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ON THE EXTENDED HOLOMORPHIC CURVES ON C∗–ALGEBRAS

YINGLI HOU AND KUI JI ∗

(Communicated by N.-C. Wong)

Abstract. For Ω ⊆ C a connected open set, and U a unital C∗ -algebra, let P(U ) denote
the sets of all projections in U . If P : Ω → P(U ) is a holomorphic U -valued map, then P
is called an extended holomorphic curve on P(U ) . In this note, we focus on discussing the
unitary classification problem of extended holomorphic curves. By considering the metric of
related determinant jet bundles, we give a necessary and sufficient condition for some extended
holomorphic curves on C∗ -algebras to be unitary equivalent.

1. Introduction

In this note, we will discuss the unitary equivalence problem of holomorphic maps
in Grassmann manifolds in a C∗ -algebraic setting. Let U be a unital C∗ -algebra, then
p ∈ U is called a projection in U whenever p2 = p = p∗ , and P(U ) denote the
set of all projections in U which is called Grassmann manifold of U . Let Ω ⊆ C

be a connected open set. If P : Ω → P(U ) is a holomorphic U -valued map, then it
is called an extended holomorphic curve on P(U ) (in order to discriminate ordinary
holomorphic curve).

Let P,Q : Ω → P(U ) be two extended holomorphic curves. We say that P and
Q are unitary equivalent (denoted by P

u∼ Q) if there exists a unitary U ∈ U such that
P(λ ) = UQ(λ )U∗ , ∀λ ∈ Ω (cf. [6]).

The unitary equivalent problem of extended holomorphic curves originates from
the systematic researches of holomorphic curves initiated by M. J. Cowen and R. G.
Douglas. Let H be a complex separable Hilbert space and Gr(n,H ) denote n -
dimensional Grassmann manifold, the set of all n -dimensional subspaces of H . A
map p : Ω → Gr(n,H ) is called as a holomorphic curve, if there exist n holomor-
phic H -valued functions e1,e2, . . . ,en on Ω such that p(λ ) =

∨{e1(λ ), . . . ,en(λ )}
for each λ ∈ Ω , where symbol “

∨
” denotes the closure of linear span (cf. [2]). In

the paper [2], M. J. Cowen and R. G. Douglas introduced a class of operators related
to complex geometry now referred to as Cowen-Douglas operators [cf. example 1.2].
There exists a natural connection between holomorphic curves and this class of opera-
tors.
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M. J. Cowen and R. G. Douglas obtained a unitary equivalence classification of
holomorphic curves in [2]. They proved that a kind of curvature function is a unitary
invariant of the holomorphic curves and Cowen-Doulgas operators by means of com-
plex hermitian geometry techniques. Subsequently, the curvature function turns into an
important object of the research of classification of Cowen-Douglas operators (cf. [4],
[11], [12], [15]). In 1981, a C∗ -algebra approach to Cowen-Dougals theory was given
by C. Apostol and M. Martin (cf. [1]). And M. Martin and N. Salinas did a series work
of holomorphic curves on extended flag manifolds and extended Grassmann manifolds
(cf. [6], [7], [8], [11], [14]). In the spirit of the above work, we want to character-
ize unitary equivalence problem of extended holomorphic curves with some geometry
concepts.

The paper is organized as follows. In §1 some notations and known results will be
introduced. In §2, We define a special class of extended holomorphic curves analogous
to Bott projection in C∗ -algebras. By considering the metric of a related determinant jet
bundle, we also give a necessary and sufficient condition for two extended holomorphic
curves in this class to be unitary equivalent.

We will introduce some notations and results first, and all the notations are adopted
from [1], [2], [3] and [6].

To simplify the notation, we use the symbol “∂
J
∂ I ” denotes partial derivative “

∂ J+I

∂ Jλ ∂ Iλ
”, where I,J are non-negative integers. And for any I and J ,

(1) symbol ∂
J

stands for ∂
J
∂ 0 and ∂ I stands for ∂

0
∂ I ,

(2) symbol ∂ stands for ∂ 1 , and ∂ stands for ∂
1
,

(3) ∂
J
∂ IP = P , when J = I = 0.

Firstly, we need a criterion for determining the holomorphic map from Ω to
P(U ) .

