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INJECTIVITY IN THE QUANTUM SPACE FRAMEWORK

ANAR DOSI

(Communicated by Z.-J. Ruan)

Abstract. In this paper we investigate injectivity of quantum (or local operator) spaces in terms of
their bounded parts. A multinormed W ∗ -algebra with its injective domain turns out be injective
if and only if its bounded part is injective in the normed sense. We prove that each locally finite
domain is injective and propose an example of a non-injective domain based on affine schemes.
Hamana-Ruan type formula has been obtained for quantum spaces but in a slightly different
shape.

1. Introduction

The injectivity is one of the fundamental properties of operator spaces and C∗ -
algebras. The Arveson-Hahn-Banach-Wittstock Theorem asserts that the C∗ -algebra
B (H) of all bounded linear operators on a Hilbert space H is an injective operator
space. The family of (operator) norms from B (Hn) , n ∈N define the canonical norm
‖·‖ on the space M (B (H)) of all finite size matrices over B (H) called the matrix
norm on B (H) . The space B (H) equipped with this matrix norm is an operator
space (or normed quantum space). Thus B (H) is an injective object in the category
of operator spaces and matrix (or complete) contractions. The structure of injective
operator spaces and the unique existence of injective envelopes of operator spaces have
been investigated in [18] and [23] by M. Hamana and Z.-J. Ruan independently. An in-
jective operator space V is matrix isometric to pA(1− p) for an injective C∗ -algebra
A and a projection p ∈ A . Moreover, each operator space V has the injective envelope
I (V ) defined up to a matrix isometry. The injective space I (V ) is uniquely defined by
the following property. The identity mapping over I (V ) is the only matrix contraction
extending the identity mapping over V . The known (see [3, 4.4.3]) Hamana-Ruan for-
mula figures out that I (V ) is the upper right corner of the injective C∗ -algebra I (PV ) ,

where PV =
[

C V
V ∗ C

]
is the Paulsen system of V which is a self-adjoint subspace in

the space M2 (V ) of all 2×2-matrices over V . Thus

I (V ) = pI (PV ) (1− p)

with p = 1H⊕0 and 1− p = 0⊕1H .
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The quantum spaces come up as inverse limits of operator spaces naturally [14],
[15], [4], [5]. Thus a quantum space V is a linear space equipped with a (separating)
family {‖·‖e : e ∈ Y} of matrix seminorms. We say that Y is a defining family of matrix
seminorms of V . A linear mapping ϕ : V →W between quantum spaces with their
defining families Y and X fixed up respectively, is said to be a quantum contraction if

for each f ∈ X there corresponds a finite subset κ ⊆ Y such that
∥∥∥ϕ(∞) (v)

∥∥∥
f
� ‖v‖κ ,

v ∈M (V ) , where ϕ(∞) : M (V )→M (W ) is the canonical extension of ϕ to the matrix
spaces over the indicated spaces, and ‖v‖κ = supe∈κ ‖v‖e . If X = Y then ϕ is called

a quantum Y -isometry if
∥∥∥ϕ(∞) (v)

∥∥∥
e
= ‖v‖e for all v ∈M (V ) and e ∈ Y . What are

the injective objects in the category of quantum spaces and quantum contractions, that
is the main problem we have interest in the present paper.

Another motivation to the problem has been observed in the theory of ∗ -algebras
of unbounded operators in a Hilbert space (see also [6], [8]). The representation the-
orem obtained in [10] asserts that each quantum space V with its defining family Y
of matrix seminorms can be identified with a concrete quantum space in a certain ∗ -
algebra. Namely, Y is identified with a (quantum) domain, which is a commutative set
of projections in B (H) such that ∨Y = 1H , where ∨Y the least upper bound in B (H)
of the projection set. Thereby the algebraic sum Y =∑e∈Y im(e) is a dense subspace
in H . If L(Y ) is the algebra of all linear transformations on Y , then the algebra
of all noncommutative continuous functions on Y is defined [5], [7], as the operator
∗ -algebra

C∗Y (Y ) = {T ∈ L(Y ) : eT ⊆ Te,Te ∈B (H) ,e ∈ Y} .
Each unbounded operator T ∈C∗Y (Y ) admits an unbounded dual T� such that Y ⊆
dom

(
T�)

, T� (Y ) ⊆ Y and T ∗ = T�|Y ∈ C∗Y (Y ) [5]. Moreover, the ∗ -algebra
C∗Y (Y ) equipped with the family ‖T‖e = ‖Te‖ , T ∈C∗Y (Y ) , e ∈Y of C∗ -seminorms
turns out to be a unital multinormed C∗ -algebra. Thus V is embedded into C∗Y (Y ) up
to a quantum Y -isometry. Note that if Y = {1H} then C∗Y (Y ) is reduced to B (H) . In
the general case C∗Y (Y ) is the multinormed completion of the commutant Y ′ ⊆B (H)
with respect to the family ‖T‖e = ‖Te‖ , T ∈ Y ′ , e ∈ Y of C∗ -seminorms. Actually
it is a multinormed W ∗ -algebra (an inverse limit of W ∗ -algebras with W ∗ -continuous
connecting homomorphisms) played the role of B (H) in the locally convex setting.
The possible injectivity of C∗Y (Y ) presents an interest in the theory of quantum spaces.
A domain Y with injective C∗Y (Y ) is called an injective domain. A countable domain
Y is always injective [5].

In the present paper we investigate the injectivity in the quantum space frame-
work establishing a link between injectivity in the normed sense and the injectivity
in quantum sense. It turns out that many multinormed C∗ -algebras appear as multi-
normed completions of injective C∗ -algebras. For example, the commutant Y ′ in
B (H) of a domain Y ⊆ B (H) is an injective von Neumann algebra, and C∗Y (Y )
is just a multinormed completion of Y ′ . It is reasonable to ask whether a multinormed
completion of an injective operator space is an injective quantum space. The reverse
implication always true. Namely, if A is an injective multinormed C∗ -algebra then
its bounded part b(A ) is an injective C∗ -algebra (see below Proposition 3.1), where
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b(A ) = {a ∈A : ‖a‖= supe ‖a‖e < ∞} is the set of all bounded elements in A . Note
that b(A ) is dense in A . For example, b(C∗Y (Y )) = Y ′ .

Our first central result asserts that the injectivity problem for a multinormed W ∗ -
algebras can be reduced to the injectivity of the relevant domain. Namely, let A be a
multinormed W ∗ -algebra. The multinormed W ∗ -algebras are precisely central comple-
tions of W ∗ -algebras due to [10, Proposition 2.1]. Then A is identified with the com-
pletion Â of a von Neumann algebra A⊆B (H) with its subset Y ⊆A of central projec-
tions such that ∨Y = 1H called the domain of A . The completion is defined by means
of the C∗ -seminorms ‖b‖e = ‖be‖ , b ∈ A , e ∈Y . Note that b(A ) = A⊆Y ′ ⊆B (H) .
We prove (see Theorem 4.1) that if the domain Y of A is injective, then the (normed)
injectivity of A implies injectivity of its completion A in the quantum sense. More-
over, Hamana-Ruan type formula remains true in the following case. Let Y be an
injective domain and V ⊆C∗Y (Y ) a quantum space such that YV ⊆ V . Then V is an
injective quantum space if and only if

V = pA (1− p)

up to a matrix Y -isometry for a certain injective multinormed C∗ -algebra A ⊆
M2 (C∗Y (Y )) enveloping Y , and a (bounded) projection p in A (see Corollary 4.1).

Thus injective domains play a fundamental role in the injectivity problem of quan-
tum spaces. Which domains are injective, and is there a non-injective domain at all?
That is the last problem we deal with in the paper. A domain Y is said to be a locally
finite domain if for each e ∈ Y we have e f = 0 for all f ∈ Y except finitely many of
them. Obviously, each orthogonal (in particular, countable) domain is a locally finite
one. We prove (see Theorem 5.1) that a locally finite domain is injective. If the domain
is not locally finite then it may not be injective. The relevant example has been proposed
based on affine schemes. Namely, we generate domains using the spectra of commuta-
tive rings. The idea proposed below plays a critical role in noncommutative algebraic
geometry, namely, in the theory of noncommutative schemes for Lie-complete rings
developed in [11]. Thus the domain Y generated by an uncountable maximal spectrum
of a commutative ring A is not injective (see Theorem 5.2), that is, the multinormed
(W ∗ -algebra) completion C∗Y (Y ) of Y ′ is not an injective quantum space though its
bounded part Y ′ is an injective von Neumann algebra.

2. Preliminaries

In this section we provide the paper with some preliminaries. The set of all finite
subsets of a set X is denoted by X f . The identity operator on a linear space V is
denoted by 1V . The unit ball of a normed space V is denoted by ballV . If A is a
multinormed C∗ -algebra with its defining family {‖·‖e : e ∈ X} of C∗ -seminorms then
b(A ) denotes the set of all bounded elements in A , that is, a ∈ b(A ) iff ‖a‖ =
supe∈X ‖a‖e < ∞ . Actually (see [24], [19]), b(A ) equipped with the norm ‖·‖ is a
C∗ -algebra called the bounded part of A .
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2.1. The matrix spaces

The linear space of all m×n -matrices x = [xi j] over a linear space V is denoted
by Mm,n (V ) , and we set Mm (V ) = Mm,m (V ) and Mm,n = Mm,n (C) . Further, M (V )
(respectively, M ) denotes the linear space of all infinite (respectively, scalar) matrices
[xi j] , xi j ∈ V , where all but finitely many entry xi j are zeros. Each Mm,n (V ) is a
subspace in M (V ) comprising those matrices x = [xi j] with xi j = 0 whenever i > m
or j > n . Note that M possesses the operator norm being identified with finite-rank
operators on a separable Hilbert space. If v ∈Ms,t (V ) and w ∈Mm,n (V ) then we have

their direct sum v⊕w =
[

v 0
0 w

]
∈ Ms+m,t+n (V ) . If a ∈ Mm,s , v ∈ Ms,t (V ) and

b ∈ Mt,n , then we have their matrix product avb =
[
∑k,l aikvklbl j

]
i, j ∈ Mm,n (V ) . A

linear mapping ϕ :V →W has the canonical linear extensions ϕ(n) : Mn (V )→Mn (W )
(respectively, ϕ(∞) : M (V )→ M (W ) ) over all matrix spaces defined as ϕ(n) ([xi j]) =
[ϕ (xi j)] (respectively, ϕ(∞)|Mn (V ) = ϕ(n) ). One can easily verify that ϕ(∞) preserves
just introduced quantum (or matrix) operations.

