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THE BEHAVIOR OF THE ORBITS OF POWER BOUNDED OPERATORS

H. S. MUSTAFAYEV

(Communicated by D. R. Larson)

Abstract. Let T be a power bounded operator on a Banach space X and let σT (x) be the
local spectrum of T at x ∈ X . In this paper, we study the asymptotic behavior of the orbits
{Tnx : n � 0} in terms of the local spectrum of T at x.

1. Introduction

Let X be a complex Banach space and let B(X) be the algebra of all bounded,
linear operators on X . For T ∈ B(X) , we denote by σ (T ) , the spectrum of T and by
Rz (T ) := (zI−T)−1 (z /∈ σ (T )) the resolvent of T . The unit circle in the complex
plane will be denoted by Γ , whereas D indicates the open unit disc. The set σ (T )∩Γ
will be called the unitary spectrum of T .

Recall that T ∈B(X) is called stable if limn→∞ ‖Tnx‖= 0 for all x∈X . Generally
speaking, the asymptotic behavior of the orbits {Tnx : n � 0} is frequently related to
unitary spectrum of underlying operator. This is well illustrated by the following clas-
sical result of Nagy-Foias [16, Proposition II. 6.7]. If T is a completely non-unitary
contraction on a Hilbert space and if the unitary spectrum of T is of Lebesgue measure
zero, then T is stable.

For arbitrary T ∈ B(X) and x ∈ X , we define ρT (x) to be the set of all λ ∈ C for
which there exists a neighborhood Oλ of λ with u(z) analytic on Oλ having values
in X such that (zI−T )u(z) = x , ∀z ∈ Oλ . This set is open and contains the resolvent
set ρ (T ) of T . By definition, the local spectrum of T at x , denoted by σT (x) is the
complement of ρT (x) , so it is a closed subset of σ (T ) . This object is most tractable if
the operator T has the single-valued extension property (SVEP) i.e. for every open set
U in C, the only analytic function f :U → X for which the equation (zI−T ) f (z) = 0
holds, is the constant function f ≡ 0. In that case, for every x ∈ X there exists a
maximal analytic extension of Rz (T )x to ρT (x) . It follows that if T has the SVEP,
then σT (x) �= /0, whenever x �= 0. It is easy to see that an operator T ∈ B(X) having
spectrum without interior points has the SVEP.

Note that the local spectrum of T may be ”very small” with respect to its usual
spectrum. To see this, let σ be a ”small” part of σ (T ) such that both σ and σ (T )\σ
are closed sets. Let Pσ be the spectral projection associated with σ and let Xσ := PσX .
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Then, Xσ is a closed T -invariant subspace of X and σ (T |Xσ ) = σ . It is easy to check
that σT (x) ⊂ σ , for every x ∈ Xσ .

An operator T acting on a Banach space is called power bounded if

sup
n�0

‖Tn‖ < ∞

(by changing to an equivalent norm it can be made contractive). If T is power bounded,
then σ (T ) ⊂D and σT (x)∩Γ , the local unitary spectrum of x ∈ X consists of all ξ ∈
Γ such that the function Rz (T )x (|z| > 1) has no analytic extension to a neighborhood
of ξ . Clearly,

σ (T )∩Γ =
⋃
x∈X

(σT (x)∩Γ) .

An operator T ∈ B(X) is called stable at x ∈ X if limn→∞ ‖Tnx‖ = 0. Local
version of the Nagy-Foias Theorem was proved in [9]: If T is a completely non-unitary
contraction on a Hilbert space and if σT (x)∩Γ is of Lebesgue measure zero, then T is
stable at x ∈ X .

Let T be a power bounded operator on a Banach space. Assume that the unitary
spectrum of T is countable. Discrete version of Arendt-Batty-Lyubich-Phong (ABLP)
theorem asserts that if T ∗ has no unitary eigenvalues, then T is stable (see, [2] and [17,
Chapter 5]).

In this paper, for the stability of T at x ∈ X , some spectral conditions are found
on T and on x .

2. Preliminaries

This section deals with some preliminaries that will be used later.
If E is an invariant subspace of T ∈ B(X) , we denote by TE or by T |E the

restriction of T to E. We will need the following.

LEMMA 2.1. Let T be a power bounded operator on a Banach space X and let
E be a (closed) T -invariant subspace of X . Then, for every x ∈ E, we have

σTE (x)∩Γ = σT (x)∩Γ.

Proof. Let x ∈ E. Clearly, ρTE (x) ⊂ ρT (x) and so

σT (x)∩Γ ⊂ σTE (x)∩Γ.

For the reverse inclusion, let ξ ∈ ρT (x)∩Γ and let π : X → X�E be the canonical
mapping. Then, there exists a neighborhood Oξ of ξ with u(z) analytic on Oξ having
values in X such that (zI−T )u(z) = x on Oξ . Notice that

u(z) = Rz (T )x =
∞

∑
n=0

z−n−1Tnx ∈ E,
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for all z ∈Oξ with |z|> 1. Therefore, we have πu(z) = 0, for all z ∈Oξ with |z|> 1.
By uniqueness theorem, πu(z) = 0, for all z ∈ Oξ . Hence, we obtain that u(z) ∈ E,
for all z ∈ Oξ . Consequently, we can write

(zI−TE)u(z) = x, ∀z ∈ Oξ .

This shows that ξ ∈ ρTE (x)∩Γ . �
As an illustration of Lemma 2.1, consider the following example. Let K be a

Hilbert space and let H2 (K) be the Hardy space of K -valued analytic functions on D .
By SK , we denote the forward shift operator on H2 (K) ;

(SK f ) (z) = z f (z) .

Its adjoint, the backward shift, is given by

(S∗K f ) (z) =
f (z)− f (0)

z
, f ∈ H2 (K) .

It is easy to verify that for every f ∈ H2 (K) and λ ∈ C with |λ | > 1,

(λ I−S∗K)−1 f (z) =
λ−1 f

(
λ−1

)− z f (z)
1−λ z

.

Hence, σS∗K ( f ) ∩Γ consists of all ξ ∈ Γ for which the function f has no analytic
extension to a neighborhood of ξ . Now, let T be a stable contraction on a Hilbert
space H i.e.

lim
n→∞

‖Tnx‖ = 0,∀x ∈ H.