1.1 [6] Let U be a unital C∗ -algebra. Let P : Ω → P(U ) be a U -valued infinitely
differentiable map. Then P is called holomorphic if and only if

∂P(λ ) = P(λ )∂P(λ ), ∀λ ∈ Ω. (1.1)

Since P(λ ) is a projection, for any λ ∈ Ω , we can get that

∂P(λ ) = [∂P(λ )]P(λ )+P(λ )[∂P(λ )].

So (1.1) is equivalent to say that

[∂P(λ )]P(λ ) = 0 ⇐⇒ ∂P(λ ) = [∂P(λ )]P(λ ) ⇐⇒ P(λ )∂P(λ ) = 0, ∀λ ∈ Ω.

EXAMPLE 1.2. A class of Cowen-Douglas operator with index n : Bn(Ω) is de-
fined as follows [2]:

Bn(Ω) =: {T ∈ L (H ) : (i) Ω ⊂ σ(T ) =: {λ ∈ C : T −λ I is not invertible},
(ii)

∨
λ∈Ω Ker(T −λ ) = H ,

(iii) Ran(T −λ ) = H ,
(iv) dim Ker(T −λ ) = n, ∀λ ∈ Ω.}
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Let T ∈ L (H ) be a Cowen-Douglas operator. For any λ ∈ Ω , if P(λ ) is the projec-
tion from H to Ker(T −λ ) , then P : Ω → P(L (H )) is an extended holomorphic
curve.

1.3 [6] Let U be a unital C∗ -algebra, and P : Ω→P(U ) be an extended holomorphic
curve. For each λ ∈ Ω and every α ∈ Z+ ∪{∞} , set

Bα
λ = {∂

J
P(λ )∂ IP(λ ) : I,J ∈ Z+, I,J � α}.

Let U α
λ be the closure of ∗ -subalgebra of U generated by Bα

λ with the following
property:

U 0
λ ⊆ U 1

λ ⊆ ·· · ⊆ U ∞
λ .

By using notations mentioned above, M. Martin and N. Salinas defined a substitute
in C∗ -algebra for Cowen-Douglas class Bn(Ω) :

DEFINITION 1.4. [6] Let k � 1 be an integer. If the following conditions are
satisfied, then extended holomorphic curve P : Ω → P(U ) is said to be in the class
Ak(Ω,U ) :

(1) For each λ ∈ Ω , U ∞
λ is a finite-dimensional C∗ -algebra.

(2) If kλ denotes the cardinal of any maximal collection of mutually orthogonal
minimal projections in U ∞

λ , then
kλ � k.

(3) If a ∈ U and aP(λ ) = 0 for every λ ∈ Ω , then a = 0.

DEFINITION 1.5. [6] Let λ ∈ Ω and α ∈ Z+ be a fixed integer. We say that P
and Q have order of contact α at λ if there exists a unitary ν such that

ν∂
J
P(λ )∂ IP(λ )ν∗ = ∂

J
Q(λ )∂ IQ(λ ), ∀0 � I,J � α, (1.2)

We say G ⊂ U is a separating subset of U , if {a ∈ U : as = 0,s ∈ G} = {0}.
Assume G , T are two separating subsets of U , θ : G → T is a given bijection. We
say θ is inner (or semi-inner), if there exists a unitary u ∈ U (or a unitary ν ∈ U )
such that

usu∗ = θ (s), ∀s ∈ G, (or νt∗sν∗ = θ (t)θ (s), ∀s,t ∈ G).

U is said to be inner if each semi-inner bijection between two separating subsets of U
is inner.

M. Martin and N. Salinas proved the following related rigidity theorem for
Ak(Ω,U ) class on C∗ -algebra.

LEMMA 1.6. [Theorem 4.5, 6] Suppose that extended holomorphic curves P,Q :
Ω → P(U ) belong to the class Ak(Ω,U ) . If U is an inner C*-algebra, then the
following two statements are equivalent:

(1) P and Q are unitarily equivalent;
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(2) P and Q have order of contact α at each λ ∈ Ω .

DEFINITION 1.7. [2] Let p : Ω → Gr(n,H ) be a holomorphic curve and p(λ )
=
∨{e1(λ ), . . . ,en(λ )} for any λ ∈ Ω , then the curvature according to p is defined as

Kp = − ∂
∂λ

(
h−1 ∂h

∂λ

)
,

where metric function h is defined as the following:

h(λ ) = (〈ei(λ ),e j(λ )〉)n×n, ∀λ ∈ Ω.

