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THE BEHAVIOR OF THE ORBITS OF POWER BOUNDED OPERATORS

H. S. MUSTAFAYEV

(Communicated by D. R. Larson)

Abstract. Let T be a power bounded operator on a Banach space X and let or (x) be the
local spectrum of 7 at x € X. In this paper, we study the asymptotic behavior of the orbits
{T"x:n >0} in terms of the local spectrum of T at x.

1. Introduction

Let X be a complex Banach space and let B(X) be the algebra of all bounded,
linear operators on X . For T € B(X), we denote by ¢ (T), the spectrum of T and by
R.(T):= (zI —T)"' (z¢ 6 (T)) the resolvent of T. The unit circle in the complex
plane will be denoted by I', whereas D indicates the open unit disc. The set o (7)NT"
will be called the unitary spectrum of T .

Recall that T € B (X) is called stable if lim,_... || T"x|| =0 for all x € X. Generally
speaking, the asymptotic behavior of the orbits {T"x:n > 0} is frequently related to
unitary spectrum of underlying operator. This is well illustrated by the following clas-
sical result of Nagy-Foias [16, Proposition II. 6.7]. If T is a completely non-unitary
contraction on a Hilbert space and if the unitary spectrum of 7 is of Lebesgue measure
zero, then T is stable.

For arbitrary T € B(X) and x € X, we define pr (x) to be the set of all A € C for
which there exists a neighborhood O, of A with u(z) analytic on O, having values
in X such that (zI — T)u(z) = x, Vz € O, . This set is open and contains the resolvent
set p (T) of T. By definition, the local spectrum of T at x, denoted by o7 (x) is the
complement of pr (x), so it is a closed subset of ¢ (7). This object is most tractable if
the operator 7' has the single-valued extension property (SVEP) i.e. for every open set
U in C, the only analytic function f: U — X for which the equation (zI —T) f (z) =0
holds, is the constant function f = 0. In that case, for every x € X there exists a
maximal analytic extension of R, (T)x to pr (x). It follows that if 7 has the SVEP,
then o7 (x) # 0, whenever x # 0. It is easy to see that an operator T € B(X) having
spectrum without interior points has the SVEP.

Note that the local spectrum of 7" may be “very small” with respect to its usual
spectrum. To see this, let o be a ”small” part of ¢ (7') such that both o and 6 (T)\ ©
are closed sets. Let Ps be the spectral projection associated with ¢ and let X := PsX .
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Then, X, is aclosed T -invariant subspace of X and o (T |x,) = 0. Itis easy to check
that or (x) C o, forevery x € X5.
An operator T acting on a Banach space is called power bounded if

sup [[T"]| <o
n=0

(by changing to an equivalent norm it can be made contractive). If T is power bounded,
then o (T) C D and o7 (x) NT, the local unitary spectrum of x € X consists of all £ €
I" such that the function R, (T)x (|z| > 1) has no analytic extension to a neighborhood
of &. Clearly,
o (T)NT = | (or (x)NT).
xeX

An operator T € B(X) is called stable at x € X if lim, .. ||7"x|| = 0. Local
version of the Nagy-Foias Theorem was provedin [9]: If T is a completely non-unitary
contraction on a Hilbert space and if o7 (x) NI is of Lebesgue measure zero, then T is
stable at x € X.

Let T be a power bounded operator on a Banach space. Assume that the unitary
spectrum of 7' is countable. Discrete version of Arendt-Batty-Lyubich-Phong (ABLP)
theorem asserts that if 7* has no unitary eigenvalues, then T is stable (see, [2] and [17,
Chapter 5]).

In this paper, for the stability of T at x € X, some spectral conditions are found
on T andon x.

2. Preliminaries

This section deals with some preliminaries that will be used later.
If E is an invariant subspace of T € B(X), we denote by Tg or by T |g the
restriction of 7' to E. We will need the following.

LEMMA 2.1. Let T be a power bounded operator on a Banach space X and let
E be a (closed) T -invariant subspace of X . Then, for every x € E, we have

OTg (x) NI'=or (x) NTI.

Proof. Let x € E. Clearly, pr, (x) C pr (x) and so
or (x)NI'C o, (x)NT.

For the reverse inclusion, let & € pr (x) NI and let 7 : X — X /E be the canonical
mapping. Then, there exists a neighborhood O¢ of & with u (z) analytic on O having
values in X such that (zI —T)u(z) =x on O . Notice that

=

u(z) =R (T)x=Y 7T e E,
n=0
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forall z € O with |z| > 1. Therefore, we have 7u (z) =0, forall z € O¢ with [z] > 1.
By uniqueness theorem, 7u(z) =0, for all z € O . Hence, we obtain that u(z) € E,
forall z € O¢ . Consequently, we can write

(el = Tg)u(z) =x, Vz € O¢.

This shows that & € pr, (x)NT. O

As an illustration of Lemma 2.1, consider the following example. Let K be a
Hilbert space and let H? (K) be the Hardy space of K -valued analytic functions on D.
By Sk, we denote the forward shift operator on H? (K);

(Skf)(2) = 2f (2).
Its adjoint, the backward shift, is given by

f(2)—£(0)
Z

(Skf) (2) = , feHX(K).