Let D := (I−T ∗T )
1
2 and K := DH. By well-known Model Theorem of Nagy-Foias

[16, Chapter VI], there exists S∗K -invariant subspace E of H2 (K) and a unitary operator
U : H → E such that

T = U−1 (S∗K |E)U,

where

(Ux)(z) =
∞

∑
n=0

znDTnx (x ∈ H) .

It follows from Lemma 2.1 that if x ∈ H , then

σT (x)∩Γ = σS∗K |E (Ux)∩Γ = σS∗K (Ux)∩Γ.

Hence, σT (x)∩Γ consists of all ξ ∈ Γ such that the function z �→ (Ux)(z) has no
analytic extension to a neighborhood of ξ .

Let V be an isometry on a Banach space. It is well known that if σ (V ) �= D, then
V is invertible. Recall also that x ∈ X is a cyclic vector of T ∈ B(X) if

span{Tnx : n � 0} = X .

The following result was proved in [9, Lemma 1.3].
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LEMMA 2.2. Let V be an isometry on a Banach space X . If x ∈ X is a cyclic
vector of V , then

σ (V )∩Γ = σV (x)∩Γ.

By l.i.m.nan we will denote Banach limit of the bounded sequence {an} .
The following result is well known (see for instance, [9, 11] and [17, Chapter 5]).

LEMMA 2.3. If T is a power bounded operator on a Banach space X , then there
exist a Banach space Y , a bounded linear operator J : X → Y with dense range, and
an isometry V on Y with the following properties:

(a) VJ = JT.
(b) ‖Jx‖ = l.i.m.n ‖Tnx‖ , ∀x ∈ X .
(c) σ (V ) ⊂ σ (T ) .
If X is assumed to be a Hilbert space, then Y is a Hilbert space, also.

The triple (Y,J,V ) will be called the limit isometry associated with T . Notice that
Jx = 0 if and only if limn→∞ ‖Tnx‖ = 0. Notice also that if x ∈ X is a cyclic vector of
T, then Jx is a cyclic vector of V.

LEMMA 2.4. Let T be a power bounded operator on a Banach space X and let
(Y,J,V ) be the limit isometry associated with T . Then we have

σV (Jx) ⊂ σT (x) , ∀x ∈ X .

Proof. If λ ∈ ρT (x) , then there exists a neighborhood Uλ of λ with u(z) ana-
lytic on Uλ having values in X such that (zI−T )u(z) = x , ∀z ∈Uλ . It follows that
(zJ− JT)u(z) = Jx . Since JT = VJ, we have (zI−V)Ju(z) = Jx , ∀z ∈ Uλ . This
shows that λ ∈ ρV (Jx) . �

The following lemma was proved in [14, Lemma 3].

LEMMA 2.5. Let V be an invertible isometry on a Banach space X with count-
able spectrum. For arbitrary ϕ ∈ X∗, there exist a Hilbert space Hϕ , a bounded linear
operator Jϕ : X → Hϕ with dense range, and a unitary operator Uϕ on Hϕ with the
following properties:

(a) UϕJϕ = JϕV.
(b) σ

(
Uϕ
)⊂ σ (V ) .

(c)
⋂

ϕ∈X∗
kerJϕ = {0} .

The triple
(
Hϕ ,Jϕ ,Uϕ

)
will be called the unitary operator associated with the pair

(V,ϕ) . As in the proof of Lemma 2.4, we can see that for every ϕ ∈ X∗ and x ∈ X ,

σUϕ

(
Jϕx
)⊂ σV (x) . (2.1)
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3. Hilbert space operators

In this section, we consider stability problem for operators on Hilbert space with
”thin” spectra.

We denote by A the set of all continuous functions on Γ having an absolutely
convergent Fourier series. A is a commutative Banach algebra under the norm

‖ f‖1 := ∑
n∈Z

∣∣∣ f̂ (n)
∣∣∣ ,

where f̂ (n) is the n th Fourier coefficient of f ∈ A .
Recall [19, Chapter 5] that a closed set S in Γ is a Helson set if for every contin-

uous function g on S there corresponds a function f ∈ A such that f (s) = g(s) , for
all s ∈ S.

Let M (Γ) be the space of regular complex Borel measures on Γ. The n th Fourier
coefficient of μ ∈ M (Γ) is defined by

μ̂ (n) =
2π∫
0

e−intdμ (t) (n ∈ Z) .

It is well known that if μ̂ (n) = 0 for all n ∈ Z, then μ = 0.
The Helson Theorem [19, Theorem 5.6.10] asserts the following.

THEOREM 3.1. Let S ⊂ Γ be a Helson set and let μ ∈ M (Γ) be given such that
suppμ ⊂ S. If lim|n|→∞ |μ̂ (n)| = 0, then μ = 0.

As an application, we have the following.

THEOREM 3.2. Let T be a power bounded operator on a Hilbert space H and
let x ∈ H. Assume that

(i) σT (x)∩Γ is contained in a Helson set,
(ii) Tnx → 0 weakly as n → ∞.
Then,

lim
n→∞

‖Tnx‖ = 0.

Proof. Let L be the closed linear span of {Tnx : n � 0} . Then, L is a T -invariant
subspace of H. Let (K,J,V ) be the limit isometry associated with TL . By Lemma 2.4,
σV (Jx) ⊂ σTL (x) . Consequently, we have

σV (Jx)∩Γ ⊂ σTL (x)∩Γ.

Taking into account Lemma 2.1, we can write

σV (Jx)∩Γ ⊂ σT (x)∩Γ.
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Further, since Jx is a cyclic vector of V by Lemma 2.2, we obtain

σ (V )∩Γ = σV (Jx)∩Γ ⊂ σT (x)∩Γ.

Consequently, V is a unitary operator and σ (V ) is contained in a Helson set.
Let E (·) be the spectral measure of V and let μJx be the scalar measure defined

on the Borel subsets of Γ by

μJx (Δ) = 〈E (Δ)Jx,Jx〉 = ‖E (Δ)Jx‖2 .

From the spectral decomposition of V, we can write

μ̂Jx (n) =
2π∫
0

e−intdμJx (t)

=
2π∫
0

e−intd〈EtJx,Jx〉 = 〈V ∗nJx,Jx〉 (n ∈ Z) .

On the other hand, from Lemma 2.3 (a), we have J∗V ∗n = T ∗
L J∗ (n ∈ N) which implies

〈V ∗nJx,Jx〉 = 〈J∗V ∗nJx,x〉 = 〈T ∗n
L J∗Jx,x〉

〈J∗Jx,Tnx〉 = 〈Tnx,J∗Jx〉 → 0 (n → ∞) .