2. The Bott projection and extended holomorphic curve

2.1 Let C∞(Ω,U ) denote the ∗−algebra of all the U -valued infinitely differentiable
functions defined on Ω . In this section, we assume the following conditions about
our extended holomorphic curve P : Ω → P(U ) . There exist f ∈ C∞(Ω) and a ∈
C∞(Ω,U ) satisfying the following three conditions:

(1) P(λ ) = f (|λ |)a(λ )a∗(λ ), ∀λ ∈ Ω ;
(2) ∂P(λ ) = f (|λ |)a∗(λ ),∂P(λ ) = f (|λ |)a(λ ), ∀λ ∈ Ω ;
(3) ∂

∂λ a∗(λ ) = ∂
∂λ

a(λ ) = 0, ∀λ ∈ Ω.

In the following, we will give some examples on extended holomorphic curves
with these properties.

EXAMPLE 2.2. Let U be M2(C) and Ω ⊆C be a connected open set and closed
with respect to conjugation around X -axis. Let P : Ω → M2(C) defined by

P(λ ) =

⎛⎜⎜⎝
1

1+ |λ |2
λ

1+ |λ |2
λ

1+ |λ |2
|λ |2

1+ |λ |2

⎞⎟⎟⎠=
1

1+ |λ |2
(

1 λ
λ |λ |2

)
, ∀λ ∈ Ω.

Then P is an extended holomorphic curve on Ω . Since for any λ ∈ Ω ,

∂P(λ ) =
∂

∂λ

(
1

1+ |λ |2
(

1 λ
λ |λ |2

))
=

1
(1+ |λ |2)2

(
−λ −λ 2

1 λ

)
,

and

∂P(λ ) =
1

(1+ |λ |2)2

( −λ 1
−λ 2 λ

)
,

then we have

∂P(λ )P(λ ) =
∂

∂λ

⎛⎜⎜⎝
1

1+ |λ |2
λ

1+ |λ |2
λ

1+ |λ |2
|λ |2

1+ |λ |2

⎞⎟⎟⎠
⎛⎜⎜⎝

1
1+ |λ |2

λ
1+ |λ |2

λ
1+|λ |2

|λ |2
1+ |λ |2

⎞⎟⎟⎠

=

⎛⎜⎜⎝
−λ

(1+ |λ |2)2

1
(1+ |λ |2)2

−λ 2

(1+ |λ |2)2

λ
(1+ |λ |2)2

⎞⎟⎟⎠
⎛⎜⎜⎝

1
1+ |λ |2

λ
1+ |λ |2

λ
1+ |λ |2

|λ |2
1+ |λ |2

⎞⎟⎟⎠ = 0,
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where f (|λ |) =
1

(1+ |λ |2)2 ,a(λ ) =
( −λ 1
−λ 2 λ

)
(See in Definition 2.1).

Notice that for any λ ∈ Ω ,

∂P(λ )∂P(λ ) =
1

(1+ |λ |2)4

( −λ 1
−λ 2 λ

)(
−λ −λ

2

1 λ

)
=

1
(1+ |λ |2)3

(
1 λ
λ |λ |2

)
=

1
(1+ |λ |2)2 P(λ ).

And

∂
2
P(λ ) =

∂
∂λ

(
1

(1+ |λ |2)2

( −λ 1
−λ 2 λ

))
=

∂
∂λ

(
1

(1+ |λ |2)2

)( −λ 1
−λ 2 λ

)
=

−2λ
1+ |λ |2 ∂P(λ ).

So

∂
2
P(λ )∂ 2P(λ ) =

∂
∂λ

(
1

(1+ |λ |2)2

)
∂

∂λ

(
1

(1+ |λ |2)2

)( −λ 1
−λ 2 λ

)(
−λ −λ

2

1 λ

)
= f 2,2(λ )P(λ )

,

where f 2,2(λ ) =
∂

∂λ

(
1

(1+ |λ |2)2

)
∂

∂λ

(
1

(1+ |λ |2)2

)
(1 + |λ |2) . By mathematical

induction, for any non-negative integers I,J , we can find a function f J,I ∈C∞(Ω), such
that

∂
J
P(λ )∂ IP(λ ) = f J,I(λ )P(λ ), ∀J, I ∈ N.

REMARK 2.3. The extended holomorphic curve in example 2.2 is just Bott pro-
jection for dimension two in algebraic K-theory [12]. By the calculation above, we
know that P ∈ A1(Ω,M2(C)).

