moreover, give a procedure to
construct it (direct problems). Finally, we construct the S -node, which corresponds to
system (1.1), and the transfer matrix function representation of the fundamental solution
Wk . (See, e.g., [25, 26, 27] on the S -nodes and the transfer matrix functions in Lev
Sakhnovich form.)

We normalize the fundamental m×m solution {Wk} of (1.1) as follows:

W0(z) = Im. (3.1)

Similar to the continuous analog of (1.1) in [14, 16] (see also the canonical system case
[27, p. 7]), the Weyl functions of system (1.1) on the interval [0, r] (i.e., of system (1.1)
considered for 0 � k � r ) are defined by the Möbius (linear-fractional) transformation:

ϕr(z,P) =
[
0 Im2

]
Wr+1(z)−1P(z)

([
Im1 0

]
Wr+1(z)−1P(z)

)−1
, (3.2)

where P(z) are nonsingular m×m1 matrix functions with property-j . That is, P(z)
are meromorphic in C+ matrix functions such that

P(z)∗P(z) > 0, P(z)∗ jP(z) � 0 (3.3)

for all points in C+ (excluding, possibly, a discrete set). The first inequality in (3.3)
means nonsingularity (nondegeneracy) of P and the second inequality is called pro-
perty-j . Since P is meromorphic, property-j almost everywhere in C+ and the first
inequality in (3.3) at some z0 ∈ C+ suffice for the conditions on P to hold.

Before showing that the Möbius transformation (3.2) is indeed correctly defined
for matrix functions P satisfying (3.3) and for z �= i , we show that the situation at z = i
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is somewhat more complicated. Namely, the determinant of the fundamental solution
vanishes at the point z = i . First, it is apparent from (1.1) and (3.1) that

Wr+1(z) =
r

∏
k=0

(Im + iz jCk). (3.4)

In view of (2.9) and (3.4) we obtain

Wr+1(i) = (−2)r+1
r

∏
k=0

(
jγ(k)∗γ(k)

)
. (3.5)

Hence, detWr+1(i) = 0, and we do not consider z = i in this section.

REMARK 3.1. We note that the behavior of Weyl functions in the neighborhood
of z = i is essential for the inverse problems that are dealt with in the next section.
Therefore, unlike the Weyl disc case (see Notation 3.4) , in the definition (3.2) of the
Weyl functions on the interval we assume that P is not only nonsingularwith property-
j but also has an additional property. Namely, that it is well-defined and nonsingular
at z = i . We do not use this additional property in this section, although, in important
cases, it could be obtained via multiplication by a scalar function.

The lemma below shows that the transformations ϕr(z,P) are well-defined.

LEMMA 3.2. Fix any z ∈ C+ such that the inequalities detWr(z) �= 0 and (3.3)
hold. Then we have the inequality

det
([

Im1 0
]
Wr+1(z)−1P(z)

)
�= 0. (3.6)

Proof. Using (1.2) and (2.9) we obtain

(Im + iz jCk)∗ j(Im + iz jCk) = (1+ i(z− z)+ |z|2) j +2i(z− z)γ(k)∗γ(k)

� (1−2ℑ(z)+ |z|2) j, (3.7)

(1−2ℑ(z)+ |z|2) > 0 for z �= i.

Since the equality (3.4) holds, formula (3.7) implies that(
Wr+1(z)−1)∗ jWr+1(z)−1 � (1−2ℑ(z)+ |z|2)−r−1 j (z ∈ C+, z �= i). (3.8)

Because of (3.3) and (3.8), we see that P̃ := Wr+1(z)−1P(z) satisfies the inequality
P̃∗ jP̃ � 0. It is apparent that the same inequality holds for the matrix

[
Im1 0

]∗
. In

other words, Im Wr+1(z)−1P(z) and Im
[
Im1 0

]∗
are maximal j -non-negative sub-

spaces. Therefore, the inequality (3.6) follows in a standard way from j -theoretic con-
siderations (see, e.g., the proof of (3.48) or the proof of [13, inequality (5.6)] for such
considerations). �
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COROLLARY 3.3. The following relations hold for the fundamental solution Wr+1

of (1.1) (where the matrices Ck satisfy (1.2)) :

detWr+1(z) �= 0, Wr+1(z)−1 = (1+ z2)−r−1 jWr+1(z)∗ j (z �= ±i). (3.9)

Proof. Relations (3.7) and (3.4) imply that

Wr+1(z)∗ jWr+1(z) = (1+ z2)r+1 j, z = z.