2.2. Quantum spaces

Let V be a linear space. By a quantum set B on V we mean a collection B =(bn)
of subsets bn ⊆ Mn (V ) , n � 1. A quantum set B in M (V ) is said to be absolutely
matrix convex [15] if B⊕B⊆B and aBb⊆B , a,b ∈ ballM . One can easily derive
that an absolutely matrix convex set B turns out to be an absolutely convex subset in
M (V ) in classical sense as well [14], [9]. The Minkowski functional of an absorbent (in
M (V )) absolutely matrix convex set is called a matrix seminorm on V . A polynormed
(or locally convex) topology defined by a separating family of matrix seminorms is
called a quantum topology, and the linear space V equipped with a quantum topology
is called a quantum space. A quantum space whose quantum topology is determined
by a matrix norm is a called an abstract operator (or quantum normed space). The sub-
spaces of the C∗ -algebra B (H) of all bounded linear operators on a Hilbert space H
are (concrete) operator spaces with their matrix norms inherited from the original ma-
trix norm on B (H) which is due to the identifications Mn (B (H)) = B (Hn) for all
n � 1. The morphisms between quantum spaces are quantum continuous linear map-
pings. A linear mapping ϕ : V → V ′ between quantum spaces is quantum continuous
iff ϕ(∞) : M (V )→M (V ′) is a continuous linear mapping of the relevant polynormed
spaces. The matrix seminorms being fixed up allow to define a quantum contraction be-
tween quantum spaces (see Section 1). Obviously, a superposition of quantum contrac-
tions turns out to be a quantum contraction. For the operator spaces V and V ′ we have

the matrix (or completely) bounded linear mappings. Thus ‖ϕ‖mb = supn

∥∥∥ϕ(n)
∥∥∥ < ∞ .

A linear mapping ϕ : V → V ′ between operator spaces is called a matrix isometry if∥∥∥ϕ(∞) (v)
∥∥∥

M(V ′)
= ‖v‖M(V ) for all v ∈M (V ) . Finally, if (Vκ)κ∈Λ is a family of quan-

tum spaces then V = op∏κ∈ΞVκ denotes their direct product equipped with the initial
quantum topology such that all canonical projections V →Vκ are quantum continuous.
If

{
Vα ,ϕαβ

}
is a projective system of quantum spaces and quantum continuous lin-
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ear mappings, then V = oplim←−−−
{
Vα ,ϕαβ

}
denotes the quantum inverse limit which is

a quantum subspace in op∏αVα . Note that each quantum space is an inverse limit of
operator spaces [14], [9].

2.3. The point weak operator topology

Let A⊆B (H) be a von Neumann algebra on a Hilbert space H , Y ⊆ A a subset
of its central projections, and let R be the unital subring in A generated by Y . Thus
R is a commutative ring and A is an algebraic module over the ring R . The Banach
algebra of all bounded linear operators on A (with the operator norm ‖·‖ ) is denoted by
B (A) . An element T ∈B (A) is said to be a R-homomorphism if T (ea) = eT (a) for
all e ∈ R and a ∈ A . The set of all bounded R-homomorphism A→ A is a closed sub-
algebra in B (A) denoted by BR (A) . The set of of all matrix (or completely) bounded
mapping on A is denoted by MB (A) whereas MBR (A) denotes its subset of all ma-
trix bounded R-homomorphisms. Note that MB (A) equipped with the matrix norm
‖·‖mb is a Banach algebra as well, and MBR (A) is its closed subalgebra. If Y consists
of only the unit element of A then BR (A) = B (A) and MBR (A) = MB (A) . The
set ballMBR (A) consists of all matrix contractive R-homomorphisms ϕ : A→ A ,
‖ϕ‖mb � 1. The family of seminorms wb,x,y (T ) = |〈T (b)x,y〉| , b ∈ ballA , x,y ∈ H ,
defines a Hausdorff polynormed topology in BR (A) called the point-weak operator
topology (briefly p-WOT). In particular, ballBR (A) is a topological space with its sub-
space ballMBR (A) .

LEMMA 2.1. The space ballBR (A) is a (p-WOT) compact space and
ballMBR (A) is its closed subspace.

Proof. Take an ultrafilter F in ballBR (A) . For each b ∈ ballA we have a well
defined mapping b̂ : ballBR (A)→ ballA , b̂(T ) = T (b) . In particular, the range F(b)
of F by means of the mapping b̂ is an ultrafilter base in ballA . But ballA being WOT-
closed subset in ballB (H) is an WOT-compact set. Hence there exists ϕ (b) =WOT-
limF(b) ∈ ballA . In particular, we have a well defined mapping ϕ ∈ ballB (A) and
ϕ =p-WOT-limF . Note that ϕ (ea) =WOT-limF(ea) =WOT-limeF(a) = eWOT-
limF(a) = eϕ (a) for all e ∈ R and a ∈ A . Hence ballBR (A) is a (p-WOT)-compact
space.

Finally, let us prove that ballMBR (A) is a p-WOT-closed subspace in ballBR (A) .
Take a net (ϕλ ) ⊆ ballMBR (A) with ϕ =p-WOT-limϕλ . If b = [bi j] ∈ Mn (A) ,
x = (xi) , y = (yi) ∈ Hn then

wb,x,y

(
ϕ(n)−ϕ(n)

λ

)
=

∣∣∣〈(
ϕ(n)−ϕ(n)

λ

)
(b)x,y

〉∣∣∣ =

∣∣∣∣∣
n

∑
i,k

〈(ϕ−ϕλ ) (bik)xk,yi〉
∣∣∣∣∣

�
n

∑
i,k

wbik,xk,yi (ϕ−ϕλ ) ,
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therefore ϕ(n) (b) =WOT-limλ ϕ(n)
λ (b) in B (Hn) . Using (WOT) semicontinuity of

the norm in B (Hn) , we obtain that
∥∥∥ϕ(n) (b)

∥∥∥ � limsupλ

∥∥∥ϕ(n)
λ (b)

∥∥∥ � ‖b‖ for each

b ∈ Mn (A) . Hence ϕ ∈ ballMBR (A) , and ballMBR (A) is a (p-WOT) compact
subspace in ballBR (A) . �

2.4. Quantum domains

Let H be a Hilbert space. By a quantum domain on H we mean a subset X ⊆
B (H) of projections such that ∨X = 1H , where ∨X is the least upper bound (that
is, supX ) in B (H) of the projection set X . If X is a commutative family of pro-
jections then we briefly say that X is a domain in H . Consider the algebraic sum
X =∑e∈X im(e) of a quantum domain X , which is a dense subspace in H . If L(X )
is the algebra of all linear transformations on the space X then the algebra of all non-
commutative continuous functions on X (or on X ) is defined [5] as the ∗ -algebra (see
Section 1)

C∗X (X ) = {T ∈ L(X ) : eT ⊆ Te,Te ∈B (H) ,e ∈ X} .
equipped with the family ‖T‖e = ‖Te‖ , T ∈ C∗X (X ) , e ∈ X of C∗ -seminorms turns
out to be a unital multinormed C∗ -algebra. For a finite subset α ⊆ X of a domain X
we have a continuous C∗ -seminorm ‖T‖α = ‖T · ∨α‖ , T ∈ C∗X (X ) on the algebra
C∗X (X ) too. Actually, ‖T‖α = supe∈α ‖T‖e , T ∈C∗X (X ) (see [10]) if X is a domain.
Thus

{‖·‖α : α ∈ X f
}

is an upward filtered family of C∗ -seminorms on C∗X (X ) which
defines the original topology.

A linear subspace V ⊆ C∗X (X ) is called a quantum (or local operator) space
whereas a unital selfadjoint subspace V ⊆C∗X (X ) is called a quantum system [5]. In
particular, for each e ∈ X the space Ve = {Te : T ∈V} is an operator space (resp., op-
erator system) in B (H) or in B (im(e)) . If A is a unital multinormed C∗ -algebra
with its family {qe : e ∈ X} of C∗ -seminorms then X is identified with a certain quan-
tum domain and there exists ∗ -homomorphism ϕ : A →C∗X (X ) such that ‖ϕ (a)‖e =
qe (a) , a ∈ A for all e ∈ X (see [21], [5]). Moreover as shown in [10] the quantum
domain X can be assumed to be commutative, that is, X is a domain.

Now let X be a domain on H . The commutant X ′ of X in B (H) is a uni-
tal von Neumann algebra on H , and the family ‖u‖e = ‖ue‖ , u ∈ X ′ , e ∈ X of C∗ -
seminorms defines a polynormed topology on X ′ . The completion of X ′ with respect to
this topology is reduced to the algebra C∗X (X ) (see [10]). Moreover, b(C∗X (X )) = X ′
[10]. If X is an orthogonal family of projections (in this case ∑X = 1H (WOT))
then we say that X is a graded domain. For a graded domain X , we have C∗X (X ) =
∏e∈XB (im(e)) (see [9]) is the direct product of C∗ -algebras equipped with the direct
product topology. Note that C∗X (X ) = B (H) whenever X = {1H} .

REMARK 2.1. If X = {en : n ∈ N} is a countable quantum domain in B (H) then
it can be reduced to the graded one without changing the relevant ∗ -algebra C∗X (X ) .
Indeed, put fn = (1− en−1)en , n ∈ N . Then en = ∑n

k=1 fk and Y = { fn : n ∈ N} is an
orthogonal family of projections such that ∑n fn = 1H . Moreover, X ′ = Y ′ in B (H) ,
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X = Y in H , and ‖T‖en
= sup1�k�n‖T‖ fk

for all T ∈C∗X (X ) . Thereby C∗X (X ) =
C∗Y (Y ) .