EXAMPLE 2.4. Let k ∈C∞(Ω) , k(λ ) = k(λ ) , and ∂k(λ ) = 0, ∀λ ∈ Ω . Then the
following formulae

P(λ ) =:
1

1+ |k(λ )|2
(

1 k(λ )
k(λ ) |k(λ )|2

)
, ∀λ ∈ Ω,

defines an extended holomorphic curve on Ω . Similar to the calculation progress in
example 2.2, we have that

P(λ ) =
1

(1+ |k(λ )|2)2

( −k(λ ) 1
−k(λ )2 k(λ )

)(−k(λ ) −k(λ )2

1 k(λ )

)
,

and

∂P(λ ) =
∂

∂λ k(λ )
(1+ |k(λ )|2)2

(−k(λ ) −k(λ)2

1 k(λ )

)
, ∀λ ∈ Ω.



1004 YINGLI HOU AND KUI JI

∂P(λ ) =
∂

∂λ
k(λ )

(1+ |k(λ )|2)2

( −k(λ ) 1
−k(λ )2 k(λ )

)
, ∀λ ∈ Ω.

So P also satisfies assumptions in Definition 2.1. �
By the conditions (2) and (3), for any I and J , we have

∂ IP(λ ) =
∂ I

∂λ
f (|λ |)a∗(λ ), ∂

J
P(λ ) =

∂ J

∂λ
f (|λ |)a(λ ), ∀λ ∈ Ω.

and there exists f JI ∈C∞(Ω) such that

∂
J
P(λ )∂ IP(λ ) =

∂ I

∂λ
f (|λ |) ∂ J

∂λ
f (|λ |)

f (|λ |) P(λ ) = f JI(λ )P(λ ), ∀λ ∈ Ω.

Now, we define the function f JI as the following:

f JI(λ ) =:

∂ I

∂λ
f (|λ |) ∂ J

∂λ
f (|λ |)

f (|λ |) , ∀λ ∈ Ω,0 � J, I. (2.1)

DEFINITION 2.5. [2] Let (E,π),π : E → Ω be a Hermitian holomorphic vector
bundle with rank n . Let

∧r(E) :=
⋃

λ∈Ω
∧r(π−1(λ )),1 � r � n,

where ∧r(π−1(λ )) is the exterior power space of fiber π−1(λ ) for any λ ∈ Ω. By giv-
ing a proper holomorphic Hermitian structure, the vector space ∧r(π−1(E)) becomes
a Hermitian holomorphic vector bundle. When r = n , ∧n(E) is called the determinant
bundle, denoted by detE .

Let {s1,s2, · · · ,sn} be a frame for the vector bundle E on some open set U ⊂ Ω .
Then wedge s1 ∧ s2 ∧ ·· · ∧ sn is the frame of detE over U . And it’s metric is the
determinant of the metric of E , i.e.

hdetE = dethE .

If σ = {e} is a holomorphic frame of E on Ω , then the 1-jet bundle J1(E) has
an associate frame

J1(σ) = {e,∂e}.
And the metric h(λ ) := 〈e(λ ),e(λ )〉 induces the metric J1(h) for J1(E) as the
following:

J1(h)(λ ) :=
( 〈e(λ ),e(λ )〉 ∂ 〈e(λ ),e(λ )〉

∂ 〈e(λ ),e(λ )〉 ∂∂ 〈e(λ ),e(λ )〉
)

, ∀λ ∈ Ω.

DEFINITION 2.6. Let P : Ω → P(U ) be an extended holomorphic curve which
satisfies conditions (1),(2) and (3) in 2.1. Then there exists a natural C∗ -bundle EP

over Ω induced by P with the fiber defined as

EP(λ ) := Span{∂ IP(λ ), I ∈ N}, ∀λ ∈ Ω.
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And the Hermitian inner product be defined as following:

〈∂ IP(λ ),∂ JP(λ )〉 = f JI(λ ), ∀J, I ∈ Z
+, and f 11(λ ) = f (|λ |),

where f JI is the function defined as formulae (2.1).
If P : Ω → P(U ) is an extended holomorphic curves satisfying 2.1, and there

exists a holomorphic curve p : Ω → Gr(1,H ) with the frame ep(λ ) satisfying the
following property:

〈ep(λ ),ep(λ )〉 = f (|λ |), ∀I,J ∈ N,

then we call p is a supporting holomorphic curve to P .
Let Q : Ω → P(U ) be another extended holomorphic curve, and q be a sup-

porting holomorphic curve to Q . We call p
u∼ q if and only if there exists a unitary

u ∈ L (H ) such that p(λ ) = uq(λ ), ∀λ ∈ Ω . And we call p and q have order of
contact α , if there exists a unitary U ∈ L (H ) such that U∂ Iep(λ ) = ∂ Ieq(λ ), ∀I ∈
N, ∀λ ∈ Ω (See in [2]).