Hence, using analyticity considerations, we obtain

Wr+1(z)∗ jWr+1(z) ≡ (1+ z2)r+1 j, (3.10)

and (3.9) is apparent. �

NOTATION 3.4. The set of values of matrices ϕr(z,P) , which are given by the
transformation (3.2) where parameter matrices P(z) satisfy (3.3), is denoted by N (r,z)
(or, sometimes, simply N (r)) .

Usually, N (r,z) is called the Weyl disk. Indeed, taking into account (3.8) and
following considerations from [15], we derive that N (r,z) is a matrix disk (ball). More
precisely, putting

A = {Aik}2
i,k=1 = A(r,z) := Wr+1(z)∗ jWr+1(z),

we see that −A22 > 0, A11−A12A
−1
22 A21 > 0 and formulas (2.18) and (2.19) from [15]

hold, that is,

N (r,z) = {ϕ̂ : ϕ̂ = ρlωρr −A−1
22 A21, ω∗ω � Im2} (3.11)

ρl :=
(−A22

)−1/2
, ρr := (A11−A12A

−1
22 A21

)1/2
, (3.12)

where ρl and ρr are the left and right semi-radii of the Weyl disk.

COROLLARY 3.5. The sets N (r,z) are embedded ( i.e., N (r,z) ⊆ N (r−1,z))
for all r > 0 and z ∈ C+ , z �= i . Moreover, for all ϕk (k � 0) we have

ϕk(z)∗ϕk(z) � Im1 . (3.13)

Proof. It follows from Corollary 3.3 that the matrices Wr+1(z) , Wr(z) and (Im +
iz jCr) are invertible. Hence formulas (3.3) and (3.7) imply that P̃ := (Im+ iz jCr)−1P(z)
satisfies (3.3). Therefore, we rewrite (3.2) in the form

ϕr(z,P) =
[
0 Im2

]
Wr(z)−1P̃(z)

([
Im1 0

]
Wr(z)−1P̃(z)

)−1
, (3.14)

and see that ϕr(z) ∈ N (r−1,z) (r > 0). Inequality (3.13) is obtained for the matrices
from N (0,z) via substitution of r = 0 into (3.14). �

Weyl functions of system (1.1) on the semi-axis N0 of non-negative integers are
defined in a different and more traditional way (in terms of summability) – see definition
below. We will show also that the definitions of Weyl functions on the interval and
semi-axis are interrelated.
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DEFINITION 3.6. The Weyl-Titchmarsh (or simply Weyl) function of Dirac sys-
tem (1.1) (which is given on the semi-axis 0 � k < ∞ and satisfies (1.2)) is an m2×m1

matrix function ϕ(z) (z ∈ C+) , such that the following inequality holds:

∞

∑
k=0

q(z)k [
Im1 ϕ(z)∗

]
Wk(z)∗CkWk(z)

[
Im1

ϕ(z)

]
< ∞, (3.15)

q(z) := (1+ |z|2)−1. (3.16)

LEMMA 3.7. If ϕr(z) ∈ N (r,z) , we have the inequality

r

∑
k=0

q(z)k [
Im1 ϕr(z)∗

]
Wk(z)∗CkWk(z)

[
Im1

ϕr(z)

]
�1+ |z|2

i(z− z)
(
Im1 −ϕr(z)∗ϕr(z)

)
. (3.17)

Proof. Because of (1.1) and (1.2) we have

Wk+1(z)∗ jWk+1(z) = Wk(z)∗
(
Im − izCk j

)
j
(
Im + iz jCk

)
Wk(z)

= q(z)−1Wk(z)∗ jWk(z)+ i(z− z)Wk(z)∗CkWk(z). (3.18)

Using (3.1) and (3.18), we derive a summation formula, which is similar to the formula
for the case that m1 = m2 , see [13, formula (4.2)]:

r

∑
k=0

q(z)kWk(z)∗CkWk(z) =
1+ |z|2
i(z− z)

(
j−q(z)r+1Wr+1(z)∗ jWr+1(z)

)
. (3.19)

On the other hand, it follows from (3.2) that[
Im1

ϕr(z)

]
= Wr+1(z)−1P(z)

([
Im1 0

]
Wr+1(z)−1P(z)

)−1
, (3.20)

and so formula (3.3) yields

[
Im1 ϕr(z)∗

]
Wr+1(z)∗ jWr+1(z)

[
Im1

ϕr(z)

]
� 0. (3.21)

Multiplying both sides of (3.19) by
[
Im1 ϕr(z)∗

]
from the left and by

[
Im1

ϕr(z)

]
from the

right, and taking into account (3.21) (and inequalities 1+|z|2
i(z−z) > 0, q(z) > 0), we have

r

∑
k=0

q(z)k [
Im1 ϕr(z)∗

]
Wk(z)∗CkWk(z)

[
Im1

ϕr(z)

]
�1+ |z|2

i(z− z)
[
Im1 ϕr(z)∗

]
j

[
Im1

ϕr(z)

]
.