Similarly,

μ̂Jx (−n) = 〈VnJx,Jx〉
= 〈JTnx,Jx〉 = 〈Tnx,J∗Jx〉 → 0(n → ∞) .

Thus, we have
lim
|n|→∞

∣∣μ̂Jx (n)
∣∣= 0.

Since suppμJx is contained in a Helson set, by Theorem 3.1, μJx = 0. Consequently,
E (Δ)Jx = 0 for every Borel subset Δ of Γ. Therefore, we have VJx = 0. It follows
that Jx = 0. This means that limn→∞ ‖Tnx‖ = 0. �

If Λ is a subset of Z, we denote by CΛ the space of all continuous functions f
on Γ such that f̂ (n) = 0 if n /∈ Λ. A subset Λ of Z is called a Sidon set if for every
trigonometric polynomial f ∈CΛ, there exists a constant C > 0 such that

∑
∣∣∣ f̂ (n)

∣∣∣� C‖ f‖∞ .

We need the following result [20].

THEOREM 3.3. Suppose that Λ is a Sidon set in Z+. If μ ∈ M (Γ) is such that
μ̂ (n)= 0 for each n∈Z+\Λ, then μ is absolutely continuouswith respect to Lebesgue
measure on Γ.
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As an application, we have the following.

THEOREM 3.4. Let T be a power bounded operator on a Hilbert space H and
let x ∈ H. Let Λ be a Sidon set in Z+. Assume that

(i) The Lebesgue measure of σT (x)∩Γ is zero,
(ii) limk→∞〈Tk+nx,Tkx〉 = 0, ∀n ∈ Z+ \Λ.
Then,

lim
n→∞

‖Tnx‖ = 0.

Proof. Let L be the closed linear span of {Tnx : n � 0} and let (K,J,V ) be the
limit isometry associated with TL . As in the proof of Theorem 3.2, we have

σ (V )∩Γ ⊂ σT (x)∩Γ.

It follows that V is unitary and

σ (V ) ⊂ σT (x)∩Γ.

Consequently, the Lebesgue measure of σ (V ) is zero.
We can write

〈VnJx,Jx〉 = 〈JT nx,Jx〉
= l.i.m.k〈Tk+nx,Tkx〉 = 0, ∀n ∈ Z+ \Λ.

Let E (·) be the spectral measure of V and let μJx be the scalar measure defined
on the Borel subsets of Γ by

μJx (Δ) = 〈E (Δ)Jx,Jx〉 = ‖E (Δ)Jx‖2 .

We have
μ̂Jx (n) = 〈VnJx,Jx〉 = 0, ∀n ∈ Z+ \Λ.

By the preceding theorem, μJx is absolutely continuous with respect to Lebesgue mea-
sure. Consequently, E (Δ)Jx = 0 for every Borel subset Δ of σ (V ) . Therefore, we
have VJx = 0. It follows that Jx = 0. This means that limn→∞ ‖Tnx‖ = 0. �

Recall that A is a commutative regular semisimple Banach algebra. The elements
of A ∗ are called pseudomeasures. We will write ϕ = {ϕ̂ (n)}n∈Z , where

ϕ̂ (n) := 〈ϕ ,eint〉 (n ∈ Z)

is the Fourier coefficients of a pseudomeasure ϕ . If f ∈ A , then the duality being
implemented by the formula

〈ϕ , f 〉 = ∑
n∈Z

ϕ̂ (n) f̂ (n) .

The hull(I) of an ideal I ⊂ A is defined as

hull(I) = {ξ ∈ Γ : f (ξ ) = 0, ∀ f ∈ I} .
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If ϕ is a pseudomeasure, then

Iϕ := { f ∈ A : ϕ · f = 0}
is a closed ideal in A , where ϕ · f is a pseudomeasure defined by

〈ϕ · f ,g〉 = 〈ϕ , f g〉, g ∈ A .

Recall that the support of a pseudomeasure ϕ is defined as follows. For ξ ∈ Γ, we
let ξ /∈suppϕ iff there is a neighborhood Oξ of ξ such that 〈ϕ , f 〉 = 0 for all f ∈ A
with supp f ⊂ Oξ . An equivalent definition for suppϕ is that ξ ∈suppϕ iff ϕ · f = 0
implies f (ξ ) = 0. Consequently, for every pseudomeasure ϕ , we have

suppϕ = hull
(
Iϕ
)
.

The well-known Loomis Theorem [13] states that if the support of a pseudomeasure ϕ
is at most countable, then ϕ is almost periodic.

If μ ∈ M (Γ) , then
ϕμ := {μ̂ (n)}n∈Z

is a pseudomeasure. Notice that suppϕμ and suppμ in the usual sense are the same.
Notice also that if ϕμ is an almost periodic pseudomeasure, then

Cξ
(
ϕμ
)

= μ {ξ} ,

where Cξ
(
ϕμ
)

is the Fourier-Bohr coefficients of ϕμ . It follows from the uniqueness
theorem that if ϕμ is a nonzero almost periodic pseudomeasure, then the corresponding
measure μ has a nontrivial discrete part.

Next, we have the following.

THEOREM 3.5. Let T be a power bounded operator on a Hilbert space H which
has no unitary eigenvalues. Assume that there exists a vector x ∈ H such that

(i) infn�0 ‖Tnx‖ > 0,
(ii) σT (x)∩Γ is countable.
Then, there exists a nonzero vector y ∈ H such that

lim
n→∞

‖Tny‖ = 0.

Proof. Let L be the closed linear span of {Tnx : n � 0} and let (K,J,V ) be the
limit isometry associated with TL . As in the proof of Theorem 3.2, we can see that V
is unitary and

σ (V ) ⊂ σT (x)∩Γ.

Consequently, σ (V ) is countable.
Let E (·) be the spectral measure of V and let μJx be the scalar measure defined

on the Borel subsets of Γ by

μJx (Δ) = 〈E (Δ)Jx,Jx〉 = ‖E (Δ)Jx‖2 .
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We have
〈VnJx,Jx〉 = μ̂Jx (n) (n ∈ Z)

and suppμJx ⊂ σ (V ) . Consequently, suppμJx is countable. By Loomis theorem,

ϕμJx :=
{

μ̂Jx (n)
}

n∈Z

is an almost periodic pseudomeasure and

μ̂Jx (0) = ‖Jx‖2 = lim
n→∞

‖Tnx‖2 > 0.