With same form to the curvature of Hermitian holomorphic bundles in [2], an
curvature function with h ∈C∞(Ω) is defined as

Kh(λ ) = − ∂
∂λ

(
h−1 ∂h

∂λ

)
(λ ), ∀λ ∈ Ω.

Then Kf (λ ) = − ∂
∂λ

(
f−1 ∂ f

∂λ

)
(λ ), ∀λ ∈ Ω , where f is given in Definition 2.1

and 2.6.
By Definition 2.5, we know that the metric of determinate 1-jet bundle detJ1(Ep)

is just equal to f 2Kf i.e.

hdetJ1(Ep) = detJ1(h)(Ep) = f 2Kf .

By using this metric, we will give our main theorem of this note as the following:

THEOREM 2.7. Let P and Q be extended holomorphic curves from Ω to P(U )
in 2.1. Let p and q be the supporting holomorphic curves to P and Q respectively.
And Let ||ep(λ )||2 = f (|λ |), ||eq(λ )||2 = g(|λ |), ∀λ ∈ Ω. Then for any given λ0 ∈ Ω ,
we have the following statement:

If curvature functions K∂ J∂ I f (λ0)
= K∂ J∂ Ig(λ0)

= 0, ∀J, I ∈ N , p and q have order

of contact α and p(λ0)
u∼ q(λ0) , then extended holomorphic curves P and Q have

order of contact α at λ0 if and only if

∂ J∂ IhdetJ1(Ep)
(λ0) = ∂ J∂ IhdetJ1(Eq)

(λ0), ∀J, I � α −1.

Proof. Firstly, recall that

f JI(λ ) =:

∂ I

∂λ
f (|λ |) ∂ J

∂λ
f (|λ |)

f (|λ |) , ∀λ ∈ Ω,0 � J, I.
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We want to prove that for any given λ0 ∈ Ω and 0 � J, I , f JI(|λ0|) can be expressed

in terms of f (λ0) and ∂
j
∂ ihdetJ1(Ep)(λ0), j, i ∈ N .

Since

Kf (λ ) = − ∂
∂λ

( 1
f (|λ |)

∂ f
∂λ

)
=

∂
∂λ

f (|λ |) ∂
∂λ

f (|λ |)− f (|λ |) ∂ 2

∂λ ∂λ
f (|λ |)

f 2(|λ |) ,

and
f 2Kf = detJ1(Ep),

then we have that

∂
∂λ

f
∂

∂λ
f = f 2Kf + f

∂ 2

∂λ ∂λ
f = hdetJEp

+ f
∂ 2

∂λ ∂λ
f .

By

∂
∂λ

( ∂
∂λ

f
∂

∂λ
f
)

=
∂

∂λ
hdetJ1(Ep) +

∂
∂λ

f
∂ 2

∂λ ∂λ
f + f

∂ 3

∂λ ∂λ 2
f ,

it follows that
∂ 2

∂λ 2 f
∂

∂λ
f =

∂
∂λ

hdetJ1(Ep) + f
∂ 3

∂λ ∂λ 2
f .

In the same way,

∂
∂λ

f
∂ 2

∂λ 2 f =
∂

∂λ
hdetJ1(Ep) + f

∂ 3

∂λ ∂λ
2 f ,

∂ 2

∂λ
2 f

∂ 2

∂λ 2 f =
∂ 2

∂λ ∂λ
hdetJ1(Ep) + f

∂ 4

∂λ 2∂λ
2 f .

So when max{I,J} � 2, we have

〈∂ JP(λ ),∂ IP(λ )〉 = f JI(λ ) =
∂

J−1
∂ I−1hdetJ1(Ep)(λ )

f (λ )
+ ∂ J∂ I f (λ ).