(3.22)

Finally, we use the definition of j in (1.2) and rewrite (3.22) (more precisely, the right-
hand side of (3.22)), so that we obtain (3.17). �

Now, we are ready to prove the main direct theorem.
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THEOREM 3.8. There is a unique Weyl function of the discrete Dirac system (1.1),
which is given on the semi-axis 0 � k < ∞ and satisfies (1.2). This Weyl function ϕ is
analytic and non-expansive ( i.e., ϕ∗ϕ � Im1) in C+ .

Proof. The proof consists of 3 steps. First, we show that there is an analytic and
non-expansive (contractive) function

ϕ∞(z) ∈
⋂
r�0

N (r,z). (3.23)

Next, we show that ϕ∞(z) is a Weyl function. Finally, we prove the uniqueness.
Step 1. This step is similar to the corresponding part of the proof of [16, Proposi-

tion 2.2]. Indeed, from Corollary 3.5 we see that the set of functions ϕr(z,P) of the
form (3.2) is uniformly bounded in C+ . So, Montel’s theorem is applicable and there
is an analytic matrix function, which we denote by ϕ∞(z) and which is a uniform limit
of some sequence

ϕ∞(z) = lim
i→∞

ϕri(z,Pi) (i ∈ N, ri ↑, lim
i→∞

ri = ∞) (3.24)

on all the bounded and closed subsets of C+ . Clearly, ϕ∞ is non-expansive. Since ri ↑ ,
the sets N (r,z) are embedded and equality (3.20) is valid, it follows that the matrix
functions

Pi j(z) := Wri+1(z)
[

Im1

ϕr j (z,P j)

]
( j � i)

satisfy relations (3.3). Therefore, using (3.24) we derive that (3.3) holds for

Pi,∞(z) := Wri+1(z)
[

Im1

ϕ∞(z)

]
, (3.25)

which implies that we can substitute P = Pi,∞ and r = ri into (3.2) to obtain

ϕ∞(z) ∈ N (ri,z). (3.26)

Since (3.26) holds for all i ∈ N , we see that (3.23) is fulfilled.
Step 2. Because of (3.23), the function ϕ∞ satisfies the conditions of Lemma 3.7.

Hence, (3.17) holds for any r � 0 and ϕr = ϕ∞ , which implies (3.15). Therefore, ϕ∞
is a Weyl function.

Step 3. It is apparent from (2.8) that

Wk(z)∗CkWk(z) � Wk(z)∗(− j)Wk(z). (3.27)

Using (3.18) we also obtain

q(z)kWk(z)∗(− j)Wk(z) � q(z)k−1Wk−1(z)∗(− j)Wk−1(z). (3.28)

Formulas (3.1), (3.27) and (3.28) yield the basic for Step 3 inequality

q(z)kWk(z)∗CkWk(z) � − j. (3.29)
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Therefore, the following equality is immediate for any g ∈ Cm2 :

∞

∑
k=0

g∗[0 Im2 ]q(z)kWk(z)∗CkWk(z)
[

0
Im2

]
g = ∞. (3.30)

It was shown in Step 2 that ϕ = ϕ∞ satisfies (3.15). According to (3.15) and (3.30), the
dimension of the subspace L ∈ Cm of vectors h such that

∞

∑
k=0

h∗q(z)kWk(z)∗CkWk(z)h < ∞ (3.31)

equals m1 . Now, suppose that there is a Weyl function ϕ̃ �= ϕ∞ . Then we have

Im

[
Im1

ϕ∞(z)

]
⊆ L, Im

[
Im1

ϕ̃(z)

]
⊆ L.

Therefore, dimL > m1 (for those z , where ϕ̃(z) �= ϕ∞(z)) and we arrive at a contradic-
tion. �

Finally, let us construct representations of Wr+1 (r � 0) via S -nodes. First, recall
that matrices {Ck} generate a set {γ(k)} of the m2 ×m matrices γ(k) via formula
(2.11). Using {γ(k)} , we introduce the m2(r + 1)×m matrices Γr and the m2(r +
1)×m2(r+1) matrices Kr (0 � r < ∞) :

Γr :=

⎡
⎢⎢⎣

γ(0)
γ(1)
. . .

γ(r)

⎤
⎥⎥⎦ ; Kr :=

⎡
⎢⎢⎣

κr(0)
κr(1)
. . .