It is easy to verify that for every f € H*(K) and A € C with |A]| > 1,

)L—l l_l _
(-t = 2LE ) IE

Hence, og; (f) NT consists of all § € T' for which the function f has no analytic
extension to a neighborhood of £. Now, let T be a stable contraction on a Hilbert
space H i.e.

nh_IEo |T"x|| =0,¥x € H.

Let 2 := (I— T*T)% and K := ZH. By well-known Model Theorem of Nagy-Foias
[16, Chapter VI], there exists Sk -invariant subspace E of H 2 (K) and a unitary operator
U : H — E such that
T=U"(Sx|p)U,
where .
(Ux)(z) = D, "PT"x (x€ H).
n=0
It follows from Lemma 2.1 that if x € H, then

or (x)NI'=og |, (Ux) T = o5 (Ux)NT.

e

Hence, oy (x) NT consists of all & € T such that the function z — (Ux) (z) has no
analytic extension to a neighborhood of & .

Let V be an isometry on a Banach space. It is well known that if ¢ (V) # D, then
V is invertible. Recall also that x € X is a cyclic vector of T € B(X) if

span{T"x:n >0} =X.

The following result was proved in [9, Lemma 1.3].
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LEMMA 2.2. Let V be an isometry on a Banach space X. If x € X is a cyclic
vector of V, then
oc(V)NT =oy (x)NT.

By Li.m.,a, we will denote Banach limit of the bounded sequence {ay} .
The following result is well known (see for instance, [9, 1 1] and [17, Chapter 5]).

LEMMA 2.3. If T is a power bounded operator on a Banach space X, then there
exist a Banach space Y, a bounded linear operator J : X — Y with dense range, and
an isometry V on Y with the following properties:

(a) VI=JT.

(b) x| =lim.,||T"x||, Vx € X.

(¢) o(V)Co(T).

If X is assumed to be a Hilbert space, then Y is a Hilbert space, also.

The triple (Y,J,V) will be called the limit isometry associated with T . Notice that
Jx =0 if and only if lim,_.. ||T"x|| = 0. Notice also that if x € X is a cyclic vector of
T, then Jx is a cyclic vector of V.

LEMMA 2.4. Let T be a power bounded operator on a Banach space X and let
(Y,J,V) be the limit isometry associated with T . Then we have

oy (Jx) Cor(x), VxeX.

Proof. If A € pr(x), then there exists a neighborhood U, of A with u(z) ana-
lytic on U, having values in X such that (z/ —T)u(z) =x, Vz € U, It follows that
(zJ —JT)u(z) = Jx. Since JT =VJ, we have (zI —V)Ju(z) = Jx, ¥z € Uy . This
shows that A € py (Jx). O

The following lemma was proved in [14, Lemma 3].

LEMMA 2.5. Let V be an invertible isometry on a Banach space X with count-
able spectrum. For arbitrary ¢ € X*, there exist a Hilbert space Hy, a bounded linear
operator Jy : X — Hgy with dense range, and a unitary operator Uy on Hy with the
following properties:

(a) UpJy = JpV.

(b) 6 (Up) Co(V).

(c) () kerJ,={0}.

peX

The triple (H(P,J(p, U(p) will be called the unitary operator associated with the pair
(V, ). As in the proof of Lemma 2.4, we can see that for every ¢ € X* and x € X,

ov, (Jpx) C oy (x). (2.1)
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3. Hilbert space operators

In this section, we consider stability problem for operators on Hilbert space with
“thin” spectra.

We denote by o7 the set of all continuous functions on I" having an absolutely
convergent Fourier series. .7 is a commutative Banach algebra under the norm

Al =2

nez

f(n)

)

where f(n) is the nth Fourier coefficient of f € .o/

Recall [19, Chapter 5] that a closed set S in I' is a Helson set if for every contin-
uous function g on S there corresponds a function f € & such that f(s) = g (s), for
all s € S.

Let M (T') be the space of regular complex Borel measures on I". The nth Fourier
coefficient of y € M (T) is defined by

2r

)= [eau) (nez).

0

It is well known that if i (n) =0 for all n € Z, then u = 0.
The Helson Theorem [19, Theorem 5.6.10] asserts the following.

THEOREM 3.1. Let S C T be a Helson set and let i € M (') be given such that
suppp C S. If limy, .. [l (n)| = 0, then u = 0.

As an application, we have the following.

THEOREM 3.2. Let T be a power bounded operator on a Hilbert space H and
let x € H. Assume that
(i) or (x)NT is contained in a Helson set,
(ii) T"x — 0 weakly as n — oo.
Then,
lim |77 =0,

Proof. Let L be the closed linear span of {7”x:n > 0}. Then, L is a T -invariant
subspace of H. Let (K,J,V) be the limit isometry associated with 7;,. By Lemma 2.4,
oy (Jx) C oy, (x). Consequently, we have

oy (Jx)NT' C or, (x)NT.
Taking into account Lemma 2.1, we can write

oy (Jx)NT C or (x)NT.
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Further, since Jx is a cyclic vector of V by Lemma 2.2, we obtain
o(V)NT =oy (Jx)NT C o7 (x)NT.