When max{I,J} � 3, we have

K∂ f = − ∂
∂λ

(
∂ f−1 ∂

∂λ
(∂ f )

)
= −

∂ 2 f
∂λ 2

∂ 2

∂λ ∂λ
f − ∂

∂λ
f

∂ 2

∂λ 2∂λ
f( ∂

∂λ
f
)2

,

K∂ f = − ∂
∂λ

(
∂ f−1 ∂

∂λ
(∂ f )

)
= −

∂ 2 f

∂λ 2

∂ 2

∂λ ∂λ
f − ∂

∂λ
f

∂ 2

∂λ 2∂λ
f( ∂

∂λ
f
)2

.
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Since K
∂ J∂ I f

(λ ) = K
∂ J∂ I g

(λ ) = 0, then

∂ 2 f
∂λ 2

∂ 2

∂λ ∂λ
f − ∂

∂λ
f

∂ 2

∂λ 2∂λ
f = 0, (2.2)

∂ 2 f

∂λ
2

∂ 2

∂λ ∂λ
f − ∂

∂λ
f

∂ 2

∂λ
2
∂λ

f = 0. (2.3)

And

∂ 3

∂λ
3 f

∂
∂λ

f =
∂

∂λ

( ∂ 2

∂λ
2 f

∂
∂λ

f
)
− ∂ 2

∂λ
2 f

∂ 2

∂λ ∂λ
f

=
∂

∂λ

( ∂
∂λ

hdetJ1(Ep) + f ∂ 3

∂λ ∂λ2 f
)
− ∂ 2

∂λ
2 f

∂ 2

∂λ ∂λ
f

=
∂ 2

∂λ
2 hdetJ1(Ep) + f

∂ 4

∂λ ∂λ
3 f − ∂ 2 f

∂λ
2

∂ 2

∂λ ∂λ
f +

∂
∂λ

f
∂ 2

∂λ
2
∂λ

f

=
∂ 2

∂λ 2 hdetJ1(Ep) + f
∂ 4

∂λ ∂λ 3 f ;

∂ 3

∂λ 3 f
∂ 2

∂λ 2 f =
∂

∂λ

( ∂ 3

∂λ 3 f
∂

∂λ
f
)
− ∂

∂λ
f

∂ 4

∂λ 3∂λ
f

=
∂

∂λ

( ∂ 2

∂λ 2 hdetJ1(Ep) + f
∂ 4

∂λ 3∂λ
f
)
− ∂

∂λ
f

∂ 4

∂λ 3∂λ
f

=
∂ 3

∂λ ∂λ
2 hdetJ1(Ep) + f

∂ 5

∂λ
3
∂λ 2

f +
∂

∂λ
f

∂ 4

∂λ
3
∂λ

f − ∂
∂λ

f
∂ 4

∂λ
3
∂λ

f

=
∂ 3

∂λ ∂λ
2 hdetJ1(Ep) + f

∂ 5

∂λ
3
∂λ 2

f .

Notice that (2.2) and K∂∂ f (λ ) = 0, we have

K∂∂ f (λ )=− ∂
∂λ

(
∂∂ f

−1 ∂
∂λ

(∂∂ f )
)

=−
∂ 3

∂λ ∂λ
2 f

∂ 3

∂λ 2∂λ
f− ∂ 2

∂λ ∂λ
f

∂ 4

∂λ 2∂λ
2 f( ∂ 2

∂λ ∂λ f

)2
= 0.

(2.4)
By (2.2),

∂ 2

∂λ
2

( ∂ 2 f
∂λ 2

∂ 2

∂λ ∂λ
f − ∂

∂λ
f

∂ 2

∂λ 2∂λ
f
)

= 0,

that is

∂
∂λ

( ∂ 2

∂λ 2 f
∂ 3

∂λ ∂λ
2 f − ∂

∂λ
f

∂ 4

∂λ 2∂λ
2 f
)

=
∂ 3

∂λ ∂λ 2
f

∂ 3

∂λ
2
∂λ

f +
∂ 2

∂λ 2 f
∂ 4

∂λ ∂λ
3 f

− ∂ 2

∂λ ∂λ
f

∂ 4

∂λ 2∂λ
2 f − ∂

∂λ
f

∂ 5

∂λ
3
∂λ 2

f

= 0.
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By (2.4), we have

∂
∂λ

f
∂ 5

∂λ
3
∂λ 2

f − ∂ 2

∂λ
2 f

∂ 4

∂λ
3
∂λ

f = 0.