κr(r)

⎤
⎥⎥⎦ , (3.32)

κr(k) := iγ(k) j
[
γ(0)∗ . . . γ(k−1)∗ γ(k)∗/2 0 . . . 0

]
. (3.33)

It is apparent from (3.32) and (3.33) that the identity

Kr −K∗
r = iΓr jΓ∗

r (3.34)

holds. The m2(r+1)×m2(r+1) matrices Ar are introduced by the equalities:

Ar = {ap−k}r
k,p=0, an = −

⎧⎨
⎩

0 for n > 0,
(i/2)Im2 for n = 0,
iIm2 for n < 0.

(3.35)

PROPOSITION 3.9. Matrices Kr and Ar are linearly similar:

Kr = ErArE
−1
r . (3.36)

Moreover, the similarity transformations Er can be constructed so that

Er =
[
Er−1 0
Xr e−r

]
(r > 0), E−1

r Γr,2 = Φr,2, Φr,2 :=

⎡
⎣Im2

. . .
Im2

⎤
⎦ , (3.37)

E0 = e−0 = γ2(0), (3.38)
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where Γr,p are m2(r+1)×mp blocks of Γr =
[
Γr,1 Γr,2

]
and γp(k) are m2×mp blocks

of γ(k) =
[
γ1(k) γ2(k)

]
.

Proof. It follows from (2.9), (3.32), (3.33) and (3.35) that

K0 = A0 = −(i/2)Im2 , detγ2(0) �= 0, (3.39)

κr(r) = i
[
γ(r) jγ(0)∗ . . . γ(r) jγ(r−1)∗ −Im2/2

]
. (3.40)

We see that (3.38) and (3.39) imply (3.36) for r = 0. Next, we prove (3.36) by in-
duction. Assume that Kr−1 = Er−1Ar−1E

−1
r−1 and let Er have the form (3.37), where

dete−r �= 0. Then we obtain

E−1
r =

[
E−1

r−1 0
−(e−r )−1XrE−1

r−1 (e−r )−1

]
, (3.41)

and, in view of (3.32), (3.35), (3.37), (3.40), it is necessary and sufficient (for (3.36) to
hold) that

([
XrAr−1 −(i/2)e−r

]− ie−r
[
Im2 . . . Im2 0

])[
Irm2

−(e−r )−1Xr

]
E−1

r−1

= iγ(r) j
[
γ(0)∗ . . . γ(r−1)∗

]
. (3.42)

We can rewrite (3.42) in the form

Xr
(
Ar−1 +(i/2)Irm2

)
=iγ(r) j

[
γ(0)∗ . . . γ(r−1)∗

]
Er−1

+ ie−r
[
Im2 . . . Im2

]
. (3.43)

Next, we partition Xr (r > 1) into m2×m2 and m2× (r−1)m2 blocks

Xr =
[
x−r X̃r

]
, (3.44)

and we will also need partitions of the matrices Ar−1 + (i/2)Irm2 and Er−1 , which
follow (for r > 1) from (3.35) and (3.37):

(
Ar−1 +(i/2)Irm2

)
=

[
0 0(

Ar−2− (i/2)I(r−1)m2

)
0

]
, Er−1

[
0

Im2

]
=

[
0

e−r−1

]
. (3.45)

Using (3.44) and (3.45) we see that (3.43) is equivalent to the relations

e−r =− γ(r) jγ(r−1)∗e−r−1 for r � 1; (3.46)

X̃r =i
(

γ(r) j
[
γ(0)∗ . . . γ(r−1)∗

]
Er−1 + e−r

[
Im2 . . . Im2

])
×

[(
Ar−2− (i/2)I(r−1)m2

)−1

0

]
for r > 1. (3.47)
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Hence, if e−r and Xr satisfy (3.46) and (3.47), respectively, and dete−r �= 0, the similar-
ity relation (3.36) holds. The inequalities dete−r �= 0 are apparent (by induction) from
(3.38), (3.46) and the inequalities

det(γ(r) jγ(r−1)∗) �= 0, (3.48)

and it remains to prove (3.48). Indeed, let γ(r) jγ(r − 1)∗g = 0, g �= 0. Then, the
subspaces Im γ(r)∗ and span γ(r− 1)∗g are j -orthogonal. The second equality in
(2.9) (taken for k = r and k = r−1) implies that these subspaces are also j -negative,
have zero intersection and have dimensions m2 and 1, respectively. Thus, span

(
γ(r−

1)∗g∪ Im γ(r)∗
)

is an m2 +1-dimensional j -negative subspace, which does not exist.
Therefore, the relation (3.48), and so also the equality (3.36), are proved.