Consequently, V' is a unitary operator and ¢ (V') is contained in a Helson set.
Let E (-) be the spectral measure of V and let . be the scalar measure defined
on the Borel subsets of I" by

iz (8) = (E (8)Jx,Jx) = |[E (A)Jx].
From the spectral decomposition of V, we can write

2

G (n) = / My, (1)

2
/ (B Jx,Jx) = (V" JIx,Jx) (n€Z).
0

On the other hand, from Lemma 2.3 (a), we have J*V*" = T;*J* (n € N) which implies

(V7 x,Jx) = (J*'V*x,x) = (T;"" T Jx,x)
(J*Jx, T"x) = (T"x,J*Jx) — 0 (n — o).

Similarly,

fiyx (=n) = (V"Jx,Jx)
= (JT"x,Jx) = (T"x,J"Jx) — 0(n — o).

Thus, we have
lim |.LLJX )} =0

[n|—oo

Since supp Wy is contained in a Helson set, by Theorem 3.1, ;. = 0. Consequently,
E (A)Jx =0 for every Borel subset A of T. Therefore, we have VJx = 0. It follows
that Jx = 0. This means that lim,_. ||7"x|| =0. O

If A is a subset of Z, we denote by C, the space of all continuous functions f
on I' such that f(n) =0 if n ¢ A. A subset A of Z is called a Sidon set if for every
trigonometric polynomial f € Cy, there exists a constant C > 0 such that

pARO)

We need the following result [20].

THEOREM 3.3. Suppose that A is a Sidon set in Z. If u € M () is such that
U (n) =0 foreach n € Z., \ A, then U is absolutely continuous with respect to Lebesgue
measure on T
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As an application, we have the following.

THEOREM 3.4. Let T be a power bounded operator on a Hilbert space H and
let x€ H. Let A be a Sidon set in Z... Assume that
(i) The Lebesgue measure of or (x) NT is zero,
(ii) limg o (TH "%, T*x) =0, Vn € Zy \ A.
Then,
lim |77 =0,

Proof. Let L be the closed linear span of {T"x:n >0} and let (K,J,V) be the
limit isometry associated with 77 . As in the proof of Theorem 3.2, we have

oc(V)NnT Cor(x)NT.
It follows that V is unitary and
o(V)Cor(x)NnT.

Consequently, the Lebesgue measure of ¢ (V) is zero.
We can write

(V'x,Jx) = (JT"x,Jx)
= Lim (T*x, T*x) = 0, Vn € Z, \ A.

Let E (-) be the spectral measure of V and let p, be the scalar measure defined
on the Borel subsets of I" by

Hux (A) = (E (A)Jx,Jx) = |[E (&) Jx] .

We have
[y (n) = (V'Jx,Jx) = 0,Vn € Z; \ A.

By the preceding theorem, (i, is absolutely continuous with respect to Lebesgue mea-
sure. Consequently, E (A)Jx = 0 for every Borel subset A of ¢ (V). Therefore, we
have VJx = 0. It follows that Jx = 0. This means that lim, .. [|7T"x|| =0. O

Recall that o7 is a commutative regular semisimple Banach algebra. The elements
of &/* are called pseudomeasures. We will write ¢ = {Q (n)},,o;,, where

¢ (n):=(p.e") (ne)

is the Fourier coefficients of a pseudomeasure ¢. If f € o7, then the duality being
implemented by the formula

(0./) =3, @ (n)f(n).

nez

The hull (/) of an ideal I C &/ is defined as
hull(l) ={&eT:f(§)=0,Vfel}.
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If ¢ is a pseudomeasure, then
ly:={fed  ¢p-f=0}
is a closed ideal in @7, where ¢ - f is a pseudomeasure defined by

(9-f.8)=(0,fg), g€ .

Recall that the support of a pseudomeasure @ is defined as follows. For & € T', we
let & ¢ supp ¢ iff there is a neighborhood O of & such that (¢, f) =0 forall f € o/
with supp f C O¢. An equivalent definition for supp ¢ is that E esuppo iff - f =0
implies f (&) = 0. Consequently, for every pseudomeasure ¢, we have

suppg = hull () .

The well-known Loomis Theorem [13] states that if the support of a pseudomeasure @
is at most countable, then ¢ is almost periodic.
If u e M(T), then
(pﬂ = {” (n)}nEZ
is a pseudomeasure. Notice that supp ¢, and supp i in the usual sense are the same.
Notice also that if ¢, is an almost periodic pseudomeasure, then

Ce (pu) =n{&},

where Cz (@) is the Fourier-Bohr coefficients of ¢y . It follows from the uniqueness
theorem that if ¢ is a nonzero almost periodic pseudomeasure, then the corresponding
measure U has a nontrivial discrete part.