It follows that the measure μJx has a nontrivial discrete part. Therefore, μJx {ξ0} �= 0
for some ξ0 ∈ Γ. Consequently, we have E {ξ0}Jx �= 0.

Let us show that E {ξ0}Jx = Ju for some u ∈ L. For this purpose, consider the
function

f (z) :=
1+ ξ0z

2
.

Then, f (ξ0) = 1 and | f (z)| < 1 for all z ∈ D\ {ξ0} . We claim that the operator

f (T ) :=
1+ ξ0T

2

is power bounded. Indeed, we have

‖ f (T )n‖ =
1
2n

∥∥∥(1+ ξ0T
)n∥∥∥=

1
2n

∥∥∥∥∥ n

∑
k=0

(
n
k

)
ξ0

k
T k

∥∥∥∥∥
� 1

2n

n

∑
k=0

(
n
k

)∥∥∥Tk
∥∥∥� sup

k

∥∥∥Tk
∥∥∥ .

Taking a subsequence if necessary we can assume that { f (T )n x}n∈N is weakly con-
vergent to some u ∈ L. It follows that J f (T )n x → Ju weakly. Let arbitrary v ∈ L be
given. In view of Lemma 2.3 (a), we can write

f (V )n Jx = J f (T )n x (n ∈ N) .

Consequently, we have

〈Ju,v〉 = lim
n→∞

〈J f (T )n x,v〉

= lim
n→∞

〈 f (V )n Jx,v〉 = lim
n→∞

∫
Γ

f n (ξ )d〈E (ξ )Jx,v〉

= 〈E (ξ0)Jx,v〉+ lim
n→∞

∫
Γ\{ξ0}

f n (ξ )d〈E (ξ )Jx,v〉

= 〈E (ξ0)Jx,v〉.
Thus, we obtain that E {ξ0}Jx = Ju. As E {ξ0}Jx �= 0, we have u �= 0.
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Notice that E {ξ0}Jx is an eigenvector of V corresponding to the eigenvalue ξ0.
Therefore, Ju is an eigenvector of V corresponding to the eigenvalue ξ0;

VJu = ξ0Ju.

Since VJu = JTu , we have JTu = ξ0Ju. By Lemma 2.3 (b), this means that

lim
n→∞

‖Tn (Tu− ξ0u)‖ = 0.

Let y := Tu − ξ0u. Since T has no unitary eigenvalues , we have that y �= 0 and
limn→∞ ‖Tny‖ = 0. �

Recall that the subspace E of X is hyperinvariant for T ∈ B(X) if SE ⊂ E for
every S ∈ B(X) which commutes with T.

COROLLARY 3.6. Let T be a power bounded operator on a Hilbert space H
which is not a multiple of the identity. Assume that there exists x ∈ H such that:

(i) infn�0 ‖Tnx‖ > 0;
(ii) σT (x)∩Γ is countable.
Then, T has a nontrivial hyperinvariant subspace.

4. Banach space operators

In this section, we present local version of a theorem of Gelfand [6] on doubly
power bounded operators, and another of Katznelson and Tzafriri [8] on power bounded
operators ones.

An invertible operator T on a Banach space is called doubly power bounded if

sup
n∈Z

‖Tn‖ < ∞.

Now, let T be a doubly power bounded operator on a Banach space X . Then, σ (T )⊂Γ
and therefore T has the SVEP. For a given f ∈ A , we can define f (T ) ∈ B(X) by

f (T ) = ∑
n∈Z

f̂ (n)Tn.

Then, h : f → f (T ) is a continuous algebra homomorphism with the norm

‖h‖ = sup
n∈Z

‖Tn‖ .

It is easy to check that σ (T ) =hull(kerT ) .
Recall that the Carleman transform Φ(z) of a pseudomeasure ϕ = {ϕ̂ (n)}n∈Z is

defined by the relation

Φ(z) =

⎧⎪⎪⎨⎪⎪⎩
∞

∑
n=0

ϕ̂ (n)
zn , |z| > 1;

−
∞

∑
n=1

ϕ̂ (−n)zn, |z| < 1.
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We know [4, Chapter 3] that Φ(z) is a function analytic on C\suppϕ .
For a given ϕ ∈ X∗ and x ∈ X , let ϕx be a pseudomeasure defined by

〈ϕx, f 〉 = 〈ϕ , f (T )x〉, f ∈ A .

Since ϕ̂x (n) = ϕ (Tnx) (n ∈ Z) , from the identity

Rz (T )x =

⎧⎪⎪⎨⎪⎪⎩
∞

∑
n=0

Tnx
zn+1 , |z| > 1;

−
∞

∑
n=1

zn−1T−nx, |z| < 1,

we have

z〈ϕ ,Rz (T )x〉 =

⎧⎪⎪⎨⎪⎪⎩
∞

∑
n=0

ϕ̂x (n)
zn , |z| > 1;

−
∞

∑
n=1

znϕ̂x (−n) , |z| < 1.

This shows that z〈ϕ ,Rz (T )x〉 (|z| �= 1) is the Carleman transform of ϕx. It follows that

σT (x) =
⋃

ϕ∈X∗
suppϕx,

for every x ∈ X .
If x ∈ X , then

Ix := { f ∈ A : f (T )x = 0}
is a closed ideal of A and

Ix =
⋂

ϕ∈X∗
Iϕx .

Recall that
Iϕx = { f ∈ A : ϕx · f = 0} .

Since
hull

(
Iϕx

)
= suppϕx,

it follows from the general theory of Banach algebras that

hull(Ix) =
⋃

ϕ∈X∗
hull

(
Iϕx

)
=

⋃
ϕ∈X∗

suppϕx = σT (x) .

Hence, we have the following.

PROPOSITION 4.1. If T is a doubly power bounded operator on a Banach space
X , then for every x ∈ X , we have

σT (x) = hull(Ix) .
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From the preceding proposition, it easily follows that for every f ∈ A and x ∈ X ,
the following relations hold:

σT ( f (T )x) ⊂ σT (x)∩ supp f , (4.1)

σT (x)∩{ξ ∈ Γ : f (ξ ) �= 0} ⊂ σT ( f (T )x) . (4.2)

Let T be an invertible operator on X . Recall that x ∈ X is a doubly cyclic vector
of T if

span{Tnx : n ∈ Z} = X .

COROLLARY 4.2. Let T be a doubly power bounded operator on a Banach space
X . If x ∈ X is a doubly cyclic vector of T, then

σT (x) = σ (T ) .