Formula (3.38) shows that the second equality in (3.37) holds for r = 0. Now, we
choose Xr (for r = 1) and x−r (for r > 1) so that the second equality in (3.37) holds in
the case that r > 0. Taking into account (3.41), (3.44) and using induction, we see that
this equality is valid when

X1 = γ2(1)− e−1 , x−r = γ2(r)− e−r − X̃rΦr−2,2 (r > 1). � (3.49)

We note that inequalities, which are similar to (3.6) and (3.48), are often required
in the study of completion problems and Weyl theory. Therefore, the next proposition,
which is easily proved using the same considerations as in the proof of (3.48), could be
of more general interest.

PROPOSITION 3.10. Let the m×m matrix J satisfy equalities J = J∗ = J−1 and
have m1 > 0 positive eigenvalues. Let m×m1 matrices ϑ and ϑ̃ satisfy inequalities

ϑ ∗ϑ > 0, ϑ ∗Jϑ > 0, ϑ̃ ∗ϑ̃ > 0, ϑ̃ ∗Jϑ̃ � 0. (3.50)

Then we have

detϑ ∗Jϑ̃ �= 0. (3.51)

Let us substitute (3.36) into (3.34) to derive

ErArE
−1
r − (

E∗
r

)−1
A∗

rE
∗
r = iΓr jΓ∗

r . (3.52)

Multiplying both sides of (3.52) by E−1
r and

(
E∗

r

)−1
from the left and right, respec-

tively, we obtain the operator identity

ArSr −SrA
∗
r = iΠr jΠ∗

r = i(Φr,1Φ∗
r,1−Φr,2Φ∗

r,2), (3.53)

where

Sr := E−1
r

(
E∗

r

)−1
, Πr := E−1

r Γr =
[
Φr,1 Φr,2

]
. (3.54)
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DEFINITION 3.11. The triple of matrices {Ar, Sr, Πr} forms a symmetric S -node
if the operator (matrix) identity (3.53) holds, Sr = S∗r and detSr �= 0.

The transfer matrix function ( in Lev Sakhnovich form) , which corresponds to
this S -node, is given by the formula

wA(r,λ ) = Im − i jΠ∗
r S

−1
r

(
Ar −λ I(r+1)m2

)−1Πr. (3.55)

REMARK 3.12. A symmetric S -node corresponding to Dirac system (1.1) (which
satisfies (1.2)) on the interval 0 � k � r is constructed using formulas (3.35) and (3.54),
where Γr is given in (3.32).

Recall that S -nodes, transfer matrix functions wA and the method of operator
identities are introduced and studied in [24, 25, 26, 27] (see also references therein).

Let us introduce rm2× (r+1)m2 and m2× (r+1)m2 , respectively, matrices (pro-
jectors):

P1 :=
[
Irm2 0

]
(r > 0), P2 = P :=

[
0 . . . 0 Im2

]
. (3.56)

Since E−1
r is a block lower triangular matrix, we easily derive from (3.41) and (3.54)

that

P1SrP
∗
1 = E−1

r−1

(
E∗

r−1

)−1 = Sr−1, P1Πr = Πr−1. (3.57)

It is apparent that

detSr−1 �= 0, P1ArP
∗
1 = Ar−1. (3.58)

In view of (3.57) and (3.58), the factorization Theorem 4 from [25] (see also [27, p.
188]) yields

wA(r,λ ) =
(
Im− i jΠ∗

r S
−1
r P∗(PArP

∗ −λ Im2

)−1(
PS−1

r P∗)−1
PS−1

r Πr

)
×wA(r−1,λ ). (3.59)

PROPOSITION 3.13. The fundamental solution W of the system (1.1), where W
is normalized by the condition (3.1) and the potential {Ck} satisfies (1.2), admits
reprezentation

Wr+1(z) = (1+ iz)r+1wA
(
r,(2z)−1). (3.60)

Proof. Formulas (1.1) and (2.9) imply the following equalities

Wr+1(z) = (1+ iz)
(
Im +2iz(1+ iz)−1 jγ(r)∗γ(r)

)
Wr(z) (r � 0). (3.61)

On the other hand, we easily derive from (3.32), (3.35), (3.37) and (3.54) that(
PArP

∗ −λ Im2

)−1 = −(
λ + i/2

)−1
Im2 , S−1

r = E∗
r Er, (3.62)

PS−1
r P∗ = (e−r )∗e−r , PS−1

r Πr = PE∗
r Γr = (e−r )∗γ(r). (3.63)
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We substitute (3.62) and (3.63) into (3.59) to obtain

wA(r,λ ) =
(
Im +

2i
2λ + i

jγ(r)∗γ(r)
)
wA(r−1,λ ) (r � 1). (3.64)

In a similar way, we rewrite (3.55) (for the case that r = 0) in the form

wA(0,λ ) = Im +
2i

2λ + i
jγ(0)∗γ(0). (3.65)

Finally, we compare (3.61) with (3.64) and (3.65) (and take into account (3.1)) to see
that W1(z) = (1 + iz)wA

(
0,(2z)−1

)
and iterative relations for the left- and right-hand

sides of (3.60)) coincide. �

4. Weyl theory: inverse problems

The values of ϕ and its derivatives at z = i will be of interest in this section.
Therefore, using (3.9) we rewrite (3.2) in the form

ϕr(z,P) = −[
0 Im2

]
Wr+1(z)∗P(z)

([
Im1 0

]
Wr+1(z)∗P(z)

)−1
, (4.1)

where P in (4.1) differs from P in (3.2) by the factor j (and so this P is also a
nonsingular matrix function with property-j ).