Next, we have the following.

THEOREM 3.5. Let T be a power bounded operator on a Hilbert space H which
has no unitary eigenvalues. Assume that there exists a vector x € H such that

(i) inf,>0 ||T"x|| >0,

(it) or (x)NT is countable.

Then, there exists a nonzero vector 'y € H such that

lim [|7"y]| = 0.
n—o0

Proof. Let L be the closed linear span of {T"x:n >0} and let (K,J,V) be the
limit isometry associated with 77. As in the proof of Theorem 3.2, we can see that V
is unitary and

o(V)Cor(x)NnT.

Consequently, o (V) is countable.
Let E (-) be the spectral measure of V and let p, be the scalar measure defined
on the Borel subsets of I" by

Hux (A) = (E (A)Jx,Jx) = ||E (&) Jx] .
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We have
(V"x,Jx) =[x (n) (n€Z)

and supp ttyx C o (V). Consequently, supp iy, is countable. By Loomis theorem,

(p/JJx = {!’TJ\X (n)}nEZ

is an almost periodic pseudomeasure and
Hx (0) = |Jx]* = Lim [|7"x[* > 0.

It follows that the measure [y, has a nontrivial discrete part. Therefore, 1y, {&} # 0
for some &) € T'. Consequently, we have E {&y}Jx # 0.
Let us show that E {&y}Jx = Ju for some u € L. For this purpose, consider the
function .
1+ &z

fz):= 5

Then, f (&) =1 and |f(z)| <1 forall z€ D\ {&}. We claim that the operator

1+&T

F(1)= =

is power bounded. Indeed, we have

= g5 = 5 5 ()7
<35 () Il <l

Taking a subsequence if necessary we can assume that {f (7)"x}, .y is weakly con-
vergent to some u € L. It follows that Jf (T)"x — Ju weakly. Let arbitrary v € L be
given. In view of Lemma 2.3 (a), we can write

FW)"Ix=Jf(T)"x (neN).
Consequently, we have

(Ju,v) = im (Jf(T)" x,v)

n—oo

= lim (f (V)" Jxv) = lim [ 1" (&)d(E (&) Jx.v)

n—oo
T

(E &) xw)+lim [ (E)d(EE)Ix)
M\{So}

= (E (o) Jx,v).

Thus, we obtain that E {&y}Jx = Ju. As E{&}Jx# 0, we have u # 0.
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Notice that E {&y} Jx is an eigenvector of V corresponding to the eigenvalue &.
Therefore, Ju is an eigenvector of V' corresponding to the eigenvalue &;

Vu = &yJu.
Since VJu = JTu, we have JTu = {yJu. By Lemma 2.3 (b), this means that
lim ||T" (Tu — Eu)|| = 0.

n—00

Let y := Tu — &u. Since T has no unitary eigenvalues, we have that y # 0 and
lim,_. ||T"y|| =0. O

Recall that the subspace E of X is hyperinvariant for T € B(X) if SE C E for
every S € B(X) which commutes with T.

COROLLARY 3.6. Let T be a power bounded operator on a Hilbert space H
which is not a multiple of the identity. Assume that there exists x € H such that:

(i) inf,>o || T"x|| > 0;

(it) or (x)NT is countable.

Then, T has a nontrivial hyperinvariant subspace.

4. Banach space operators

In this section, we present local version of a theorem of Gelfand [6] on doubly
power bounded operators, and another of Katznelson and Tzafriri [8] on power bounded
operators ones.

An invertible operator 7' on a Banach space is called doubly power bounded if

supl| "] < o=
nez

Now, let T be a doubly power bounded operator on a Banach space X. Then, 6 (T) C T’
and therefore 7 has the SVEP. For a given f € <7, we can define f(T) € B(X) by

f(T) = Fm)T".

nez

Then, h: f — f(T) is a continuous algebra homomorphism with the norm
1Al = sup |7"]]
nez
It is easy to check that ¢ (T') =hull (ker 7).

Recall that the Carleman transform ® (z) of a pseudomeasure @ = {§ (1)}, is
defined by the relation
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We know [4, Chapter 3] that @ (z) is a function analytic on C\ supp ¢.
For a given ¢ € X* and x € X, let ¢, be a pseudomeasure defined by

<(pxaf> = <(P,f(T))C>, f S be
Since @y (n) = @ (T"x) (n € Z), from the identity

S o 2 > 1
: o> 1

R.(T)x={ 0"

(T)x={ =02

S i <1,

n=1

we have

i o (n)
Z<§0»Rz (T)x) = n=0_ Vit
=3 L), [ < 1.

n=1

, lz] > 1;

This shows that z(¢,R; (T)x) (|z| # 1) is the Carleman transform of ¢,. It follows that
or (x)= J suppex,
pex*

for every x € X.
If x € X, then
L={fed: f(T)x=0}

L= () Ip-

PpeX*

is a closed ideal of <7 and

Recall that
I(px == {fE %: (px'f:O}.
Since
hull (1, ) = suppex,

it follows from the general theory of Banach algebras that

hull (1) = | hull(Zy,) = [ J suppe: = or (x).
pexX* pexX*

Hence, we have the following.