REMARK 4.3. An invertible operator T on X is called nonquasianalytic [3, Chap-
ter XII] if

∑
n∈Z

log‖Tn‖
1+n2 < ∞.

The assertion of the preceding proposition remains valid for nonquasianalytic operators,
too.

Given a closed subset S of Γ, there are two distinguished closed ideals of A with
hull equal to S, namely

JS = { f ∈ A : supp f ∩S = /0}

and
IS = { f ∈ A : f (ξ ) = 0, ∀ξ ∈ S} .

The set S is called a set of synthesis if JS = IS ([10, Chapter 8]).
Well-known Gelfand’s theorem [6] states that if T is a doubly power bounded

operator with σ (T ) = {1} , then T = I.
We include here the following result which seems to be unnoticed.

PROPOSITION 4.4. Let T be a doubly power bounded operator on a Banach
space X and let x ∈ X . If σT (x) = {ξ1, ...,ξn} (ξi �= ξ j, i �= j) , then

x ∈ ker(T − ξ1I)⊕· · ·⊕ker(T − ξnI) .

Proof. Let U1, ...,Un be a disjoint neighborhoods of ξ1, ...,ξn, respectively. Let
Vk be a neighborhood of ξk such that Vk ⊂Uk (k = 1, ...,n). Then, there exist functions
f1, ..., fn in A such that fk = 1 on Vk and fk = 0 outside Uk (k = 1, ...,n). Put f =
f1 + ... + fn. Since 1− f vanishes in a neighborhood of σT (x) , the function 1− f
belongs to the smallest ideal of A whose hull is σT (x) . It follows from Proposition 4.1
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that 1− f ∈ Ix, so that f (T )x = x. Hence, we have x = x1+ ...+xn, where xk = fk (T )x
(k = 1, ...,n) . Further, it follows from the relations (4.1) and (4.2) that

{ξk} ⊂ σT (xk) ⊂ σT (x)∩ supp fk = {ξk} .

Hence, we obtain σT (xk) = {ξk} . It remains to show that if y ∈ X with σT (y) = {ξ} ,
then Ty = ξ y. By Proposition 4.1, hull(Iy) = {ξ} . Since {ξ} is a set of synthesis [10,
Chapter 8], we have Iy=I{ξ}, so that

{ f ∈ A : f (T )y = 0} = { f ∈ A : f (ξ ) = 0} .

If we put in the last identity f = ζ − ξ (ζ ∈ Γ) , then we have Ty = ξ y. �

REMARK 4.5. Let T be an invertible operator on a Banach space. Assume that
there exists 0 � α < 1 such that

‖Tn‖ � const(1+ |n|)α , ∀n ∈ Z.

In this case, the assertion of the preceding proposition remains valid.

We denote by A+ the set of all functions

f (z) =
∞

∑
n=0

f̂ (n)zn

analytic on D and satisfying

‖ f‖1 :=
∞

∑
n=0

∣∣∣ f̂ (n)
∣∣∣< ∞.

(whence f is a continuous function on D). A+ is a commutative Banach algebra under
this norm. Let ϕ ∈A ∗

+ and ϕ̂ (n) := 〈ϕ ,zn〉 (n � 0). If f ∈A+, then the duality being
implemented by the formula

〈ϕ , f 〉 =
∞

∑
n=0

ϕ̂ (n) f̂ (n) .

If T is a power bounded operator on a Banach space X , then for a given f ∈ A+, we
can define f (T ) ∈ B(X) by

f (T ) =
∞

∑
n=0

f̂ (n)Tn.

Then, h : f → f (T ) is a continuous algebra homomorphism with the norm

‖h‖ = sup
n�0

‖Tn‖ .
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It follows that if f is a power bounded element of A+ (in particular, if ‖ f‖1 � 1), then
f (T ) is power bounded. Standard Banach algebra techniques shows that the spectral
mapping property σ ( f (T )) = f (σ (T )) ( f ∈ A+) holds.

If x ∈ X , then
I+x := { f ∈ A+ : f (T )x = 0}

is a closed ideal of A+.
We have the following.

PROPOSITION 4.6. If T is a power bounded operator on a Banach space X , then
for every x ∈ X , we have

σT (x) ⊂ hull
(
I+x
)
.

For the proof, we need some preliminary results. For a given ϕ ∈A ∗
+ and f ∈A+,

define

ϕ+ (z) :=
∞

∑
n=0

ϕ̂ (n)
zn (|z| > 1) , (4.3)

ϕ̂ (−n) :=
∞

∑
k=0

ϕ̂ (k) f̂ (k+n) (n = 1,2...) ,

and

ψ (z) :=
∞

∑
n=1

ϕ̂ (−n)zn (|z| < 1) . (4.4)

The following result is contained in [18, Chapter 4, Theorem 10].

LEMMA 4.7. Let ϕ ∈ A ∗
+ and f ∈ A+. Assume that the functions ϕ+ (z) and

ψ (z) are defined as in (4.3) and (4.4) , respectively. If

∞

∑
k=0

ϕ̂ (k+n) f̂ (k) = 0 (∀n � 0) ,

then

Φ(z) :=

{
ϕ+ (z) , |z| > 1;
ψ(z)
f (z) , |z| < 1

is an analytic function on the complex plane possible expectation of zero set of f .

Proof of Proposition 4.6. Assume that λ ∈D\hull(I+x ) . Then, there exists a func-
tion f ∈ A+ such that f (T )x = 0 but f (λ ) �= 0. For a given ϕ ∈ X∗, define ϕx ∈ A ∗

+
by

〈ϕx, f 〉 = 〈ϕ , f (T )x〉, f ∈ A+.

Since ϕ̂x (n) = ϕ (Tnx) and

Rz (T )x =
∞

∑
n=0

Tnx
zn+1 (|z| > 1) ,
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we have

ϕ+
x (z) =

∞

∑
n=0

ϕ̂x (n)
zn =

∞

∑
n=0

ϕ (Tnx)
zn = z〈ϕ ,Rz (T )x〉 (|z| > 1) .

On the other hand, as f (T )x = 0, we have f (T )Tkx = 0 (k � 0) which implies

0 =
∞

∑
n=0

f̂ (n)ϕ
(
Tn+kx

)
=

∞

∑
n=0

f̂ (n) ϕ̂x (n+ k) .