DEFINITION 4.1. Weyl functions of Dirac system (1.1) (which is given on the
interval 0 � k � r and satisfies (1.2)) are m2 ×m1 matrix functions ϕ(z) of the form
(4.1), where P are nonsingular matrix functions with property-j such that P(i) are
well-defined and nonsingular.

It is apparent that (4.1) is equivalent to[
Im1

ϕr(z,P)

]
= jWr+1(z)∗P(z)

([
Im1 0

]
Wr+1(z)∗P(z)

)−1
. (4.2)

LEMMA 4.2. Let P satisfy the conditions of Definition 4.1. Then we have in-
equality

det
([

Im1 0
]
Wr+1(−i)∗P(i)

)
�= 0. (4.3)

Proof. First note that in view of (2.8) we obtain

Im +Ck j = 2β (k)∗β (k) j. (4.4)

Formulas (3.4) and (4.4) imply[
Im1 0

]
Wr+1(−i)∗P(i) =2r+1([

Im1 0
]

β (0)∗
)
(β (0) jβ (1)∗) . . .

× (β (r−1) jβ (r)∗)(β (r) jP(i)). (4.5)



814 B. FRITZSCHE, B. KIRSTEIN, I. YA. ROITBERG AND A. L. SAKHNOVICH

Using Proposition 3.10 and the second equality in (2.8) and putting (in Proposition 3.10)
ϑ = β (k)∗ and ϑ̃ = β (k+1)∗ or ϑ̃ = P(i) , we derive, respectively, inequalities

det(β (k) jβ (k+1)∗) �= 0 and det(β (r) jP(i)) �= 0. (4.6)

In the same way we obtain det
([

Im1 0
]

β (0)∗
) �= 0. Now, inequality (4.3) follows from

(4.5). �
The proof of our next proposition is similar to the proof of Corollary 3.5.

PROPOSITION 4.3. Suppose ϕ is a Weyl function of Dirac system (1.1) on the
interval 0 � k � r , where the potential {Ck} satisfies (1.2). Then ϕ is a Weyl function
of the same system on all of the intervals 0 � k � r̃ (r̃ � r) .

Proof. Clearly, it suffices to show that the statement of the proposition holds for
r̃ = r−1 (if r > 0). That is, in view of Definition 4.1, we should prove that P̃(z) :=
(Im− izCr j)P(z) has property-j , that P̃(i) is well-defined and that the first inequality
in (3.3) written for P̃ at z = i always holds (i.e., P̃(i) is nonsingular), if only P has
these properties.

Indeed, since we have

(Im − izCr j)∗ j(Im − izCr j) = (1+ |z|2) j + i(z− z) jCr j � (1+ |z|2) j, (4.7)

the matrix function P̃ has property-j . The non-singularity of P̃(i) = (Im +Cr j)P(i)
is apparent from (4.4) and (4.6). �

THEOREM 4.4. Suppose ϕ is a Weyl function of Dirac system (1.1) on the interval
0 � k � r , where the potential {Ck} satisfies (1.2). Then the set (potential) {Ck}
(0 � k � r) is uniquely recovered from the first r+1 Taylor coefficients of ϕ

(
i 1−z
1+z

)
at

z = 0 via the following procedure.
If ϕ

(
i 1−z
1+z

)
= ∑r

k=0 φkzk +O(zr+1) , then matrices Φk,1 are recovered via the for-
mula

Φk,1 = −

⎡
⎢⎢⎣

φ0

φ0 + φ1

. . .
φ0 + φ1 + . . .+ φk

⎤
⎥⎥⎦ . (4.8)

Using Φk,1 we easily recover consecutively Πk =
[
Φk,1 Φk,2

]
(where Φk,2 is given in

(3.37)) and Sk , which is the unique solution of the matrix identity

AkSk −SkA
∗
k = iΠk jΠ∗

k .