PROPOSITION 4.1. If T is a doubly power bounded operator on a Banach space
X, then for every x € X, we have

or (x) = hull(I,).
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From the preceding proposition, it easily follows that for every f € &/ and x € X,
the following relations hold:

or (f(T)x) C or (x) Nsuppf, (4.1)

or (x)N{E €= f(§) #0} Cor (f(T)x). (4.2)

Let T be an invertible operator on X. Recall that x € X is a doubly cyclic vector
of T if
span{T"x:ne€Z} =X.

COROLLARY 4.2. Let T be a doubly power bounded operator on a Banach space
X. If x € X is a doubly cyclic vector of T, then

or(x)=0o(T).

REMARK 4.3. Aninvertible operator 7 on X is called nonquasianalytic [3, Chap-
ter XII] if

log||T"
2 lgH 2” < oo,
nez +n

The assertion of the preceding proposition remains valid for nonquasianalytic operators,
too.

Given a closed subset S of T, there are two distinguished closed ideals of <7 with
hull equal to S, namely

Js={fe€o :suppfNS=0}

and
Is={feo:f(§)=0,VEeS}.

The set S is called a set of synthesis if Jg = Is ([10, Chapter 8]).

Well-known Gelfand’s theorem [0] states that if 7' is a doubly power bounded
operator with 6 (T) = {1}, then T =1.

We include here the following result which seems to be unnoticed.

PROPOSITION 4.4. Let T be a doubly power bounded operator on a Banach
space X andlet x € X. If or (x) ={&1,....6.} (& #&j, i#J), then

xeker(T—&) & dker(T —&,1).

Proof. Let Uy, ...,U, be a disjoint neighborhoods of &i,...,&,, respectively. Let
Vi be a neighborhood of & such that Vi C Uy (k= 1,...,n). Then, there exist functions
Sf1s-fu iIn &7 such that f; =1 on V; and f; =0 outside Uy (k=1,...,n). Put f =
fi+ ...+ fu- Since 1 — f vanishes in a neighborhood of or (x), the function 1 — f
belongs to the smallest ideal of %7 whose hullis or (x) . It follows from Proposition 4.1
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that 1 — f € I, sothat f(T)x=x. Hence, we have x = x| + ... +x,, where x; = f; (T ) x
(k=1,...,n). Further, it follows from the relations (4.1) and (4.2) that

{&} Cor (x) Cor (x)Nsuppfi = {&}-

Hence, we obtain or (x;) = {&} . It remains to show that if y € X with or (y) = {§},
then Ty = &y. By Proposition 4.1, hull () = {&}. Since {£} is a set of synthesis [10,
Chapter 8], we have Iy=I(¢), so that

{fed f(T)y=0}={fes:f(c)=0}.
If we put in the last identity f = —& (£ €T), then we have Ty=E&y. O

REMARK 4.5. Let T be an invertible operator on a Banach space. Assume that
there exists 0 < o < 1 such that

|7"|| < const(1+ [n|)*, Vn € Z.
In this case, the assertion of the preceding proposition remains valid.

We denote by o7, the set of all functions

analytic on D and satisfying
A1l = 3 |F )] <.
n=0

(whence f is a continuous function on D). .27, is a commutative Banach algebra under
this norm. Let ¢ € &7 and @ (n) := (@,2") (n>0). If f € o/, then the duality being
implemented by the formula

<%ﬁ=§ﬁwfw.

If T is a power bounded operator on a Banach space X, then for a given f € <7, , we
can define f(T) € B(X) by

ﬂﬂ=§ﬂmﬂ

Then, h: f — f(T) is a continuous algebra homomorphism with the norm

[[2]] = sup |[T"]].
n=0
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It follows that if f is a power bounded element of .7, (in particular, if || f||; < 1), then
Sf(T) is power bounded. Standard Banach algebra techniques shows that the spectral
mapping property ¢ (f(T)) = f(o(T)) (f € ;) holds.
If x € X, then
I :={fed: f(T)x=0}
is a closed ideal of o7, .

We have the following.

PROPOSITION 4.6. If T is a power bounded operator on a Banach space X, then
for every x € X, we have
or (x) C hull (I]) .

For the proof, we need some preliminary results. For a given ¢ € /] and f € &/, ,

define w
2 (|z] > 1), (4.3)
¢ (—n) ::ki)@(k)f(k—i-n) (n=1,2...),
and B
v(z): =§¢( n)z" (]2 <1). (4.4)

The following result is contained in [18, Chapter 4, Theorem 10].

LEMMA 4.7. Let ¢ € </ and f € <f,. Assume that the functions ¢* (z) and
V() are defined as in (4.3) and (4.4), respectively. If

Y G (ktn)f (k) =0 (vn>0),

k=0
then
0" (2), |zl > 1;
D(z):=
(2) {—%Zz)), |z <1

is an analytic function on the complex plane possible expectation of zero set of f.