So

∂ 3

∂λ
3 f

∂ 3

∂λ 3 f =
∂

∂λ

( ∂ 3

∂λ
3 f

∂ 2

∂λ 2 f
)
− ∂ 2

∂λ 2 f
∂ 4

∂λ
3
∂λ

f

=
∂

∂λ

( ∂ 3

∂λ ∂λ 2 hdetJ1(Ep) + f
∂ 5

∂λ 3∂λ 2
f
)
− ∂ 2

∂λ 2 f
∂ 4

∂λ 3∂λ
f

=
∂ 4

∂λ 2∂λ
2 hdetJ1(Ep) + f

∂ 6

∂λ 3∂λ
3 f +

∂
∂λ

f
∂ 5

∂λ
3
∂λ 2

f − ∂ 2

∂λ
2 f

∂ 4

∂λ
3
∂λ

f ;

=
∂ 4

∂λ 2∂λ
2 hdetJ1(Ep) + f

∂ 6

∂λ 3∂λ
3 f .

So when max{I,J} � 3, we also have that

〈∂ JP(λ ),∂ IP(λ )〉 = f JI(λ ) =
∂ J−1∂ I−1hdetJ1(Ep)(λ )

f (λ )
+ ∂ J∂ I f (λ ).

For the general case, by the conditions, we have

K
∂ J

f
= 0 ⇔ ∂ J+1

f∂∂ J
f − ∂∂ J+1

f∂ J
f = 0, ∀J ∈ N; (2.5)

K∂ I f = 0 ⇔ ∂ I+1 f∂ ∂ I f − ∂∂ I+1 f∂ I f = 0, ∀I ∈ N; (2.6)

K
∂ J∂ I f

= 0 ⇔ ∂ J+1
f∂ I f ·∂ J∂ I+1 f − ∂ J∂ I f ·∂ J+1∂ I f = 0, ∀J, I ∈ N. (2.7)

Claim. For any J, I ∈ N , we have

〈∂ JP(λ ),∂ IP(λ )〉 = f JI(λ ) =
∂

J−1
∂ I−1hdetJ1(Ep)(λ )

f (λ )
+ ∂

J
∂ I f (λ ).

In the following, by three steps, we will prove the claim.

Step 1. Firstly, we will prove that when I = 1,J ∈ N , the claim is true. That is

∂ J
f∂ f = ∂ J−1

hdetJ1(Ep) + ∂ J∂ f , ∀J ∈ N .
Since

∂
J+1

f∂ f = ∂ (∂
J
f ·∂ f )− ∂

J
f ·∂∂ f

= ∂ (∂ J−1
hdetJ1(Ep)

+ f ·∂ J∂ f )− ∂ J
f ·∂∂ f

= ∂
J
hdetJ1(Ep) + f ·∂ J+1

∂ f + ∂ f ·∂ J
∂ f − ∂

J
f ·∂∂ f , ∀J ∈ N.
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We only need to prove that

∂ f ·∂ J
∂ f − ∂

J
f ·∂∂ f = 0, ∀J ∈ N. (2.8)

By (2.5), we have that

∂ J+k
f ·∂ J∂ f = ∂ J

f ·∂ J+k∂ f , ∀k,J ∈ N. (2.9)

Since
∂

2
f ·∂∂ f = ∂ f ·∂ 2

∂ f ,

by taking the partial derivation of λ on the two sides of the formulation above, we have
that

∂
3
f ·∂∂ f = ∂ f ·∂ 3

∂ f .

Set J = 2,k = 1 in (2.9) and take the partial derivation of λ . Then we have that

∂
4
f ·∂∂ f = ∂ f ·∂ 4

∂ f .

Repeating the procedure above and a routine computation, we have that for any
J ∈ N , (2.8) holds.

Step 2. Secondly, we will prove that

∂ f ·∂ J
∂ I f − ∂

J
f ·∂∂ I f = 0, ∀J, I ∈ N. (2.10)

and
∂ f ·∂ J

∂ I f − ∂ J f ·∂∂
I
f = 0, ∀J, I ∈ N. (2.11)

By the proof above, we can assume that (2.10) and (2.11) hold for any f̃ ∈C∞(Ω)
which satisfies conditions (2.5), (2.6) and (2.7) when J, I � k . In the following, we will
prove they also hold when J, I � k+1.

Now we use the mathematical induction. By step 1, we know that (2.10) holds for
any J ∈ N when I = 1. So if we already have that

∂ f ·∂ J
∂ I−1 f − ∂

J
f ·∂∂ I−1 f = 0, ∀J, I � k+1.