By the preceding lemma, the function z �→ 〈ϕ ,Rz (T )x〉 can be analytically extended to
a neighborhood of λ for every ϕ ∈ X∗. It follows that λ ∈ ρT (x) . �

Katznelson and Tzafriri [8] obtained the following generalization of Gelfand’s
theorem. If T is a power bounded operator on a Banach space, then

lim
n→∞

∥∥Tn+1−Tn
∥∥= 0

if and only if σ (T )∩Γ ⊂ {1} .
We denote by A 1

+ the set of all f ∈ A+ such that ‖ f‖1 � 1, f (1) = 1, and
| f (z)| < 1 for all z ∈ D \ {1} . For example, if {an}∞

n=0 is a sequence such that 0 <
an < 1 (n = 0,1, ...) and ∑∞

n=0 an = 1, then the function f (z) = ∑∞
n=0 anzn is in A 1

+.
Notice that if f ∈ A 1

+, then f (T ) is power bounded and by the spectral mapping
property, σ ( f (T ))∩Γ ⊂ {1} . Consequently, for every f ∈ A+, we have that

lim
n→∞

∥∥∥ f (T )n+1− f (T )n
∥∥∥= 0.

Below, we present local quantitative version of Katznelson-Tzafriri theorem (see
also [1]).

An entire function f is said to be of order ρ if

ρ = lim
r→∞

loglogM (r)
logr

,

where M (r) = sup{| f (z)| : |z| � r} . An entire function of finite order ρ is said to be
of type σ if

σ = lim
r→∞

logM (r)
rρ .

If the entire function f is of order less than 1 or f is of order 1 and type less than or
equal to σ , we say f is of exponential type σ [5, p. 8].

For a given σ > 0, we denote by Bσ the set of all bounded on the real line entire
functions f of exponential type � σ , i.e., for every ε > 0, there exists a constant
Cε > 0 such that

| f (z)| � Cεe
(σ+ε)|z|, ∀z ∈ C.

It follows from the Phragmen-Lindelöf theorem that if f ∈ Bσ and

Cf := sup
t∈R

| f (t)| ,
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then
| f (z)| � Cf e

σ |Im z|.

Notice that Bσ is a Banach space under the norm given by

‖ f‖σ := sup
z∈C

[
e−σ |Im z| | f (z)|

]
.

In fact,
‖ f‖σ = sup

t∈R
| f (t)| .

The following inequality of Bernstein type is well known [7]. If f ∈ Bσ , where
0 � σh � π

2 , then

sup
t∈R

| f (t +h)− f (t−h)| � 2sinσh‖ f‖σ .

It follows that for every f ∈ Bσ ,

| f (1)− f (0)| � 2sin
σ
2
‖ f‖σ (σ � π) ,

| f (1)− f (−1)| � 2sinσ ‖ f‖σ

(
σ � π

2

)
.

On the other hand, by Cartwright theorem (see, [5, Chapter 10] and [7]), the inequality

‖ f‖σ � sec
σ
2

sup
n∈Z

| f (n)|

holds for every f ∈ Bσ (σ < π) . So, we have

| f (1)− f (0)| � 2tan
σ
2

(
sup
n∈Z

| f (n)|
)

, ∀ f ∈ Bσ (σ < π) , (4.5)

| f (1)− f (−1)| � 2sin
σ
2

(
sup
n∈Z

| f (n)|
)

, ∀ f ∈ Bσ

(
σ � π

2

)
. (4.6)

Let V be an invertible isometry on a Banach space X . Notice that if σ (V ) = Γ,
then ‖V − I‖ = 2. Now, assume that σ (V ) is contained in the arc

Λσ :=
{

eiθ ∈ Γ : |θ | � σ
}

,

where 0 � σ < π (any proper closed subset of Γ can be rotated so as to lie inside
some such Λσ ) . Then V = eiS for some S ∈ B(X) , where σ (S) ⊆ [−σ ,σ ] . For a
given ϕ ∈ B(X)∗ with norm one, consider the entire function f (z) := ϕ

(
eizS
)
. Since∥∥einS

∥∥ = 1 for all n ∈ Z, we have | f (t)| � e‖S‖ for all t ∈ R . On the other hand, the
inequality

| f (z)| � e|z|‖S‖
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gives us that the order of f is less than or equal to 1. Notice also that the n th derivative
of f at zero is ϕ (inSn) . Thus, by Levin’s theorem [12, p. 84], the type of f is less than
or equal to

lim
n→∞

‖Sn‖ 1
n .

On the other hand, the last expression is less than or equal to σ . Consequently, f ∈ Bσ .
Now, applying the inequalities (4.5) and (4.6) to f , we obtain the following inequalities

‖V − I‖ � 2tan
σ
2

(σ < π) , (4.7)

∥∥V 2 − I
∥∥=

∥∥V −V−1
∥∥� 2sin

σ
2

(
σ � π

2

)
. (4.8)

PROPOSITION 4.8. Let T be a contraction on a Banach space X and let x ∈ X .
(a) If σT (x)∩Γ ⊂ Λσ (σ < π) , then

lim
n→∞

∥∥Tn+1x−Tnx
∥∥� 2tan

σ
2
‖x‖ .

(b) If σT (x)∩Γ ⊂ Λσ
(
σ � π

2

)
, then

lim
n→∞

∥∥Tn+2x−Tnx
∥∥� 2sin

σ
2
‖x‖ .

Proof. Let L be the closed linear span of {Tnx : n � 0} and let (Y,J,V ) be the
limit isometry associated with TL . As in the proof of Theorem 3.2, we can see that

σ (V )∩Γ ⊂ σT (x)∩Γ ⊂ Λσ .

Hence, V is an invertible isometry and σ (V ) ⊂ Λσ . Now, from the identities

(V − I)Jx = J (Tx− x) ,
(
V 2 − I

)
Jx = J

(
T 2x− x

)
and from the inequalities (4.7) and (4.8), we can write

lim
n→∞

∥∥Tn+1x−Tnx
∥∥ = ‖J (Tx− x)‖ = ‖(V − I)Jx‖

� ‖V − I‖‖x‖ � 2tan
σ
2
‖x‖ ,

lim
n→∞

∥∥Tn+2x−Tnx
∥∥ =

∥∥J (T 2x− x
)∥∥=

∥∥(V 2− I
)
Jx
∥∥

�
∥∥V 2− I

∥∥‖x‖ � 2sin
σ
2
‖x‖ . �

It follows from the preceding proposition that if T is power bounded and if x ∈ X
with σT (x)∩Γ ⊂ {1} , then

lim
n→∞

∥∥Tn+1x−Tnx
∥∥= 0.
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Note that the converse of this fact is not true in general. To see this, let S be the forward
shift on the Hardy space H2. As limn→∞ ‖S∗n f‖ = 0, we have

lim
n→∞

∥∥S∗n+1 f −S∗n f
∥∥= 0, ∀ f ∈ H2.