2.5. Local positivity

Let X be a quantum domain in B (H) . Take a ∈ Mn (C∗X (X )) . We say that
a is locally matrix positive if ae⊕n � 0 in B (Hn) , or a| im(e)n � 0 in B (im(e)n)
for a certain e ∈ X , where e⊕n = e⊕ ·· · ⊕ e . In this case we write a �e 0. Sim-
ilarly, for α ∈ X f , we write a �α 0 if a · (∨α)⊕n � 0. In particular, the notation
a =e 0 indicates to the equality ae⊕n = 0. Now let Y be another quantum domain
with its algebraic sum Y =∑ f∈Y im( f ) . A linear mapping ϕ : W →V between quan-
tum systems W ⊆ C∗Y (Y ) and V ⊆ C∗X (X ) is said to be a quantum positive if for
each e ∈ X there corresponds κ ∈ Y f such that a ∈ M (W ) , a �κ 0 (resp., a =κ 0)
implies that ϕ(∞) (a) �e 0 (resp., ϕ(∞) (a) =e 0) [5], where ϕ(∞) : M (W )→ M (V ) ,
ϕ(∞) [wi j] = [ϕ (wi j)] is the canonical extension of ϕ . Thus we have a well defined
matrix (or completely) positive mapping ϕeκ : W · ∨κ → Ve , ϕeκ (a · ∨κ) = ϕ (a)e of
the operator systems. A unital quantum positive mapping is called a quantum mor-
phism. Similarly, a linear mapping ϕ : W → V between quantum spaces W ⊆C∗Y (Y )
and V ⊆C∗X (X ) is a quantum contraction if for each e ∈ X there corresponds κ ∈ Y f

such that
∥∥∥ϕ(∞) (w)

∥∥∥
e
� ‖w‖κ , w ∈M (W ) , that is, we have a well defined matrix (or

complete) contraction ϕeκ :W ·∨κ→Ve , ϕeκ (a · ∨κ) = ϕ (a)e of the operator spaces.
As it is well (especially in the normed case) known (see [5, Corollary 4.1]) a unital
linear mapping ϕ : W →V of quantum systems is quantum positive iff it is a quantum
contraction.

REMARK 2.2. Actually, a quantum positive mapping ϕ : W → V is a quantum

continuous mappings with
∥∥∥ϕ(∞) (w)

∥∥∥
e
� ‖ϕeκ (∨κ)‖‖w‖κ = ‖ϕ (1W )e‖‖w‖κ , w ∈

M (W ) (see [5, Lemma 4.4]). In particular, if a quantum positive mapping ϕ : W →V
is a local contraction (or unital) then it is a quantum contraction. Indeed, by its very
definition for each e∈ X there corresponds another ι ∈Y f such that ‖ϕ (w)‖e � ‖w‖ι ,
w ∈M (W ) . It follows that supe∈X ‖ϕ (1W )e‖ = supe∈X ‖ϕ (1W )‖e � supι∈Xf ‖1W‖ι =

1. Therefore
∥∥∥ϕ(∞) (w)

∥∥∥
e
� ‖w‖κ , w ∈M (W ) .

Now let λ ∈Mn and p ∈B (H) . Based on the canonical identification Cn⊗H =
Hn , we have the following matrix λ p⊕n = λ⊗ p = [λi j p]i, j ∈Mn (B (H)) in its various
shapes. The following lemma is trivial but for the sake of a reader we provide its proof.

LEMMA 2.2. Let λ ∈Mn and p ∈B (H) be a nonzero projection. Then λ p⊕n �
0 (resp., hermitian) in Mn (B (H)) if and only if λ � 0 (resp., hermitian) in Mn .

Proof. Note that Mn is a nuclear C∗ -algebra and Mn (B (H)) = Mn⊗B (H) is
the tensor product of C∗ -algebras equipped with its unique C∗ -norm. It follows that
λ p⊕n = λ ⊗ p � 0 if λ � 0 in Mn . Conversely, assume that λ ⊗ p � 0. Then
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(λ ∗ −λ )⊗ p = 0, which in turn implies that (λ ∗ −λ )⊗1 = 0 in B (im(p)n) . There-
fore λ ∗ = λ . Finally, a negative eigenvalue λ (z) = rz , r < 0, z ∈Cn\{0} , would lead
to a similar one λ ⊗ p(z⊗ x) = −rz⊗ x , x ∈ im(p)\{0} . Actually, the equality of
spectra σ (λ ⊗ p) = σ (λ )σ (p) � 0 implies that σ (λ ) � 0. Hence λ � 0 in Mn . �

3. Injective module envelopes

In this section we introduce injectivity in the quantum space setting. It turns out
that this locally convex injectivity deals with the normed injectivity equipped with some
algebraic module structures. Therefore in this section we mainly develop a normed
background of locally convex injectivity.

3.1. The rigid inclusions for quantum spaces

Let X be a domain and V ⊆ C∗X (X ) a quantum system. We say that V is an
injective quantum system if for a quantum system inclusion W0 ⊆W and a quantum
morphism ϕ : W0 → V there exists a quantum morphism Φ : W → V extending ϕ .
A subspace V ⊆C∗X (X ) is said to be an injective quantum space (or strong injective
local operator space) if for a quantum space inclusion W0 ⊆W , and a quantum con-
traction ϕ : W0 → V there exists a quantum contraction Φ : W → V (with respect to
the same family of matrix seminorms) extending ϕ (see [5]). Finally, a multinormed
C∗ -algebra A is said to be injective if for each quantum system W0 in a multinormed
C∗ -algebra B and a quantum positive mapping ϕ : W0 → A there exists a quantum
positive mapping Φ : B→A extending ϕ .

REMARK 3.1. Each injective multinormed C∗ -algebra is an injective quantum
system. Moreover, if a quantum system is an injective quantum space then it turns
out to be an injective quantum system. For a unital linear mapping between quantum
systems is a quantum morphism iff it is a quantum contraction [5, Corollary 4.1].

The C∗ -algebra B (H) is an injective quantum space. Indeed, if W0 ⊆ W ⊆
C∗Y (Y ) is a quantum space inclusions, and ϕ : W0 → B (H) is a quantum contrac-

tion, then
∥∥∥ϕ(∞) (w)

∥∥∥ � ‖w‖κ , w ∈ M (W0) for some κ ∈ Y f . Using Arveson-Hahn-

Banach-Wittstock theorem, we derive that ϕ has an extension Φ : W →B (H) such

that
∥∥∥Φ(∞) (w)

∥∥∥ � ‖w‖κ , w ∈M (W ) , that is, Φ is a quantum contractive extension of

ϕ . In this case, the same matrix seminorm ‖·‖κ has been preserved for the extension
Φ of ϕ . In particular, each injective operator space is an injective quantum space.

Let V ⊆W ⊆ C∗X (X ) be the inclusions of quantum spaces. As in the normed
case, we say that the inclusion V ⊆W is rigid if we have only the identity quantum
contractive (with respect to the fixed family of matrix seminorms) mapping over W
extending the identity mapping over V . If V ⊆W is rigid then W is the only possible
injective quantum space within V and W . Indeed, if W0 is an injective quantum space
and V ⊆W0 ⊆W then the identity mapping W0→W0 has a quantum contractive ex-
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tension ϕ : W →W0 ⊆W . But ϕ |V = id and V ⊆W is rigid, therefore ϕ = id , that is,
W ⊆W0 . Therefore W0 = W .

If V ⊆W1 and V ⊆W2 are rigid inclusions, and both W1 and W2 are injective
quantum spaces then W1 = W2 up to a quantum isomorphism. Indeed, the inclusion
V ⊆W2 is extended to a quantum contractive mapping ϕ1 : W1→W2 such that ϕ1|V =
id . Similarly, we have a quantum contraction ϕ2 :W2→W1 such that ϕ2|V = id . Then
ϕ2ϕ1 and ϕ1ϕ2 are both quantum contractions over W1 and W2 , respectively, acting
as the identity mappings over V . Whence ϕ2ϕ1 = id and ϕ1ϕ2 = id, that is, W1 = W2

up to a quantum isomorphism. Certainly all just considered inclusions can be replaced
by quantum isometric embeddings (fixing up the family of seminorms). This allows to
define the injective envelope of V as an injective quantum space I (V ) with the rigid
inclusion V ⊆ I (V ) up to a quantum isomorphism.

REMARK 3.2. Assume V is a quantum space with the rigid inclusion V ⊆ I (V )
into its injective envelope. If V ⊆ W and W is an injective quantum space then
I (V ) ⊆W up to a quantum isomorphism. Indeed, the inclusion V ⊆W is extended
to a quantum contraction ϕ : I (V )→W , for W is injective. Similarly, I (V ) being
injective, the inclusion V ⊆ I (V ) is extended to a quantum contraction ψ : W → I (V ) .
But ψϕ : I (V )→ I (V ) is a quantum contractive extension of the identity mapping over
V . By the rigidity property of the injective envelope, we have ψϕ = id , which in turn
implies that ϕ is a quantum isomorphic embedding. Thus I (V )⊆W .

A dense inclusion into is always rigid. So is the inclusion Y ′ = b(C∗Y (Y )) ⊆
C∗Y (Y ) . One has to concern to the latter inclusion with precautions, for in many cases
Y ′ is an injective operator space (therefore injective quantum space) but it does not
imply the injectivity of C∗Y (Y ) though Y ′ ⊆ C∗Y (Y ) is rigid. The latter inclusion is
considered in the category of polynormed spaces (not normed ones), the identity map-
ping Y ′ →Y ′ is not quantum contraction if the initial Y ′ equipped with the polynormed
topology from C∗Y (Y ) but the terminal Y ′ with the normed topology from B (H) .

PROPOSITION 3.1. If A is an injective multinormed C∗ -algebra then b(A ) is
an injective C∗ -algebra.