Next, we construct

γ(k)∗γ(k) = Π∗
kS

−1
k P∗(PS−1

k P∗)−1PS−1
k Πk, P =

[
0 . . . 0 Im2

]
. (4.9)

Finally, we use γ(k)∗γ(k) to recover Ck via (2.9).
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Proof. Put

A (z) := |1+ z2|−2(r+1) [Im1 ϕ(z)∗
]
Wr+1(z)∗ jWr+1(z)

[
Im1

ϕ(z)

]
. (4.10)

According to (3.9) and (4.2) we have

A (z) =
(([

Im1 0
]
Wr+1(z)∗P(z)

)−1)∗
P(z)∗ jP(z)

×
([

Im1 0
]
Wr+1(z)∗P(z)

)−1
. (4.11)

From (4.3) and (4.11) we see that A is bounded in the neighbourhood of z = i :

‖A (z)‖ = O(1) for z → i. (4.12)

We now make use of the S -node (corresponding to Dirac system), which is constructed
in accordance with Remark 3.12. Substitute (3.60) into (4.10) to obtain

A (z) =
(
(1− iz)(1+ iz)

)−r−1 [
Im1 ϕ(z)∗

]
(4.13)

×
(

j− ℑ(z)
|z|2 Π∗

r

(
A∗

r −
1
2z

I
)−1

S−1
r

(
Ar − 1

2z
I
)−1

Πr

)[
Im1

ϕ(z)

]
,

where I = I(r+1)m2
. Here we used the important equality

wA(r,λ )∗ jwA(r, λ̃ ) = j− i(λ̃ −λ)Π∗
r (A

∗
r −λ I)−1S−1

r (Ar − λ̃ I)−1Πr, (4.14)

which follows from (3.53) and (3.55) (see, e.g., [21, 25]).
Notice that Sr > 0. Hence, formulas (3.13), (4.12) and (4.13) imply that∥∥∥∥(

Ar − 1
2z

I
)−1

Πr

[
Im1

ϕ(z)

]∥∥∥∥ = O(1) for z → i. (4.15)

Using the block representation Πr =
[
Φr,1 Φr,2

]
from (3.54) and multiplying both sides

of (4.15) by

∥∥∥∥(
Φ∗

r,2

(
Ar − 1

2z I
)−1

Φr,2

)−1
Φ∗

r,2

∥∥∥∥ we rewrite the result:

∥∥∥∥ϕ(z)+
(

Φ∗
r,2

(
Ar − 1

2z
I
)−1

Φr,2

)−1
Φ∗

r,2

(
Ar − 1

2z
I
)−1

Φr,1

∥∥∥∥
= O

(∥∥∥∥(
Φ∗

r,2

(
Ar − 1

2z
I
)−1

Φr,2

)−1
∥∥∥∥
)

for z → i. (4.16)

In order to obtain (4.16) we also applied the matrix (operator) norm inequality

‖X1X2‖ � ‖X1‖‖X2‖.
The resolvent (A− λ I)−1 is easily constructed explicitly (see, for instance, for-

mula (1.10) in [22]). In particular, we derive

Φ∗
r,2

(
Ar − 1

2z
I
)−1

= − 2z
1+ iz

[
q̂(z)r q̂(z)r−1 . . . Im2

]
, q̂ :=

1− iz
1+ iz

Im2 . (4.17)
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From (4.17) we see that

Φ∗
r,2

(
Ar − 1

2z
I
)−1

Φr,2 = i
(
1−

(1− iz
1+ iz

)r+1)
Im2 . (4.18)

Partitioning Φr,1 into m2×m1 blocks Φr,1(k) and using (4.16)–(4.18) we obtain

ϕ
(

i
1− z
1+ z

)
+

1− z
1− zr+1

r

∑
k=0

zkΦr,1(k) = O(zr+1) for z → 0,

which can be easily transformed into

ϕ
(

i
1− z
1+ z

)
+(1− z)

r

∑
k=0

zkΦr,1(k) = O(zr+1) for z → 0, (4.19)

and (4.8) follows for k = r .
Since σ(Ar)∩σ(A∗

r ) = /0 the matrix Sr is uniquely recovered from the matrix
identity (3.53). Finally, (4.9) for the case, where k = r , is apparent from (3.63). From
Proposition 4.3, we see that ϕ is a Weyl function of our Dirac system on all of the
intervals 0 � k � r̃ (r̃ � r) and so all Cr̃ are recovered in the same way as Cr . �

The next corollary is a discrete version of Borg-Marchenko-type uniqueness the-
orems. The active study of such theorems was triggered by the seminal papers by F.
Gesztesy and B. Simon [18, 19].