Proof of Proposition 4.6. Assume that A € D\ hull(I;"). Then, there exists a func-
tion f € o7, suchthat f(T)x=0 but f(4) # 0. For a given ¢ € X*, define ¢, € &/
by

(9, f) = (@, [ (T)x), [ € 5.

Since ¢y (n) = ¢ (T"x) and

X
1 (2> 1),
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we have

o (=3 2 = 5 20 o k(1)) (11> 1),

By the preceding lemma, the function z+— (@, R, (T)x) can be analytically extended to
a neighborhood of A for every ¢ € X*. It follows that A € pr (x). O

Katznelson and Tzafriri [8] obtained the following generalization of Gelfand’s

theorem. If T is a power bounded operator on a Banach space, then
lim ||7"*' —T"|| =0
ifand only if o(T)NT C {1}.

We denote by %£ the set of all f € &7 such that ||f||; <1, f(1) =1, and
|f(z)] <1 forall ze D\ {1}. For example, if {a,},  is a sequence such that 0 <
a, <1 (n=0,1,...) and 37 ja, = 1, then the function f(z) = 357 ja,2" is in </!.
Notice that if f € o/ j, then f(T) is power bounded and by the spectral mapping
property, o (f (T))NT C {1}. Consequently, for every f € <7, we have that

lim Hf(T)”+l —r(r)"| =o.

n—oo

Below, we present local quantitative version of Katznelson-Tzafriri theorem (see
also [1]).
An entire function f is said to be of order p if

o loglogM (r)
r—e  logr

p= )
where M (r) = sup{|f(z)| : |z| < r}. An entire function of finite order p is said to be
of type o if
o — T logM (r).
e P
If the entire function f is of order less than 1 or f is of order 1 and type less than or
equal to o, we say f is of exponential type o [5, p. 8].

For a given ¢ > 0, we denote by B¢ the set of all bounded on the real line entire
functions f of exponential type < o, i.e., for every € > 0, there exists a constant
C¢ > 0 such that

If (2)] < Ceel®+Old vz e C.

It follows from the Phragmen-Lindelof theorem that if f € B; and

Cr:=sup|f(1)],
teR
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then
|f(Z)| < Cfe()'\ImZ\.

Notice that By is a Banach space under the norm given by
1l := sup [~ | )]
zeC

In fact,

1fllg =sup|f ()]
teR

The following inequality of Bernstein type is well known [7]. If f € By, where
0<oh< %, then

sup|f (1 +h)— f(t —h)| < 2sinch||f|5.
teR

It follows that for every f € Bg,

)= O] <2sinZ |1 f]5 (0 <),

[f () =f (=D <2sino||f]s (G < 9

On the other hand, by Cartwright theorem (see, [5, Chapter 10] and [7]), the inequality

(e
Ifllg < sec 3 suplf (n)

nez

holds for every f € Bs (0 < 7). So, we have

1) fO) <20 (suplro)l) ¥r e B (0 <m). @9)
ne

e T
()~ (-1 <2sin T (iggwn) reBo (o< k). @

Let V be an invertible isometry on a Banach space X. Notice that if o (V) =T,
then ||V —I|| = 2. Now, assume that ¢ (V) is contained in the arc

Ag = {e""er:\e\ga},

where 0 < 0 < & (any proper closed subset of " can be rotated so as to lie inside
some such As). Then V = ¢’ for some S € B(X), where ¢ (S) C [~0,0]. For a
given ¢ € B(X)" with norm one, consider the entire function f(z) := ¢ (¢*5). Since
||| =1 for all n € Z, we have |f(t)| < elS!l for all # € R. On the other hand, the
inequality

1 (2)] < IS



POWER BOUNDED OPERATORS 991

gives us that the order of f is less than or equal to 1. Notice also that the nth derivative
of f atzerois ¢ (i"S"). Thus, by Levin’s theorem [ 12, p. 84], the type of f is less than
or equal to

1
lim [|S"] .
n—soo

On the other hand, the last expression is less than or equal to . Consequently, f € Be.
Now, applying the inequalities (4.5) and (4.6) to f, we obtain the following inequalities

(o)
IV—1]]<2nz (o <m), 4.7)

V2 =1]=[v-v'<2sing (o< 7). (4.8)

PROPOSITION 4.8. Let T be a contraction on a Banach space X and let x € X.
(a) If or (x)NT C Ag (0 < ), then

fim [| 77 L= 74| < 2tan ¢

n—oo

(b) If o7 (x\)NT C A (0 < %), then

fim [| 772~ 7] | < 2sin 2. ]

n—oo

Proof. Let L be the closed linear span of {T"x:n >0} and let (¥,J,V) be the
limit isometry associated with 7. As in the proof of Theorem 3.2, we can see that

oc(V)NT' Cor(x)NT C Ae.
Hence, V is an invertible isometry and o (V) C As. Now, from the identities
(V—I)Jx=J(Tx—x), (V*—1)Jx=J(T*x—x)
and from the inequalities (4.7) and (4.8), we can write
Tim || 77— 7| = 7 (Tx—x) | = | (V = 1) Jx]|