Proof. Assume {qe : e ∈ X} is a defining family of C∗ -seminorms on A . As we
have mentioned above, the set X is identified with a quantum domain on a Hilbert space
H such that A turns out to be a closed ∗ -subalgebra in C∗X (X ) . Thus qe = ‖·‖e on A
for all e ∈ X . Let W0 be an operator system in a unital C∗ -algebra B and let ϕ : W0→
b(A ) be a matrix (or completely) positive mapping. For each positive a ∈M (W0) its
range ϕ(∞) (a) is positive in M (b(A )) , in particular, ϕ(∞) (a) �e 0 in M (A ) for all
e ∈ X . Thus ϕ : W0→ b(A )⊆ A is a quantum positive mapping, which is extended
to a quantum positive mapping Φ : B→ A , for A is an injective multinormed C∗ -
algebra. By its very definition, each mapping Φe : B→A e , Φe (b) = Φ(b)e is matrix
positive. Then ‖Φe‖mb = ‖Φe‖ = ‖Φe (1B)‖e = qe (Φ(1B)) (see [12, Lemma 5.1.1]

and Remark 2.2), that is, qe

(
Φ(∞) (b)

)
� qe (Φ(1B))‖b‖ for all b ∈ M (B) , e ∈ X .
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But Φ(1B) = ϕ (1B) ∈ b(A ) . It follows that∥∥∥Φ(∞) (b)
∥∥∥ = sup

e∈X
qe

(
Φ(∞) (b)

)
� sup

e∈X
qe (ϕ (1B))‖b‖= ‖ϕ (1B)‖‖b‖

for all b ∈ M (B) . Thus Φ(B) ⊆ b(A ) and Φ is a matrix bounded. It remains to
prove that Φ : B → b(A ) is matrix positive. Take a positive matrix b ∈ Mn (B) .
Then ϕ(n) (b) ∈ Mn (b(A )) = b(Mn (A )) . So, we can assume that n = 1. Since
Φ : B → A is quantum positive, it follows that Φ(b) �e 0 for all e ∈ X . Then
Φ(b) is hermitian (see [5, Lemma 4.3]). But A is an Arens-Michael algebra be-
ing the inverse limit of C∗ -algebras Ae = A /kerqe , e ∈ X . Therefore σA (Φ(b)) =
∪e∈X σAe (Φe (b)) � 0 (see [20, 5.2.12]), where σ indicates to spectra in the relevant
algebras. But σb(A ) (Φ(b)) is the closure of σA (Φ(b)) [22, Proposition 1.11]. Hence
σb(A ) (Φ(b)) � 0, that is, Φ(b) is positive in b(A ) . �

3.2. The graded domains

The following assertion states injectivity of C∗X (X ) for a graded domain X .

LEMMA 3.1. Let Ae , e ∈ X be a family of injective C∗ -algebras (resp., injective
operator spaces). Then A = ∏

e∈X
Ae is an injective multinormed C∗ -algebra (resp.,

injective quantum space). In particular, if X is a graded domain in a Hilbert space
H then C∗X (X ) is an injective multinormed C∗ -algebra and injective quantum space
simultaneously.

Proof. First, assume that all Ae , e ∈ X are injective C∗ -algebras. Let W0 be
a quantum system in a unital multinormed C∗ -algebra B with its defining family{
q f : f ∈ Y

}
of C∗ -seminorms. One can assume [21], [10] that B ⊆ C∗Y (Y ) is a

closed ∗ -subalgebra and q f (b) = ‖b‖ f , b ∈ B (Y is identified with is a quantum
domain). If ϕ : W0 → A is a quantum positive mapping, then for each e ∈ X there
corresponds κ ∈Y f such that the mapping ϕeκ :W0 ·∨κ→ Ae , ϕeκ (w · ∨κ) = πeϕ (w)
is a matrix positive mapping of the operator systems, where πe : A → Ae is the canon-
ical projection. Note that B · ∨κ is a C∗ -algebra (see [24]) and W0 · ∨κ is an op-
erator system in B · ∨κ . Taking into account the injectivity of Ae , we obtain a ma-
trix positive mapping Φeκ : B · ∨κ → Ae extending ϕeκ . In particular, the map-
ping Φe : B→ Ae , Φe (b) = Φeκ (b · ∨κ) is quantum positive. Consider the mapping

Φ : B→ ∏e∈XAe = A , Φ(b) = (Φe (b))e . Since Φ(∞) (b) =
(

Φ(∞)
e (b)

)
e

(up to the

canonical identification), b ∈M (B) , we derive that Φ is a quantum positive mapping.
If w ∈W0 then

Φ(w) = (Φe (w))e = (Φeκ (w · ∨κ))e = (ϕeκ (w · ∨κ))κ = (πeϕ (w))e = ϕ (w)

(κ depends upon e) that is, Φ(w) = ϕ (w) . Thus A is an injective multinormed C∗ -
algebra. In particular, if X is a graded domain in a Hilbert space H then C∗X (X ) =
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∏e∈XB (im(e)) . But each B (im(e)) is an injective C∗ -algebra thanks to Arveson-
Hahn-Banach-Wittstock theorem. Therefore C∗X (X ) is an injective multinormed C∗ -
algebra.

Finally, assume that all Ae , e∈X are injective operator spaces, W0⊆W ⊆C∗Y (Y )
a quantum space inclusions. If ϕ :W0→A is a quantum contraction then for each e ∈
X there corresponds κ ∈Y f such that the mapping ϕeκ : W0 ·∨κ→ Ae , ϕeκ (w · ∨κ) =
πeϕ (w) is a matrix contraction (see Remark 2.2). Based on the injectivity of Ae , we
obtain a matrix contractive Φeκ : W · ∨κ → Ae extension of ϕeκ . In particular, the
mapping Φe : W → Ae , Φe (b) = Φeκ (b · ∨κ) is a quantum contraction. As above the
mapping Φ : W →∏e∈XAe = A , Φ(w) = (Φe (w))e is a quantum contraction extend-
ing ϕ . In particular, C∗X (X ) = op∏e∈XB (im(e)) is an injective quantum space. �

REMARK 3.3. Note that b(A ) =
∞⊕

e∈X
Ae whenever A = ∏

e∈X
Ae , and X ′ =

b(C∗X (X )) . Based on Proposition 3.1, we obtain that
∞⊕

e∈X
Ae is an injective C∗ -algebra

(see also [2, IV. 2.1.2 (ii)]).

PROPOSITION 3.2. Let V be a quantum space (resp., system). Then V is injective
if and only if it can be identified with a quantum space (resp., system) in some C∗X (X )
with a graded domain X such that V = P(C∗X (X )) for a certain quantum contractive
projection (resp., quantum morphism-projection) P : C∗X (X )→C∗X (X ) .

Proof. Using [10], we can assume that V ⊆C∗Y (Y ) for a certain domain Y . Put
H = ⊕e∈Y im(e) and let X be the family of canonical projections in B (H) gener-
ated by the latter decomposition. Thus X is a graded domain in H . Consider the
∗ -homomorphism i : C∗Y (Y )→ C∗X (X ) , i(T ) = (T | im (e))e∈Y . Then ‖T | im(e)‖ =
‖Te‖= ‖T‖e , T ∈C∗Y (Y ) , e ∈Y , that is, i is a quantum Y -isometry. Thus V is iden-
tified with a quantum space or system in C∗X (X ) for a certain graded domain X . Since
V is an injective quantum space (resp., system), it follows that the identity mapping
V →V is extended up to a quantum contraction (resp., quantum morphism-projection)
P : C∗X (X )→C∗X (X ) onto the subspace V .

Conversely, if V = P(C∗X (X )) for a certain quantum contraction (resp., quantum
morphism-projection) P : C∗X (X )→C∗X (X ) , then V is injective. Indeed, fix a quan-
tum space (resp., system) inclusion W0⊆W and a quantum contraction (resp., quantum
morphism) ϕ : W0→ V ⊆C∗X (X ) . By Lemma 3.1, C∗X (X ) is an injective quantum
space. It is an injective quantum system either (see Remark 3.1). Therefore ϕ admits
a quantum contractive (resp., quantum morphism) extension ψ : W → C∗X (X ) . Put
Φ = Pψ : W → V which is a quantum contraction (resp., quantum morphism), that is,
V is injective. �

As we have seen in [10] the multinormed C∗ -algebra C∗X (X ) for a (commutative)
domain X inherits many properties of B (H) in the locally convex theory. But the
property to be injective quantum space (or system) we have seen just in the graded
(”extreme”) case. Later on we generalize the result to locally finite domains. Finally,
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note the rigidity introduced above is too general to be pushed forward. It is not even
clear whether it does exist. Some additional module structures that we have seen in
multinormed W ∗ -algebras allow to introduce the rigidity which is closed to the rigidity
of operator spaces.

3.3. Injective R-envelope of an operator space

Now let A ⊆B (H) be an injective (unital) von Neumann algebra on a Hilbert
space H , and let Y ⊆ A be a subset of its central projections. For the union Y ∪{1H}
we use the notation Y+ , which is a commutative set of projections in B (H) as well. In
particular, it generates the commutative subring R(Y+) in A , which consists of all Z-
finite sums of monomials (or words) in elements of Y+ . For brevity we use the notation
R instead of R(Y+) . Since RA = AR ⊆ A , the algebra A is equipped with canonical
R-module structure. Thus A is an algebraic R-module.

Let V ⊆ A be a subspace such that YV ⊆ V . Thus eV ⊆ V for all e ∈ Y . It
follows that (1− e)V ⊆ V , e ∈ Y , and e1 · · ·enV ⊆ V for all ei ∈ Y , that is, V is
an algebraic R-module. Thus V is (an algebraic) R-module iff YV ⊆ V . If W is an
injective subspace in A such that YW ⊆W then W is called an injective R-module. So,
is the enveloping algebra A . We say that the inclusion V ⊆W of an operator space V
into a R-submodule W in A is R-rigid if we have only the identity matrix contractive
R-homomorphism over W extending the identity mapping over V .

LEMMA 3.2. Let A be an injective von Neumann algebra with its subset Y ⊆ A
of central projections, R the unital subring in A generated by Y , and let W ⊆ A be
an operator space. Then W is an injective R-module iff W = im(P) is the range of a
certain projection P ∈ ballMBR (A) .

Proof. First assume that W = im(P) is the range of a certain projection P ∈
ballMBR (A) . Since A is injective, it is the range of a certain morphism-projection
B (H)→B (H) [17]. Therefore A is an injective operator space. In particular, W is
an injective operator space [12, 4.1.6]. Moreover, W is a R-submodule in A being the
range of a R-homomorphism. Thus W is an injective R-module.

Conversely, assume that W is an injective R-module. The identity mapping over
W is extended to a matrix contractive projection onto W . Thus W = im(P) for a
certain projection P ∈ ballMB (A) . Pick x ∈ A and a projection e from the ring R .
By assumption, RW ⊆W , therefore ex ∈ A and (1− e)P(ex) ∈W . But P|W = id .
Therefore P((1− e)P(ex)) = (1− e)P(ex) and we can use the argument from [13,
Proof of Theorem 2.5], which is due to Effros, Ozawa and Ruan. Namely,

(1+ λ )2 ‖(1− e)P(ex)‖2 = ‖(1− e)P(ex+ λ (1− e)P(ex))‖2

� ‖ex+ λ (1− e)P(ex)‖2

� ‖ex‖2 + λ 2‖(1− e)P(ex)‖2 ,

which implies that (1+2λ )‖(1− e)P(ex)‖2 � ‖ex‖2 for all real λ . Then (1− e)P(ex)
= 0 or P(ex) = eP(ex) for all x . Interchanging the role of 1− e and e , we obtain that
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eP((1− e)x) = 0 or eP(x) = eP(ex) . Hence eP(x) = P(ex) for all x ∈ A . Since Y is
commutative, the elements of the ring R is a Z-sum of projections from R , therefore
eP(x) = P(ex) for all e∈ R and x∈ A . Thus P : A→ A is a R-module homomorphism,
that is, P ∈MBR (A) . �

Now let V ⊆ A be an operator subspace. We define EV = {ϕ ∈ ballMBR(A) : ϕ |V
= id} to be a nonempty subset in ballMBR (A) , for 1A ∈ EV . For the elements ϕ ,
ψ ∈ EV , we set ϕ � ψ iff ‖ϕ (a)‖� ‖ψ (b)‖ , a ∈ A . That is a reflexive and transitive
relation on EV , and we put ϕ ≈ ψ iff ϕ � ψ and ψ � ϕ . An element ϕ ∈ EV is said
to be minimal if ψ � ϕ implies ψ ≈ ϕ . The set of all its minimal elements is denoted
by minEV .