COROLLARY 4.5. Suppose ϕ and ϕ̃ are Weyl functions of two Dirac systems
with potentials {Ck} and {C̃k} , which are given on the intervals 0 � k � r and
0 � k � r̃ , respectively. We suppose that the matrices {Ck} and {C̃k} are positive
and j -unitary. Moreover, we assume that

ϕ
(

i
1− z
1+ z

)
− ϕ̃

(
i
1− z
1+ z

)
= O(zp+1), z → ∞, p ∈ N0, p � min(r, r̃). (4.20)

Then we have Ck = C̃k for all 0 � k � p.

Proof. According to Proposition 4.3 both functions ϕ and ϕ̃ are Weyl functions
of the corresponding Dirac systems on the same interval [0, p] . From (4.20) we see
that the first p+ 1 Taylor coefficients of ϕ

(
i 1−z
1+z

)
and ϕ̃

(
i 1−z
1+z

)
coincide. Hence, the

uniqueness of the potential recovered from the Taylor coefficients in Theorem 4.4 yields
Ck = C̃k (0 � k � p) . �

Taking into account (4.8), we derive that the first r + 1 Taylor coefficients of
ϕr

(
i 1−z
1+z

)
at z = 0 (for any Weyl function ϕr of a fixed Dirac system) can be uniquely

and in the same way recovered from the matrix Φr,1 , which, in turn, can be constructed
as proposed in Remark 3.12. Therefore, the next theorem is apparent.
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THEOREM 4.6. Let Dirac system (1.1), where matrices Ck satisfy (1.2), be given

on the interval 0 � k � r . Then all functions ϕd(z) = ϕr

(
i 1−z
1+z ,P

)
, where ϕr are Weyl

functions of this Dirac system, are non-expansive in the unit disk and have the same first
r+1 Taylor coefficients {φk}r

0 at z = 0 .

Step 1 in the proof of Theorem 3.8 shows that the Weyl function ϕ∞ of Dirac
system on the semi-axis can be constructed as a uniform limit of Weyl functions ϕr on
increasing intervals. Hence, using Theorem 4.6 we obtain the following corollary.

COROLLARY 4.7. Let ϕ(z) be the Weyl function of some Dirac system (1.1),
which is given on the semi-axis and satisfies (1.2). Assume that ϕr is a Weyl function of
the same system on the finite interval 0 � k � r . Then the first r+1 Taylor coefficients
of ϕ

(
i 1−z
1+z

)
and ϕr

(
i 1−z
1+z

)
coincide. Therefore, the system is uniquely recovered from

ϕ using the procedure given in Theorem 4.4.

5. Operator identities and interpolation problems

One can easily derive (see, e.g, [17, p. 474]) that the equality

sk+1,p+1− skp = Qkp +Qk+1,p+1−Qk+1,p−Qk,p+1, −1 � k, p � r−1 (5.1)

holds for the blocks skp and Qkp of the block matrices Sr = {skp}r
k,p=0 and Qr =

{Qkp}r
k,p=0 , respectively, which satisfy the operator identity

ArSr −SrA
∗
r + iQ = 0, (5.2)

where Ar is given by (3.35). Here we write sometimes commas between the indices of
blocks and also set

s−1,p = sk,−1 = Q−1,p = Qk,−1 = 0. (5.3)

For the case that Sr corresponds to Dirac system, we rewrite (see below) formula (5.1)
in an equivalent form and obtain the structure of Sr .

PROPOSITION 5.1. Let Sr satisfy (3.53), where Ar , Φr,1 and Φr,2 are given by
(3.35), (4.8) and the last equality in (3.37), respectively. Then Sr has the following
structure:

s00 = Im2 −φ0φ∗
0 and sk+1,p+1− skp = φk+1φ∗

p+1 (5.4)

for −1 � k, p � r−1, k+ p+2 > 0 .

The following statement is immediate from Theorem 4.6 and Proposition 5.1.

THEOREM 5.2. Let Dirac system (1.1), where matrices Ck satisfy (1.2), be given
on the interval 0 � k � r .Then all the functions

ϕd(z) = ϕr

(
i
1− z
1+ z

,P
)
,
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where ϕr are given by (3.2), matrix functions P(z) in (3.2) have property-j and ma-
trices P(i) are non-singular, are non-expansive in the unit disk and have the same first
r+1 Taylor coefficients {φk}r

0 at z = 0 . The matrix Sr determined by these coefficients
via (5.4) is positive.

On the other hand, if we assume only that the coefficients {φk}r
0 are fixed and Sr

given (5.4) is positive, two related interpolation problems appear.
Interpolation problem I. Describe all the analytic and non-expansive in the unit

disk matrix functions ϕd such that the coefficients {φk}r
0 are their first r + 1 Taylor

coefficients.
Interpolation problem II. Describe all the positive continuations of Sr , which pre-

serve the structure given by (5.4).
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