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PROPERTIES OF COMPLEX SYMMETRIC OPERATORS

SUNGEUN JUNG, EUNGIL KO AND JI EUN LEE

Abstract. An operator T ∈L (H ) is said to be complex symmetric if there exists a conjugation
C on H such that T = CT ∗C . In this paper, we prove that every complex symmetric operator
is biquasitriangular. Also, we show that if a complex symmetric operator T is weakly hyper-
cyclic, then both T and T ∗ have the single-valued extension property and that if T is a complex
symmetric operator which has the property (δ ) , then Weyl’s theorem holds for f (T ) and f (T )∗
where f is any analytic function in a neighborhood of σ(T ) . Finally, we establish equivalence
relations among Weyl type theorems for complex symmetric operators.
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