The forthcoming lemma is a modified version of the known Hamana-Ruan exten-
sion lemma [12, 6.1.5], [18], [23].

LEMMA 3.3. The set minEV is not empty and it consists of projections in
ballMBR (A) . For each ϕ ∈minEV the inclusion V ⊆ im(ϕ) is R-rigid, and im(ϕ)⊆
W up to a matrix isometry for each injective R-submodule W ⊆ A with the inclu-
sion V ⊆W . In particular, im(ϕ) = W up to a matrix isometry for each injective
R-submodule W ⊆ A with the R-rigid inclusion V ⊆W .

Proof. We use the arguments very similar to [12, 6.1.5, 6.2.1]. First note that EV is
a (p-WOT) closed subset in ballMBR (A) . Indeed, if (ϕλ )λ ⊆ EV is a net with ϕ = (p-
WOT)limλ ϕλ ∈ ballMBR (A) (see Lemma 2.1) then ϕ (v) = (WOT)limλ ϕλ (v) =
(WOT)limλ v = v for all v ∈ V . Thus EV is a (p-WOT) compact space thanks to
Lemma 2.1. Moreover, each section Fϕ = {ψ ∈ EV : ψ � ϕ} is closed out of semi-
continuity of the (operator) norm with respect to WOT on A . Whence minEV �= ∅

[12, 6.1.4]. Take ϕ ∈ minEV . Then ψn = n−1 ∑n
k=1 ϕk ∈ ballMBR (A) (confirm

that MBR (A) is a subalgebra in MB (A)) and ψn|V = id , that is, ψn ∈ EV and
ψn � ϕ . Therefore ψn ≈ ϕ or ‖ϕ (a)‖ = ‖ψn (a)‖ for all a ∈ A . It follows that∥∥ϕ (a)−ϕ2 (a)

∥∥ = ‖ϕ (a−ϕ (a))‖= ‖ψn (a−ϕ (a))‖= n−1
∥∥∑n

k=1 ϕk (a−ϕ (a))
∥∥ =

n−1
∥∥ϕ (a)−ϕn+1 (a)

∥∥ � 2n−1 ‖a‖ , that is, ϕ is a projection in ballMBR (A) . In
particular, im(ϕ) is an injective R-module (see Lemma 3.2). Actually, the inclu-
sion V ⊆ im(ϕ) is R-rigid. Indeed, assume τ ∈ ballMBR (im(ϕ)) with τ|V = id .
Then ψ = τϕ ∈ ballMBR (A) , and ψ (v) = τ (ϕ (v)) = τ (v) = v , v∈V , which means
that ψ ∈ EV . But ‖ψ (a)‖ = ‖τϕ (a)‖ � ‖ϕ (a)‖ , a ∈ A , that is, ψ � ϕ . Therefore
ψ ∈minEV as well. Thus ψ is a projection, ‖ψ (a)‖ = ‖ϕ (a)‖ , a ∈ A , and im(ψ)⊆
im(ϕ) . Then ϕψ = ψ and ‖ϕ (a)−ψ (a)‖ = ‖ϕ (a−ψ (a))‖ = ‖ψ (a−ψ (a))‖ = 0
for all a ∈ A . Hence ϕ = ψ or τ = id . Thus V ⊆ im(ϕ) is R-rigid.

Finally, assume that W is an injective R-submodule in A with the inclusion V ⊆
W . By Lemma 3.2, W = im(P) for a certain projection P ∈ ballMBR (A) . Then
P|V = id , therefore P ∈ EV . Consider the mapping ϕPϕ ∈MB (A) . Since both
projections are R-homomorphisms,we derive that ϕPϕ ∈ ballMBR (A) . In particular,
ϕPϕ ∈ ballMBR (im(ϕ)) and ϕPϕ (v) = ϕ (P(v)) = ϕ (v) for all v ∈V . Since V ⊆
im(ϕ) is R-rigid, it follows that ϕPϕ = id over im(ϕ) , or ϕ (P(x)) = x for all x ∈
im(ϕ) . Taking into account that both ϕ and P are matrix contractions, we conclude
that P : im(ϕ)→ im(P) is a matrix isometric embedding. �
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Based on Lemma 3.3, we define an injective R-envelope IR (V ) of a subspace
V ⊆ A to be the range im(ϕ) of a minimal projection from the set EV . Thus IR (V ) is
uniquely defined up to a matrix isometry. The injective R-envelope is minimal in the
sense that if V ⊆W ⊆ IR (V ) for some injective R-submodule W ⊆ A then W = IR (V )
(up to a matrix isometry) thanks to Lemma 3.3.

3.4. Paulsen module of an operator space

Let Y be a domain in B (H) and A =Y ′ its commutant in B (H) . Each monomial
in elements of Y+ turns out to be a projection. Thereby the ring R generated by Y+
consists of all Z-finite sums of projections, and A = R′ in B (H) . Fix n ∈ N . The
matrix space Mn (A) has a canonical R-module structure determined by the matrix
product xe⊕n for all x ∈Mn (A) and e ∈ R . For brevity we write xe instead of xe⊕n .
We define the Paulsen system of the domain Y as

PY =
[

C A
A∗ C

]
=

{[
α a
b∗ β

]
∈M2 (A) : α,β ∈ C,a,b ∈ A

}
,

which is an operator system in M2 (A) . If V ⊆ A is an operator space, we define its
Paulsen system as the subspace

PV =
[

C V
V ∗ C

]
⊆PY .

Note that Mn (PV ) is a subspace in M2n (V ) for each n . Actually,

Mn (PV ) =
[

Mn Mn (V )
Mn (V )∗ Mn

]
=

{[
α a
b∗ β

]
∈M2n (V ) : α,β ∈Mn,a,b ∈Mn (V )

}

up to the canonical (shuffling) identification. The subspace Mn (PV ) is not a R-
submodule in M2n (V ) . The R-submodule in M2n (V ) generated by Mn (PV ) is de-
noted by Mn (PV )R . Thus the R-module Mn (PV )R consists of all finite sums ∑e∈R xee
with xe ∈Mn (PV ) . In particular,

PVR =
{[

∑e∈R αee ∑e∈R aee
(∑e∈R bee)∗ ∑e∈R βee

]
∈M2 (V ) : αe,βe ∈ C,ae,be ∈V

}
,

which is a R-submodule in M2 (V ) generated by PV called the Paulsen module of V .

LEMMA 3.4. Let Y be a domain in B (H) . Then Mn (PV )R = Mn (PV R) up to
a canonical identification, and if x∈Mn (PV R) then x = ∑m

i=1 xiei for some orthogonal
family (ei)i of projections from the ring R and matrices (xi)i ⊆Mn (PV ) .

Proof. Based on the canonical identification Mn (PV ) = Mn⊗PV we have

Mn (PV )R = (Mn⊗PV )R = Mn⊗PVR = Mn (PV R) .
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We need justify the second equality. Pick an elementary tensor λ ⊗ x ∈Mn⊗PV and
e ∈ R . Then

(λ ⊗ x)e = [λi jx]e⊕2n =
[[

λi jα λi ja
λi jb∗ λi jβ

]]
i j

e⊕2n =
[

[λi jα] [λi ja]
[λi jb∗] [λi jβ ]

]
e⊕2n

=
[

[λi jαe] [λi jae]
[λi jb∗e] [λi jβe]

]
=

[[
λi jαe λi jae
λi jb∗e λi jβe

]]
i j

= [λi jxe] = λ ⊗ xe,

that is, (λ ⊗ x)e = λ ⊗ xe , which results in the identification (Mn⊗PV )R = Mn⊗
PVR .

Now take an element x ∈Mn (PV R) . Since Mn (PVR) = Mn (PV )R , it follows
that x = ∑m

i=1 ziei for some (zi)i ⊆ Mn (PV ) and (ei)i ⊆ R . But each element of the
ring R is a Z-sum of (commutative) monomials in Y+ , that is, projections from the ring
R . Therefore we can assume that all (ei)i are projections from the ring R . We proceed
an orthogonalization by induction on m . If m = 1 the assertion is trivial. For m = 2 we
have x = z1e1 + z2e2 = z1 f1 + (z1 + z2) f2 + z2 f3 , where f1 = e1 (1− e2) , f2 = e1e2 ,
f3 = e2 (1− e1) are projections from the ring R . Since Y is commutative, we conclude
that fi f j = 0, 1 � i �= j � 3, that is, ( fi)i is an orthogonal family of projections from
the ring R .

In the general case, based on induction hypothesiswe have x= ∑m
i=1 ziei = ∑k

i=1 yi fi
+ zmem for some orthogonal family ( fi)i of projections from R and matrices (yi)i ⊆
Mn (PV ) . Then f = ∑k

i=1 fi is a projection from the commutative ring R . It follows
that

x =
k

∑
i=1

yi fi (1− em)+ yi fiem + zmem (1− f )+ zmem f

=
k

∑
i=1

yi fi (1− em)+ (yi + zm) fiem + zmem (1− f )

=
k

∑
i=1

yigi +
k

∑
i=1

(yi + zm)gi+k + zmg2k+1

with gi = fi (1− em) , gi+k = fiem , 1 � i � k , and g2k+1 = em (1− f ) . One can easily
verify that (gi)i is an orthogonal family of projections from the ring R . Whence x =
∑2k+1

i=1 xigi for some matrices (xi)i ⊆Mn (PV ) . �

Fix an element x ∈Mn (PVR)\{0} . Using Lemma 3.4, we conclude that

x =
m

∑
i=1

xiei =
m

∑
i=1

[
αieι aieι
b∗i eι βieι

]
=

[
α a
b∗ β

]
,

where α = ∑m
i=1 αieι = ∑m

i=1 αie⊕n
ι , β = ∑m

i=1 βieι = ∑m
i=1 βie⊕n

ι , a = ∑m
i=1 aieι , b =

∑m
i=1 bieι with αi , βi ∈ Mn , ai , bi ∈ Mn (V ) and an orthogonal family of projections

(ei)i from the ring R . We can assume that xiei �= 0 for all i . In particular, if x is a
hermitian element then b = a , which in turn implies that aie⊕n

ι = bie⊕n
ι , 1 � i � m , due
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to orthogonality of the family (ei)i . Moreover, both α and β are hermitian elements in
Mn (A) . Using again orthogonality and Lemma 2.2, we derive that all αi , βi are scalar
hermitian matrices in Mn .

