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ON THE EXTENDED HOLOMORPHIC CURVES ON C∗–ALGEBRAS

YINGLI HOU AND KUI JI

Abstract. For Ω ⊆ C a connected open set, and U a unital C∗ -algebra, let P(U ) denote
the sets of all projections in U . If P : Ω → P(U ) is a holomorphic U -valued map, then P
is called an extended holomorphic curve on P(U ) . In this note, we focus on discussing the
unitary classification problem of extended holomorphic curves. By considering the metric of
related determinant jet bundles, we give a necessary and sufficient condition for some extended
holomorphic curves on C∗ -algebras to be unitary equivalent.
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