Then by taking partial derivation of λ , it follows that

∂∂ f ·∂ J
∂ I−1 f + ∂ f ·∂ J

∂ I f = ∂∂
J
f ·∂∂ I−1 f + ∂

J
f ·∂∂ I f = 0.

In order to prove that

∂ f ·∂ J
∂ I f − ∂

J
f ·∂∂ I f = 0, ∀J, I � k+1,

we only need to prove

∂∂ f ·∂ J
∂ I−1 f = ∂∂

J
f ·∂∂ I−1 f , ∀J, I � k+1.
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Let f̃ = ∂ f , then it is to prove

∂ f̃ ·∂ J−1
∂ I−1( f̃ ) = ∂∂

J−1
f̃ ·∂ I−1 f̃ , ∀J, I � k+1.

Notice that replacing f to ∂ f , (2.5), (2.6) and (2.7) also hold. By our assumption
at the beginning of step 2, we know (2.11) holds for f̃ = ∂ f , ∀J, I � k . So (2.10) holds
when J, I � k+1. By symmetry of ∂ and ∂ , (2.11) also holds when J, I � k+1. And
then we finish the proof of step 2.

Step 3. At last, we finish the proof of the claim. If we assume that

∂
J
f ·∂ I f = ∂

J−1
∂ I−1hdetJ1(Ep) + f∂

J
∂ I f , ∀J, I � k,

then by (2.10) and (2.11), we have

∂
J+1

f∂ I f = ∂ (∂
J
f ·∂ I f )− ∂

J
f ·∂∂ I f

= ∂ (∂
J−1

∂ I−1hdetJ1(Ep) + f ·∂ J
∂ I f )− ∂

J
f ·∂∂ I f

= ∂
J
∂ I−1hdetJ1(Ep) + f ·∂ J+1

∂ I f + ∂ f ·∂ J
∂ I f − ∂

J
f ·∂∂ I f

= ∂ J∂ I−1hdetJ1(Ep) + f ·∂ J+1∂ I f , ∀J, I � k,

and
∂

J
f∂ I+1 f = ∂

J−1
∂ IhdetJ1(Ep) + f ·∂ J

∂ I+1 f , ∀J, I � k;

∂ J+1
f ·∂ I+1 f = ∂ J∂ IhdetJ1(Ep) + f∂ J+1∂ I+1 f , ∀J, I � k.

By mathematical induction, we finish the proof of the claim.

By the claim, for any J, I ∈Z+ , we can express ∂ J
f∂ I f in terms of f , ∂ j∂ ihdetJ1(Ep)

and ∂
j
∂ i f . Similarly, we can express ∂

J
g∂ Ig in terms of g , ∂

j
∂ ihdetJ1(Eq) and

∂ j∂ ig .
Secondly, we will give the proof of sufficient part. Notice that p and q have order

of contact α at λ0 , so it follows that

∂ J∂ I f (|λ0|) = 〈∂ Iep(λ0),∂ Jep(λ0)〉 = 〈∂ Ieq(λ0),∂ Jeq(λ0)〉 = ∂ J∂ Ig(|λ0|), ∀I,J � α.

If

f (|λ0|) = g(|λ0|),∂ J
∂ IhdetJ1(Ep)(λ0) = ∂

J
∂ IhdetJ1(Eq)(λ0), ∀J, I � α −1,

then
f JI(λ0) = gJI(λ0), ∀J, I � α.

Since ∂
J
P(λ0)∂ IP(λ0) = f JI(λ0)P(λ0),∂

J
Q(λ0)∂ IQ(λ0) = gJI(λ0)Q(λ0) , P(λ0)

u∼ Q(λ0) , then we have

∂ J
P(λ0)∂ IP(λ0)

u∼ ∂ J
Q(λ0)∂ IQ(λ0), ∀J, I � α.

So we finish the proof of sufficient part. And the necessary part is obvious. �

By using Lemma 1.6 and Theorem 2.7, we have the following corollary:
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COROLLARY 2.8. Let P, Q ∈Aα(Ω,U ) be extended holomorphic curves in the
sense of Theorem 2.7, then P

u∼ Q if and only if

∂ J∂ IhdetJ1(Ep)
(λ ) = ∂ J∂ IhdetJ1(Eq)

(λ ), ∀J, I � α −1, ∀λ ∈ Ω.
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