If x � 0 is positive then xei = xiei � 0 for all i due to the orthogonal expansion.
Using again Lemma 2.2, we derive that αi � 0, βi � 0, for αei = λxeiλ ∗ � 0 with
λ =

[
In 0

] ∈Mn,2n (similarly, βei � 0). Put e = ∑m
i=1 ei , which is a projection from

the ring R called a supporting projection for x . We set α + εe = ∑m
i=1 (αi + εIn)eι ,

and (α + εe)−1/2 = ∑m
i=1 (αi + εIn)−1/2 ei , ε > 0. Note that (α + εe)−1/2 (α + εe)

(α + εe)−1/2 = ∑m
i=1 e⊕n

i = e⊕n thanks to the orthogonality property either. Similarly,

(β + εe)−1/2 (β + εe)(β + εe)−1/2 = e⊕n .

LEMMA 3.5. Let x =
[

α a
a∗ β

]
∈Mn (PV R) be a hermitian element with its sup-

porting projection e ∈ R. Then x � 0 if and only if
∥∥∥(α + εe)−1/2 a(β + εe)−1/2

∥∥∥ � 1

for all ε > 0 .

Proof. As above put x = ∑m
i=1 xiei and e = ∑m

i=1 ei ∈ R . Note that x � 0 iff x+

εe⊕2n = ∑m
i=1 (xi + ε)ei � 0 for all ε > 0. Since x + εe⊕2n =

[
α + εe a

a∗ β + εe

]
, it

follows that λε
(
x+ εe⊕2n

)
λ ∗ε � 0 with λε = (α + εe)−1/2⊕ (β + εe)−1/2 , whenever

x � 0. Using again orthogonality of the family (ei) , we conclude that

λε
(
x+ εe⊕2n)λ ∗ε =

[
e⊕n aε
a∗ε e⊕n

]
=

[
I aε
a∗ε I

]
e � 0

for all ε > 0, where aε = (α + εe)−1/2 a(β + εe)−1/2 = ∑m
i=1 (αi + εIn)

−1/2 aiei

(βi + εIn)−1/2 . It follows that ‖aε‖= ‖aεe‖� 1 (see [12, Proposition 1.3.2]). �

3.5. Injective R-envelope of PV

As above let Y be a domain in B (H) and A =Y ′ its commutant in B (H) . Since
Y is commutative, it follows that A is an injective von Neumann algebra [2, IV. 2.2.7].
Moreover, M2 (A) is injective [2, IV. 2.1.5] as well. Using Remark 3.2, we derive that
I (PV R) ⊆ M2 (A) up to a matrix isometry, where I (PV R) is the normed injective
envelope of PVR .

PROPOSITION 3.3. If V ⊆ A is an operator space then IR (PV ) = I (PVR) .

Proof. The identity mapping over I (PVR) is extended to a matrix contractive
projection Φ ∈ ballMB (M2 (A)) onto I (PV R) . Since PVR is unital, it follows
that Φ is a morphism projection. Moreover, R⊆PVR , therefore Φ

(
e⊕2

)∗Φ
(
e⊕2

)
=

e⊕2e⊕2 = e⊕2 = Φ
(
e⊕2∗e⊕2

)
for all e∈Y+ . Using Stinespring Theorem [12, Corollary

5.2.2], we obtain that Φ
(
xe⊕2

)
= Φ(x)e⊕2 or Φ(xe) = Φ(x)e for all x ∈M2 (A) and
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e∈Y+ . It follows that Φ is a R-module homomorphism, that is, Φ∈ ballMBR (M2 (A)) .
Thus I (PV R) is an injective R-module. But PV ⊆PVR , therefore IR (PV )⊆ I (PV R)
thanks to Lemma 3.3. Further, PV ⊆ IR (PV ) and IR (PV ) is a R-module. In particu-
lar, PV R⊆ IR (PV ) . But IR (PV ) is an injective space either. Using again Lemma 3.3
(but right now in its classical version for operator spaces), we derive that I (PVR) ⊆
IR (PV ) . �

Now let V ⊆ A be an operator space which is a R-module as well, τ : V → V a
R-module homomorphism. It can canonically be extended to a linear mapping

τ̃ : PV R→PVR, τ̃
[

α a
b∗ β

]
=

[
α τ (a)

τ (b)∗ β

]

(note that a,b ∈ V and α,β ∈ span(R)). Obviously, τ̃ is a unital mapping such that
τ̃
(
e⊕2

)
= e⊕2 , e ∈ R . Furthermore, τ̃ (xe) = τ̃ (x)e , x ∈PVR , e ∈ R , that is, τ̃ is a

R-module homomorphism.

LEMMA 3.6. If τ :V →V is a matrix contractive R-module homomorphism then
the mapping τ̃ : PVR→PVR is matrix positive.

Proof. Take a positive element x =
[

α a
a∗ β

]
∈Mn (PVR) with its supporting pro-

jection e = ∑m
i=1 ei ∈ R . Note that τ̃(n) : Mn (PVR)→Mn (PV R) is acting in the fol-

lowing way

τ̃(n)
[

α a
b∗ β

]
=

[
α τ(n) (a)

τ(n) (b)∗ β

]
.

By Lemma 3.5, ‖aε‖ � 1 for all ε > 0, where aε = (α + εe)−1/2 a(β + εe)−1/2 and
a = ∑m

i=1 aiei . Note that aε = ∑m
i=1 (αi + εIn)

−1/2 aiei (βi + εIn)
−1/2 . Since τ is R-

homomorphism, we have

τ(n) (aε) = ∑
i

(αi + εIn)−1/2 τ(n) (aiei) (βi + εIn)−1/2

= ∑
i

(αi + εIn)−1/2 τ(n) (ai)ei (βi + εIn)−1/2

= (α + εe)−1/2 τ(n) (a)(β + εe)−1/2 = τ(n) (a)ε .

But τ is a matrix contraction, therefore
∥∥∥τ(n) (a)ε

∥∥∥ =
∥∥∥τ(n) (aε)

∥∥∥ � ‖aε‖ � 1 for all

ε > 0. Using again Lemma 3.5, we obtain that τ̃(n) (x) � 0. �

Fix the projection p = 1⊕ 0 ∈ M2 (A) and put p′ = 1− p . The injective R-
envelope of an operator subspace in A has the following description.

THEOREM 3.1. Let Y be a domain in B (H) . If V ⊆ Y ′ is an operator space
then IR (V ) = pIR (PV ) p′ up to a matrix isometry.
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Proof. Note that I (PVR) = im(Φ) is an injective C∗ -algebra with respect to
the multiplication x · y = Φ(xy) , x,y ∈ I (PV R) , where Φ ∈ ballMB (M2 (A)) is the
projection. Since p = 1⊕ 0 ∈PV ⊆PVR , we have p · p = Φ

(
p2

)
= Φ(p) = p and

Φ(p)∗ ·Φ(p) = p · p = p = Φ(p∗p) . Using Stinespring Theorem [12, Corollary 5.2.2],
we obtain that Φ(py) = p ·Φ(y) for all y∈M2 (A) . Similarly, p′ is a projection in PV

and Φ(yp′) = Φ(y) · p′ for all y∈M2 (A) . The mapping i :V →M2 (A) , i(v) =
[

0 v
0 0

]
is a matrix isometry. Using Hamana-Ruan formula [3, 4.4.3], we derive that

V = i(V )⊆ I (V ) = pI (PV ) p′ ⊆M

up to matrix isometries, where M = pI (PVR) p′ is the right upper-corner of I (PVR) .
But M = pIR (PV ) p′ by Proposition 3.3. Therefore M is a R-module, and IR (V )⊆M
by Lemma 3.3. Actually, the inclusion V ⊆M is R-rigid. Indeed, let τ : M→ M be
a matrix contractive R-homomorphism extending the identity mapping over i(V ) . By
Lemma 3.6,

τ̃ : PMR→PMR, τ̃
[

α a
b∗ β

]
=

[
α τ (a)

τ (b)∗ β

]
,

is a unital matrix positive R-homomorphism. In particular, τ̃ is a matrix contraction.
But PVR is canonically identified with a R-submodule in PMR . Namely,

PV R =
[

C V
V ∗ C

]
R⊆

[
C M
M∗ C

]
R = PMR,

and τ̃ = id over PV R . Moreover,

PMR =
[

C pI (PVR) p′
(pI (PV R) p′)∗ C

]
R

⊆ I (PVR)R = IR (PV )R⊆ IR (PV ) = I (PV R) ,

that is, PMR is viewed as a submodule of I (PVR) . Based on the injectivity of
I (PV R) , we derive that τ̃ has a matrix contractive extension σ : I (PVR)→ I (PVR) .
But PV R⊆PMR⊆ I (PV R) and σ |PVR = τ̃|PVR = id . Using the rigidity property,
we obtain that σ = id . Therefore τ = id over M . Thus the inclusion V ⊆M is R-rigid.
By Lemma 3.3, M = IR (V ) . Thus IR (V ) = pI (PVR) p′ = pIR (PV ) p′ . �

4. Injective quantum modules

In this section we investigate the problem whether a multinormed completion of
an injective W ∗ -algebra is injective in the quantum space sense. A quantum domain
Y whose commutant completion C∗Y (Y ) is an injective quantum space is called an
injective quantum domain. Each graded domain is injective thanks to Lemma 3.1. We
prove that the injectivity problem of multinormed W ∗ -algebras can be reduced to the
injectivity problem of their domains.
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4.1. Injective quantum modules

Let Y be an injective domain in B (H) and let R be the commutative subring
in B (H) generated by Y+ . A subspace V ⊆ C∗Y (Y ) with YV ⊆ V (or RV ⊆ V )
is called an algebraic R-module. Note that YV ⊆ b(C∗Y (Y )) = Y ′ whereas (1− e)v
may not be a bounded element in V for v ∈ V and e ∈ Y . Actually, YV lies in the
bounded part Y ′ ∩V = b(V ) of the subspace V . An injective quantum space V with
the property YV ⊆ V is called an injective quantum R-module. Note that if V is the
range of a quantum contractive R-module projection P : C∗Y (Y )→ C∗Y (Y ) , then V
is an injective quantum R-module (see [5, Lemma 8.1]). Indeed, since C∗Y (Y ) is
injective, we conclude that (see Proposition 3.2) C∗Y (Y ) = Q(C∗X (X )) for a certain
quantum contractive projection Q : C∗X (X )→C∗X (X ) , where X is a graded domain.
Hence V is the range of a quantum contractive projection on C∗X (X ) . By Proposition
3.2, V is an injective quantum space. Moreover, V turns out to be R-module being the
range of a R-module homomorphism.