(o)
SV =1 el < 2tan = lx]],

fim [|772x = T"x]| = [l (T2x =) || = [|(v* = 1) Jx]

n—o0
o
< v =1 Il < 2sin = x| O
It follows from the preceding proposition that if 7 is power bounded and if x € X
with o7 (x)NT C {1}, then

lim HT"Hx — T"xH =0.

n—00
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Note that the converse of this fact is not true in general. To see this, let S be the forward
shift on the Hardy space H?. As lim, .. ||S*"f|| = 0, we have

lim [|S*F1 f —§*f|| =0, Vf € H*.

n—oo

Let u be a positive singular measure on I" such that suppu ¢ {1}. Consider the inner
function

r@=ew |- [ aug
r

We know (see, [16, Theorem II1.5.1]) that supp it consists of all & € T' for which the
function f has no analytic extension to a neighborhood of £ . Now, as g+ (f) =supp U,
we have og (f)NT € {1}.

PROPOSITION 4.9. Let T be a power bounded operator on a Banach space X
and let x € X. Assume that

Lim, ||7" % —T"x|| =0.
If

Tx+..+T"x
n

— 0 weakly as n — oo,

then
lim ||T"x|| = 0.
Nn—oo

Proof. Let L be the closed linear span of {T"x:n >0} and let (¥,J,V) be the
limit isometry associated with 77 . From the identity

VIx—Jx=J(Tx—x),

we have

[VJx = Jx|| = Lim,, | T"'x— T"x|| = 0,
so that VJx = Jx. Since Jx is a cyclic vector of V, we have V = I. From the identities
Jx=JT"x (n € N), we can write

Tx+...+T"x
. .

Jx=J

Let y* € Y* be given. Then, we have

Tx+4..+T"
(", Jx) = <J*y*, M> —0.
n

Hence, Jx = 0. This means that lim,_.. ||7"x|]| =0. O
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REMARK 4.10. If T is a power-bounded operator on X and if x € X, then

=
—ZTkx—>0
Ly}

weakly (n — o), implies that x € Ran(T — I). Consequently, %2;’:1 T*x — 0 strongly
as n — oo,

5. Ergodic conditions

In this section, for the stability of T at x € X, some ergodic spectral conditions
are foundon 7 and on x.

The Cp-semigroup version of the following theorem was proved in [17, Theorem
S.1.11].

THEOREM 5.1. Let T be a power bounded operator on a Banach X and let x €
X . Assume that
(i) or (x)NT is countable,

(i) Ly ER T x — 0 weakly (n — o), VE € or (x)NT.
k=1

Then,
lim ||T"x|| = 0.
N—so0

For the proof of Theorem 5.1 we need the following lemma.

LEMMA 5.2. Let V be an invertible isometry on a Banach space X andlet x € X.
Assume that
(i) ov (x) is countable,

(i) 1 D ERVhx — 0 weakly (n — =), YE € oy (x).
k=1
Then, x = 0.
Proof. Let @ € X* and let (Hy,Jp,Uy) be the unitary operator associated with

the pair (V,@). By (2.1), we have oy, (Jox) C oy (x) and consequently, oy, (Jpx) is
countable. In view of Lemma 2.5 (a), we can write

(Ugdpx, Jox) = (TgVix, Jpx) = (VEx, T5Jpx) (k €N).

It follows that for every & € oy, (Jpx),
1 & 1 &
lim = 3 EMUgIpx, Jpx) = lim — Y EX(Vix, J5 Tox) = 0.
n

k=1 e

By Lemma 2.5 (), it suffices to show that Jyx = 0.
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To simplify the notation, we put U := Uy and y := Jyx. Let E (-) be the spectral
measure of U and let 1, be the scalar measure defined on the Borel subsets of T" by

1y (A) = (E (A)y,y) = | E (A) ]

Then, for every & e€supp i, = oy (y), we can write

0= lim — 25 y’y>:,}ij§°/ (%iéké‘k)duy(g):#y{é}.
4 k=1

n—soo n

This shows that (i, is a continuous measure. As is well known, there is no nonzero
continuous measure supported by countable set. Consequently, t, = 0. This clearly
implies that y=0. [J

Proof of Theorem 5.1. Let L be the closed linear span of {7"x:n >0} and let
(Y,J,V) be the limit isometry associated with 7. As in the proof of Theorem 3.2, we
have

oc(V)NT Cor(x)NT.

Consequently, V is an invertible isometry, ¢ (V) C or (x) NT, and & (V) is countable.
Since
(VEIx,Jx) = (JTFx,Jx) = (T*x,J*Jx) (k€ N),

we have
1
lim — % &~ (VA/x,Jx) = lim ~ 25 (T*x,J*Jx) =0,.

for every & € o (V). It follows from the preceding lemma that Jx = 0. Hence,
lim,—.. [|T"x|| =0. O

Let T be a power bounded operator on a Banach space X and let x € X. Assume
that

n

limlz

n—oo n -l

(qo,T’Sc)’ —0, Vo € X",
It follows that x € (§ — T) X, for every & € T'. Consequently, we have

hm
n—oo N

25 kTkx|| =0, VE €.