Let μ be a positive singular measure on Γ such that suppμ � {1} . Consider the inner
function

f (z) = exp

⎛⎝−
∫
Γ

ζ + z
ζ − z

dμζ

⎞⎠ .

We know (see, [16, Theorem III.5.1]) that suppμ consists of all ξ ∈ Γ for which the
function f has no analytic extension to a neighborhoodof ξ . Now, as σS∗ ( f ) =suppμ ,
we have σS∗ ( f )∩Γ � {1} .

PROPOSITION 4.9. Let T be a power bounded operator on a Banach space X
and let x ∈ X . Assume that

l.i.m.n
∥∥Tn+1x−Tnx

∥∥= 0.

If
Tx+ ...+Tnx

n
→ 0 weakly as n → ∞,

then
lim
n→∞

‖Tnx‖ = 0.

Proof. Let L be the closed linear span of {Tnx : n � 0} and let (Y,J,V ) be the
limit isometry associated with TL . From the identity

VJx− Jx = J (Tx− x) ,

we have
‖VJx− Jx‖= l.i.m.n

∥∥Tn+1x−Tnx
∥∥= 0,

so that VJx = Jx . Since Jx is a cyclic vector of V, we have V = I. From the identities
Jx = JTnx (n ∈ N) , we can write

Jx = J
Tx+ ...+Tnx

n
.

Let y∗ ∈Y ∗ be given. Then, we have

〈y∗,Jx〉 =
〈

J∗y∗,
Tx+ ...+Tnx

n

〉
→ 0.

Hence, Jx = 0. This means that limn→∞ ‖Tnx‖ = 0. �
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REMARK 4.10. If T is a power-bounded operator on X and if x ∈ X , then

1
n

∞

∑
k=1

Tkx → 0

weakly (n → ∞) , implies that x∈Ran(T − I). Consequently, 1
n ∑∞

k=1 Tkx→ 0 strongly
as n → ∞.

5. Ergodic conditions

In this section, for the stability of T at x ∈ X , some ergodic spectral conditions
are found on T and on x .

The C0 -semigroup version of the following theorem was proved in [17, Theorem
5.1.11].

THEOREM 5.1. Let T be a power bounded operator on a Banach X and let x ∈
X . Assume that

(i) σT (x)∩Γ is countable,

(ii) 1
n

n

∑
k=1

ξ−kT kx → 0 weakly (n → ∞) , ∀ξ ∈ σT (x)∩Γ .

Then,
lim
n→∞

‖Tnx‖ = 0.

For the proof of Theorem 5.1 we need the following lemma.

LEMMA 5.2. Let V be an invertible isometry on a Banach space X and let x∈X .
Assume that

(i) σV (x) is countable,

(ii) 1
n

n

∑
k=1

ξ−kV kx → 0 weakly (n → ∞) , ∀ξ ∈ σV (x) .

Then, x = 0.

Proof. Let ϕ ∈ X∗ and let
(
Hϕ ,Jϕ ,Uϕ

)
be the unitary operator associated with

the pair (V,ϕ) . By (2.1), we have σUϕ

(
Jϕx
)⊂ σV (x) and consequently, σUϕ

(
Jϕx
)

is
countable. In view of Lemma 2.5 (a), we can write

〈Uk
ϕJϕx,Jϕx〉 = 〈JϕVkx,Jϕx〉 = 〈Vkx,J∗ϕJϕx〉 (k ∈ N) .

It follows that for every ξ ∈ σUϕ

(
Jϕx
)
,

lim
n→∞

1
n

n

∑
k=1

ξ−k〈Uk
ϕJϕx,Jϕx〉 = lim

n→∞

1
n

n

∑
k=1

ξ−k〈Vkx,J∗ϕJϕx〉 = 0.

By Lemma 2.5 (c), it suffices to show that Jϕx = 0.
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To simplify the notation, we put U := Uϕ and y := Jϕx. Let E (·) be the spectral
measure of U and let μy be the scalar measure defined on the Borel subsets of Γ by

μy (Δ) = 〈E (Δ)y,y〉 = ‖E (Δ)y‖2 .

Then, for every ξ ∈suppμy = σU (y) , we can write

0 = lim
n→∞

1
n

n

∑
k=1

ξ−k〈Uky,y〉 = lim
n→∞

∫
Γ

(
1
n

n

∑
k=1

ξ−kζ k

)
dμy (ζ ) = μy {ξ} .

This shows that μy is a continuous measure. As is well known, there is no nonzero
continuous measure supported by countable set. Consequently, μy = 0. This clearly
implies that y = 0. �

Proof of Theorem 5.1. Let L be the closed linear span of {Tnx : n � 0} and let
(Y,J,V ) be the limit isometry associated with TL . As in the proof of Theorem 3.2, we
have

σ (V )∩Γ ⊂ σT (x)∩Γ.

Consequently, V is an invertible isometry, σ (V )⊂ σT (x)∩Γ, and σ (V ) is countable.
Since

〈VkJx,Jx〉 = 〈JT k
L x,Jx〉 = 〈Tkx,J∗Jx〉 (k ∈ N) ,

we have

lim
n→∞

1
n

n

∑
k=1

ξ−k〈VkJx,Jx〉 = lim
n→∞

1
n

n

∑
k=1

ξ−k〈Tkx,J∗Jx〉 = 0, .

for every ξ ∈ σ (V ) . It follows from the preceding lemma that Jx = 0. Hence,
limn→∞ ‖Tnx‖ = 0. �

Let T be a power bounded operator on a Banach space X and let x ∈ X . Assume
that

lim
n→∞

1
n

n

∑
k=1

∣∣∣〈ϕ ,Tkx〉
∣∣∣= 0, ∀ϕ ∈ X∗.

It follows that x ∈ (ξ −T )X , for every ξ ∈ Γ. Consequently, we have

lim
n→∞

1
n

∥∥∥∥∥ n

∑
k=1

ξ−kT kx

∥∥∥∥∥= 0, ∀ξ ∈ Γ.

Hence, we have the following.