Note that each local von Neumann subalgebra in C∗Y (Y ) [10] is a R-submodule
in C∗Y (Y ) .

PROPOSITION 4.1. Let Y be an injective domain, and let V ⊆C∗Y (Y ) be a sub-
space. Then V is an injective quantum R-module if and only if its bounded part b(V )
is an injective R-module and V = b(V ) . In this case, V is the range of a quantum

contractive R-module projection P : C∗Y (Y )→ C∗Y (Y ) such that
∥∥∥P(∞) (x)

∥∥∥
e
� ‖x‖e

for all x ∈M (C∗Y (Y )) and e ∈Y .

Proof. First assume that b(V ) is an injective R-module and V = b(V ) . Let us
point out that we deal with the multinormed topology in C∗Y (Y ) . In particular, YV =
Yb(V )⊆ Yb(V )⊆ b(V )⊆V , that is, V is a R-module. Note that Y is a commutative
set of projections, therefore Y ′ is an injective von Neumann algebra [2, IV. 2.2.7],
and b(V ) ⊆ Y ′ . By Lemma 3.2, b(V ) = im(ϕ) is the range of a certain projection
ϕ ∈ ballMBR (Y ′) . In particular, ϕ (ex) = eϕ (x) for all x ∈ Y ′ and e ∈ Y . Since the
same can be applied to all matrices too, we obtain that e⊕nϕ(n) (x) = ϕ(n) (e⊕nx) for all
x ∈Mn (Y ′) , e ∈Y . It follows that∥∥∥ϕ(n) (x)

∥∥∥
e
=

∥∥∥e⊕nϕ(n) (x)
∥∥∥ =

∥∥∥ϕ(n) (e⊕nx
)∥∥∥ �

∥∥e⊕nx
∥∥ = ‖x‖e ,

that is,
∥∥∥ϕ(∞) (x)

∥∥∥
e

� ‖x‖e for all x ∈ Mn (Y ′) and e ∈ Y . Thus ϕ is matrix con-

tinuous relative to the quantum topology inherited from C∗Y (Y ) , therefore it has a
matrix continuous extension Φ : C∗Y (Y ) → C∗Y (Y ) . Pick x ∈ C∗Y (Y ) and e ∈ R .
Then x = limι xι for a certain net (xι)ι in b(C∗Y (Y )) = Y ′ (out of density of Y ′ in
C∗Y (Y )). Using the continuity of Φ , we obtain the following eΦ(x) = limι eϕ (xι) =
limι ϕ (exι) = Φ(ex) ∈ V . Thus e⊕nΦ(n) (x) = Φ(n) (e⊕nx) for all x ∈ Mn (C∗Y (Y )) ,

e ∈ R . In particular,
∥∥∥Φ(n) (x)

∥∥∥
e
� ‖x‖e for all x ∈Mn (C∗Y (Y )) and e ∈ Y . Note that

Φ2 and Φ are compatible over Y ′ , therefore Φ : C∗Y (Y )→C∗Y (Y ) is a projection and
Φ(C∗Y (Y )) = ϕ (Y ′) = b(V ) = V . Whence V is an injective quantum R-module.
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Conversely, assume that V is an injective quantum R-module. There exists a
quantum contractive projection P : C∗Y (Y ) → C∗Y (Y ) onto the subspace V . Then
P(Y ′) ⊆ Y ′ and P : Y ′ → Y ′ is a matrix contractive projection onto a subspace. In-

deed, for each e ∈ Y there corresponds κ ∈ Y f such that
∥∥∥P(∞) (x)

∥∥∥
e
� ‖x‖κ � ‖x‖ ,

x ∈M (Y ′) . It follows that∥∥∥P(∞) (x)
∥∥∥ = sup

e∈Y

∥∥∥P(∞) (x)
∥∥∥

e
� sup

κ∈Y f

‖x‖κ � ‖x‖ , x ∈M
(
Y ′

)
,

that is, P : Y ′ → Y ′ is a matrix contractive projection. Moreover, V = P(C∗Y (Y )) =
P

(
Y ′

) ⊆ P(Y ′) ⊆ b(V ) and b(V ) ⊆ im(P|Y ′) ⊆ Y ′ ∩V = b(V ) . But V is closed

being the range of a continuous projection. Hence V = b(V ) and b(V ) = im(P|Y ′) . It
follows that b(V ) is an injective operator space. But Yb(V ) ⊆ YV ⊆ Y ′ ∩V = b(V ) ,
that is, b(V ) is an injective R-module. �

4.2. The domain of a multinormed W ∗ -algebra

A weak∗ continuous ∗ -homomorphism between W ∗ -algebras is called a W ∗ -
homomorphism. By a multinormed W ∗ -algebra A we mean an inverse limit A =
lim←−{Aι ,ϕικ} of W ∗ -algebras Aι such that all connecting maps ϕικ : Aκ → Aι ( ι �
κ ) are W ∗ -homomorphisms (Fragoulopoulou [16]). Note that the multinormed W ∗ -
algebras appear as the central completions of von Neumann algebras [10, Propositon
2.1]. Namely, let A ⊆B (H) be a von Neumann algebra on a Hilbert space H , and
let Y ⊆ A be a subset of its central projections such that ∨Y = 1H . Note that A ⊆
Y ′ . The family of C∗ -seminorms ‖b‖e = ‖be‖ , b ∈ Y , e ∈ Y defines a (Hausdorff)
multinormed topology in Y ′ (in particular, in A) called the central topology (see [10]).
The completion of A relative to the central topology denoted by AY is a multinormed
W ∗ -algebra, and it is a pattern for the class of all multinormed W ∗ -algebras as shown
in [10]. Thus, if A is a multinormed W ∗ -algebra then there is a W ∗ -algebra A and
a domain Y in the center of A such that A = AY = A , which is the closure of A in
C∗Y (Y ) . The domain Y is called the domain of the multinormed W ∗ -algebra A .

THEOREM 4.1. Let A be a multinormed W ∗ -algebra with its injective domain
Y . Then A is injective if and only if its bounded part b(A ) is injective in the normed
sense.

Proof. If A is injective then so is b(A ) thanks to Proposition 3.1. Conversely,
assume that A is a multinormed W ∗ -algebra with its injective domain Y , and its in-
jective bounded part b(A ) . Thus A = AY ⊆C∗Y (Y ) and A ⊆ Y ′ is a von Neumann
algebra. Take a ∈ b(A ) . Then a = limι aι in C∗Y (Y ) for a net (aι) in A . By its very
definition of the multinormed topology in C∗Y (Y ) , we conclude that aeα = limι aιeα
in B (H) for each α ∈ Y f , where eα = ∨α . Therefore aeα ∈ A for all α . But
a = (WOT)limα aeα and A is a von Neumann subalgebra. Then a ∈ A . Whence
b(A ) = A and A is an injective operator space (see to the proof of Lemma 3.2). Since
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YA ⊆ A , it follows that A is an injective R-module. Using Proposition 4.1, we con-
clude that A being the closure of A turns out to be an injective quantum R-module.
Thus A is an injective quantum space. In particular, A is an injective quantum system
(see Remark 3.1). Based upon Proposition 3.2, A = P(C∗X (X )) for a certain quan-
tum morphism-projection P : C∗X (X )→ C∗X (X ) , where X is a graded domain. But
C∗X (X ) is an injective multinormed C∗ -algebra thanks to Lemma 3.1. Whence A is
an injective multinormed C∗ -algebra. �

Now we generalize the assertion of Theorem 4.1 to the injective R-envelopes of
quantum spaces. Let Y be an injective domain, V ⊆C∗Y (Y ) a quantum space with its
dense bounded part b(V ) . We define the injective R-envelope of the quantum space V
in the following way

IR (V ) = IR (b(V )).

By Proposition 4.1, V is an injective quantum R-module iff V = IR (V ) . By Theorem
4.1, if V = A ⊆ C∗Y (Y ) is a local von Neumann subalgebra with injective bounded
part b(A ) then IR (A ) = IR (b(A )) = b(A ) = A .

We define the Paulsen system PV of a quantum space V ⊆C∗Y (Y ) as a quantum
system

PV =
[

C V
V ∗ C

]
⊆M2 (C∗Y (Y )) .

Note that b(PV )= Pb(V ) . Indeed, if x =
[

α a
b∗ β

]
∈ b(PV ) then a =

[
1 0

]
x
[
0 1

]∗ ∈
b(C∗Y (Y )) =Y ′ . Similarly, b ∈ Y ′ .

The following assertion is a locally convex version of one proved in Theorem 3.1.

THEOREM 4.2. Let Y be an injective domain, V ⊆C∗Y (Y ) a quantum space with
its dense bounded part b(V ) . Then IR (PV ) is an injective multinormed C∗ -algebra
and

IR (V ) = pIR (PV ) p′

up to a matrix Y -isometry, where p is a bounded projection in IR (PV ) and p′= 1− p.