Hence, we have the following.

COROLLARY 5.3. Let T be a power bounded operator on a Banach space X and
let x € X. Assume that
(i) or (x)NT is at most countable,

(i )hmnﬂm—i (@, T*x) )—0 Yo e X*.

k=1
Then, limy_. || T"x|| = 0.
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REMARK 5.4. Note that the condition (ii) in the preceding corollary can be re-
placed by the condition

l n
Jor>0, Vo € X*, lim — Y,

o

(qo,T’Sc)’ —0.

For this, it is enough to show that the above condition implies the following.

1 n
VB >0, Vo €X®, lim - )

B
(9, T%)| =o0.
2 (.7

This follows from the following simple fact. If {a,} is a bounded positive sequence

o %+ ta? Protd
1 n 1 n
and if S S

— 0, for every B > 0. To see
allj+...+a§i
—

— 0, for some o > 0, then

B B
this, assume on the contrary that w - 0. Then, > 0 > 0 for some

1
subsequence {n;}. As the sequence {a,,} is bounded, a,, — a for some subsequence
J

o o
aj +...+an’_‘

{n,-j} - Since a; — a%, we have ——~ — a%, so that a = 0. Thus we have a,, —
J ij J
) oot - .
0 and so ay;, — 0. Consequently, nij — 0. This is a contradiction.
J lj

Below, we present some applications of Theorem 5.1.

If T € B(X), we let Ay denote the closure in the uniform operator topology of
all polynomials in 7. Note that A7 is a commutative unital Banach algebra. The
Gelfand space of Ar can be identified with o4, (T'), the spectrum of T with respect
to the algebra A7 . It follows from the Shilov’s Theorem [10, Theorem 2.3.1] that if T
is power bounded, then 64, (T)NT' = o (T)NT. Since o (T) is a (closed) subset of
o, (T), forevery A € o (T), there exists a multiplicative functional ¢, on Ar such
that ¢, (T) =A. By S, we will denote the Gelfand transform of S € A7 . Here, instead
of S(9,)(= ¢ (S)), where A € 6(T), we will use the notation S(A). Notice that
A — S(2) is a continuous function on & (T).

Let T be a power bounded operator on a Hilbert space H and let Q € {T}’, the
commutant of 7. In [11], it was proved that if

1
lim —

n—oo n

i E*rrQ
k=1

‘:0

holds for every £ € o (T)NT, then lim,—.. [|T"Q|| = 0.

Foragiven T € B(X), we denote by Ly, the left multiplication operatoron B (X);
LrQ =TQ. We know that 6 (Ly) = o (T). Now, applying Theorem 5.1 to the operator
Ly on the space B(X), we have the following.

COROLLARY 5.5. Let T be a power bounded operator on a Banach space X
with countable unitary spectrum. Then, the following statements are equivalent for

QeB(X).
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hm,Hoc =

Zg “*rkQ|| =0, V€ € o(T)NT.

(if) limy, o HT"QII

COROLLARY 5.6. Let T be a power bounded operator on a Banach space X
with countable unitary spectrum. The following statements are equivalent for compact
operator K on X.

n
i) % 2 EKT*K — 0 (n — o) in the weak operator topology, V& € o (T)NT.
k=1

(ii) lim,_. |[|T"K|| =

Proof. Forevery x € X and £ € o (T)NT, we have
U ek
= > ET*Kx — 0 weakly,
n

By Theorem 5.1,
lim IT"Kx|| =0, Vx € X.

Since the set {Kx: ||x|| < 1} is relatively compact, for a given € > 0, it has a finite
e-mesh, say {Kxy,...,Kx,}, where ||x;|| <1 (i=1,...,m). So, we have

IT"K|| < max{||T”Kx,H}+8supHT"|| (neN).

It follows that lim,_... || T"K]|| =0. O

An operator T acting on a Banach space is called polynomially bounded if there
exists a constant C > 0 such that

1P(T)[I < C[IP]..,

for all polynomials P. By the von Neumann inequality, every Hilbert space contraction
is polynomially bounded with constant C = 1. Notice also that every polynomially
bounded operator is power bounded. In [15] it was proved that if 7 is a polynomially
bounded operator with constant C, then for every Q € Ar,

fim |70l <€ sup )Q ©)|- (5.1)

Eeo(T

We finish the paper with the following.

PROPOSITION 5.7. If T is a polynomially bounded operator on a Banach space,
then the following statements are equivalent for Q € Ar.

) limy oo 1 Zé *T*0|| =0, V€ € o (T)NT.

(if) Timy e HT"QII
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Proof. Forevery & € o (T)NT, there exists a multiplicative functional ¢z on Ar

such that ¢¢ (T') = &. Then, we have

060) = Loz, S rt0) < L Y et 0 (n ).
k=1 k=1

So. Q vanishes on & (T)NT. It follows from (5.1) that lim,, ... |7"Q|| =0. O
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