COROLLARY 5.3. Let T be a power bounded operator on a Banach space X and
let x ∈ X . Assume that

(i) σT (x)∩Γ is at most countable,

(ii) limn→∞
1
n

n

∑
k=1

∣∣∣〈ϕ ,Tkx〉
∣∣∣= 0, ∀ϕ ∈ X∗.

Then, limn→∞ ‖Tnx‖ = 0.
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REMARK 5.4. Note that the condition (ii) in the preceding corollary can be re-
placed by the condition

∃α > 0, ∀ϕ ∈ X∗, lim
n→∞

1
n

n

∑
k=1

∣∣∣〈ϕ ,Tkx〉
∣∣∣α = 0.

For this, it is enough to show that the above condition implies the following.

∀β > 0, ∀ϕ ∈ X∗, lim
n→∞

1
n

n

∑
k=1

∣∣∣〈ϕ ,T kx〉
∣∣∣β = 0.

This follows from the following simple fact. If {an} is a bounded positive sequence

and if
aα
1 +...+aα

n
n → 0, for some α > 0, then

aβ
1 +...+aβ

n
n → 0, for every β > 0. To see

this, assume on the contrary that
aβ
1 +...+aβ

n
n � 0. Then,

aβ
1 +...+aβ

ni
ni

� δ > 0 for some
subsequence {ni} . As the sequence {ani} is bounded, ani j

→ a for some subsequence{
ni j

}
. Since aα

ni j
→ aα , we have

aα
1 +...+aα

ni j
ni j

→ aα , so that a = 0. Thus we have ani j
→

0 and so aβ
ni j

→ 0. Consequently,
aβ
1 +...+aβ

ni j
ni j

→ 0. This is a contradiction.

Below, we present some applications of Theorem 5.1.
If T ∈ B(X) , we let AT denote the closure in the uniform operator topology of

all polynomials in T . Note that AT is a commutative unital Banach algebra. The
Gelfand space of AT can be identified with σAT (T ) , the spectrum of T with respect
to the algebra AT . It follows from the Shilov’s Theorem [10, Theorem 2.3.1] that if T
is power bounded, then σAT (T )∩Γ = σ (T )∩Γ. Since σ (T ) is a (closed) subset of
σAT (T ) , for every λ ∈ σ (T ) , there exists a multiplicative functional φλ on AT such
that φλ (T ) = λ . By Ŝ , we will denote the Gelfand transform of S ∈ AT . Here, instead
of Ŝ (φλ )(= φλ (S)) , where λ ∈ σ (T ) , we will use the notation Ŝ(λ ) . Notice that
λ �→ Ŝ (λ ) is a continuous function on σ (T ) .

Let T be a power bounded operator on a Hilbert space H and let Q ∈ {T}′ , the
commutant of T. In [11], it was proved that if

lim
n→∞

1
n

∥∥∥∥∥ n

∑
k=1

ξ−kT kQ

∥∥∥∥∥= 0

holds for every ξ ∈ σ (T )∩Γ, then limn→∞ ‖TnQ‖ = 0.
For a given T ∈B(X) , we denote by LT , the left multiplication operator on B(X) ;

LT Q = TQ. We know that σ (LT ) = σ (T ) . Now, applying Theorem 5.1 to the operator
LT on the space B(X) , we have the following.

COROLLARY 5.5. Let T be a power bounded operator on a Banach space X
with countable unitary spectrum. Then, the following statements are equivalent for
Q ∈ B(X) .
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(i) limn→∞
1
n

∥∥∥∥∥ n

∑
k=1

ξ−kT kQ

∥∥∥∥∥= 0 , ∀ξ ∈ σ (T )∩Γ.

(ii) limn→∞ ‖TnQ‖ = 0.

COROLLARY 5.6. Let T be a power bounded operator on a Banach space X
with countable unitary spectrum. The following statements are equivalent for compact
operator K on X .

(i) 1
n

n

∑
k=1

ξ−kT kK → 0 (n → ∞) in the weak operator topology, ∀ξ ∈ σ (T )∩Γ.

(ii) limn→∞ ‖TnK‖ = 0.

Proof. For every x ∈ X and ξ ∈ σ (T )∩Γ, we have

1
n

n

∑
k=1

ξ−kT kKx → 0 weakly,

By Theorem 5.1,
lim
n→∞

‖TnKx‖ = 0, ∀x ∈ X .

Since the set {Kx : ‖x‖ � 1} is relatively compact, for a given ε > 0, it has a finite
ε -mesh, say {Kx1, ...,Kxm} , where ‖xi‖ � 1 (i = 1, ...,m) . So, we have

‖TnK‖ � max
i

{‖TnKxi‖}+ ε sup
n�0

‖Tn‖, (n ∈ N) .

It follows that limn→∞ ‖TnK‖ = 0. �
An operator T acting on a Banach space is called polynomially bounded if there

exists a constant C > 0 such that

‖P(T )‖ � C‖P‖∞ ,

for all polynomials P. By the von Neumann inequality, every Hilbert space contraction
is polynomially bounded with constant C = 1. Notice also that every polynomially
bounded operator is power bounded. In [15] it was proved that if T is a polynomially
bounded operator with constant C, then for every Q ∈ AT ,

lim
n→∞

‖TnQ‖ � C sup
ξ∈σ(T )∩Γ

∣∣∣Q̂ (ξ )
∣∣∣ . (5.1)

We finish the paper with the following.

PROPOSITION 5.7. If T is a polynomially bounded operator on a Banach space,
then the following statements are equivalent for Q ∈ AT .

(i) limn→∞
1
n

∥∥∥∥∥ n

∑
k=1

ξ−kT kQ

∥∥∥∥∥= 0 , ∀ξ ∈ σ (T )∩Γ.

(ii) limn→∞ ‖TnQ‖ = 0.
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Proof. For every ξ ∈ σ (T )∩Γ, there exists a multiplicative functional φξ on AT

such that φξ (T ) = ξ . Then, we have

∣∣∣Q̂(ξ )
∣∣∣ =

1
n

∣∣∣∣∣〈φξ ,
n

∑
k=1

ξ−kT kQ〉
∣∣∣∣∣� 1

n

∥∥∥∥∥ n

∑
k=1

ξ−kT kQ

∥∥∥∥∥→ 0 (n → ∞) .

So, Q̂ vanishes on σ (T )∩Γ. It follows from (5.1) that limn→∞ ‖TnQ‖ = 0. �
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