Proof. By its very definition, IR (PV )= IR (b(PV ))= IR
(
Pb(V )

)
, and IR

(
Pb(V )

)
= I

(
Pb(V )R

)
by virtue of Proposition 3.3. Moreover, by Lemma 3.2, there is a

projection P ∈ ballMBR (M2 (Y ′)) onto IR
(
Pb(V )

)
. In particular,

∥∥∥P(n) (x)
∥∥∥

e
=∥∥∥P(n) (x)e⊕2n

∥∥∥ � ‖x‖e for all x ∈Mn (M2 (Y ′)) , e ∈Y . Hence P is a quantum contrac-

tive mapping with respect to the quantum topology generated by Y . Therefore it has a

unique linear extension Φ : M2 (C∗Y (Y ))→M2 (C∗Y (Y )) such that
∥∥∥Φ(∞) (y)

∥∥∥
e
� ‖y‖e ,

y ∈ M (M2 (C∗Y (Y ))) , e ∈ Y . Note that Φ2 = Φ due to the density of M2 (Y ′) in
M2 (C∗Y (Y )) . Moreover, Φ is a quantum positive mapping, namely, y �e 0 implies
that Φ(∞) (y) �e 0 for all y ∈M (M2 (C∗Y (Y ))) (see [5, Corollary 4.1]). Thus Φ is a
quantum morphism and its range A = im(Φ) is a multinormed C∗ -algebra with re-
spect to the multiplication a · b = Φ(ab) , ‖a ·b‖e = ‖Φ(ab)‖e � ‖ab‖e � ‖a‖e ‖b‖e
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for all a,b ∈A , e ∈ Y (see [5, Theorem 8.3]). Note that Φ(M2 (Y ′)) is dense in A ,
and Φ(M2 (Y ′)) = P(M2 (Y ′)) = IR

(
Pb(V )

)
. Whence A is the (multinormed) closure

of IR
(
Pb(V )

)
in M2 (C∗Y (Y )) , that is, A =IR (PV ) .

Consider the projection p = 1⊕0∈Pb(V )R⊆ b(A ) . Note that p · p = Φ
(
p2

)
=

Φ(p) = P(p) = p and Φ(p)∗ ·Φ(p) = p · p = p = Φ(p∗p) . Using [5, Corollary 5.5],
we obtain that Φ(py) = p ·Φ(y) for all y ∈ M2 (C∗Y (Y )) . Similarly, p′ = 1− p is
a projection and Φ(yp′) = Φ(y) · p′ for all y ∈ M2 (C∗Y (Y )) . The mapping i : V →
M2 (C∗Y (Y )) , i(v) =

[
0 v
0 0

]
, is a matrix Y -isometry. Indeed, i(n) (v) =

[
0 v
0 0

]
, v ∈

Mn (V ) up to the canonical shuffling. Therefore∥∥∥i(n) (v)
∥∥∥

e
=

∥∥∥∥
[

v 0
0 0

][
0 1
1 0

]∥∥∥∥
e
=

∥∥∥∥
[

v 0
0 0

]∥∥∥∥
e
= ‖v‖e

for all e ∈Y . Using Theorem 3.1, we have

pIR (PV ) p′ = pA p′ = pIR
(
Pb(V )

)
p′ = pIR

(
Pb(V )

)
p′ = IR (b(V )) = IR (V )

up to matrix Y -isometries. Thus IR (V ) = pIR (PV ) p′ . �

COROLLARY 4.1. Let Y be an injective domain in B (H) , R the subring in
B (H) generated by Y+ , and V ⊆ C∗Y (Y ) a quantum space. Then V is an injective
quantum R-module if and only if V = pA p′ up to a matrix Y -isometry for a certain
injective multinormed C∗ -algebra A ⊆M2 (C∗Y (Y )) , Y⊕2

+ ⊆ A , and a bounded pro-
jection p in A .

Proof. Based on Proposition 4.1 and Theorem 4.2, we conclude that if V is an
injective quantum R-module then V = IR (V ) = pA p′ , where A = IR (PV ) is an
injective multinormed C∗ -algebra. Conversely, assume that V = pA p′ for an injec-
tive multinormed C∗ -algebra A ⊆M2 (C∗Y (Y )) , Y⊕2

+ ⊆A , and a bounded projection
p in A . Thus A = im(Φ) for a quantum positive projection Φ : M2 (C∗Y (Y ))→
M2 (C∗Y (Y )) . Since Φ is unital, it is a quantum contraction (see Remark 2.2). Consider
a new projection P : M2 (C∗Y (Y ))→M2 (C∗Y (Y )) , P(z) = pΦ(z) p′ . Then P(n) (z) =
p⊕nΦ⊕n (z) p′⊕n for all z∈Mn (M2 (C∗Y (Y ))) . For each e∈Y there corresponds κ ∈Y f

such that
∥∥∥Φ(n) (z)

∥∥∥
e
� ‖z‖κ for all z ∈Mn (M2 (C∗Y (Y ))) , which in turn implies that∥∥∥P(n) (z)

∥∥∥
e
= ‖p⊕nΦ⊕n (z)ep′⊕n‖� ‖Φ⊕n (z)e‖� ‖z‖κ . Whence P is a quantum con-

tractive projection. Taking into account that Y is an injective domain, we conclude that
im(P) is an injective quantum space. �

REMARK 4.1. The assertion of just can be modified slightly in the following way.
Instead of the ring R one may consider another subring in B (H) generated by Z+ ,
where Z consists of some ∨κ with κ ∈ Y f covering Y . In this case, we would

have an extension Φ : M2 (C∗Y (Y ))→ M2 (C∗Y (Y )) such that
∥∥∥Φ(∞) (y)

∥∥∥
κ

� ‖y‖κ ,

y ∈M (M2 (C∗Y (Y ))) , ∨κ ∈ Z .
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5. Injective domains

As we have seen above many properties on injectivity of quantum spaces are re-
duced to the property of the relevant domains to be injective. In this section we investi-
gate the injectivity problem for domains. So is a graded domain thanks to Lemma 3.1.
We generalize this result for locally finite domains. The locally finite domains present
a critical edge of injectivity, which fails to be true for non-locally finite domains.

5.1. Locally finite domains

Let Y be a domain in B (K) . We say that Y is a locally finite domain on K if
for each e ∈ Y we have e f = 0 for all f ∈ Y except finitely many of them. Obviously,
each graded domain is a locally finite one.

THEOREM 5.1. Let Y be a locally finite domain on a Hilbert space. The multi-
normed C∗ -algebra C∗Y (Y ) is an injective quantum space (in particular, system). Thus
Y is an injective domain and I (Y ′) = C∗Y (Y ) .

Proof. As in the proof of Proposition 3.2, the algebra C∗Y (Y ) is embedded into
C∗X (X ) for a certain graded domain X . Namely, we set H = ⊕e∈Y im(e) and let
X = Y = {e : e ∈ Y} be a family of the canonical orthogonal projections in B (H)
generated by the latter decomposition. Thus X is a graded domain in H . Consider
the ∗ -homomorphism i :C∗Y (Y )→C∗X (X ) , i(T ) = (T | im( f )) f∈Y . Then ‖i(T )‖ f =
‖T f‖ = ‖T‖ f , T ∈ C∗Y (Y ) , f ∈ Y , that is, i is a Y -isometry. We identify C∗Y (Y )
with its range in C∗X (X ) . Note that T ∈ Y ′ iff i(T ) ∈ X ′ . Indeed,

‖i(T )‖= sup
f∈Y
‖T | im( f )‖= sup

f∈Y
‖T f‖= sup

f∈Y
‖T‖ f = ‖T‖ .

Thus Y ′ = b(C∗Y (Y )) = b(C∗X (X ))∩C∗Y (Y ) = X ′ ∩C∗Y (Y ) , that is, Y ′ is a unital
∗ -subalgebra in X ′ . But Y ′ is an injective von Neumann algebra, therefore there is a
conditional expectation (projection of norm 1) P : X ′ → Y ′ from X ′ onto Y ′ . Thus [2,
II, 6.10.1] P : X ′ → Y ′ is a matrix positive contraction such that P|Y ′ = idY ′ and

aP(x) = i(aP(x)) = i(a) i(P(x)) = P(i(a)x) ,
P(x)a = i(P(x)a) = i(P(x)) i(a) = P(xi(a))

for all a ∈ Y ′ , x ∈ X ′ . Fix e ∈ Y . Then eP(x) = P(i(e)x) for all x ∈ X ′ . By assump-
tion, Y is a locally finite domain, in particular, e f = 0, f ∈ Y\α for a certain α ∈ Y f

which depends upon e . Note that i(e) =
(
e f

)
f = (e f ) f �= e if α has at least two

distinct elements. Then i(e)x = (e f ) f (x f ) f = (∨α) i(e)x with ∨α = ∑ f∈α f , and

‖i(e)x‖= sup
f∈α

∥∥ f i(e)x
∥∥ = sup

f∈α

∥∥i(e) f x
∥∥ � sup

f∈α

∥∥ f x
∥∥ = ‖x‖α

for all x ∈ X ′ . It follows that

‖P(x)‖e = ‖eP(x)‖= ‖eP(x)‖= ‖i(eP(x))‖= ‖P(i(e)x)‖� ‖i(e)x‖� ‖x‖α
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for all x ∈ X ′ . Thus P : X ′ → Y ′ is a continuous mapping with respect to the multi-
normed topologies inherited from C∗X (X ) and C∗Y (Y ) , respectively. In particular, it
has a continuous extension P : C∗X (X )→ C∗Y (Y ) to the relevant multinormed com-
pletions. As above, just taking into account that P : X ′ → Y ′ is a matrix contraction,

we obtain that
∥∥∥P(∞) (x)

∥∥∥
e
� ‖x‖α for all x ∈M (C∗X (X )) . Thus P is a quantum con-

traction. Furthermore, since P2 = P on C∗X (X ) (out of density of X ′ in C∗X (X )), it
follows that the range of P is closed. Since Y ′ is dense in C∗Y (Y ) , we obtain that P
is a projection onto C∗Y (Y ) . Using Lemma 3.1 and Proposition 3.2, we conclude that
C∗Y (Y ) is an injective quantum space. Based on Remark 3.1, we derive that C∗Y (Y ) is
an injective quantum system too.

Finally, the inclusion Y ′ ⊆C∗Y (Y ) is rigid, for Y ′ is dense in C∗Y (Y ) . Moreover,
C∗Y (Y ) is an injective quantum space. Therefore I (Y ′) = C∗Y (Y ) . �

Injectivity of C∗Y (Y ) fails to be true for a domain which is not locally finite one
as shows the forthcoming construction.

5.2. The domain of an affine scheme

We generate (quantum) domains using the spectra of commutative rings. Let H
be a Hilbert space with its Hilbert basis Ω . The canonical projection in B (H) onto
a closed subspace K ⊆ H is denoted by pK . The closed subspace in H generated by
a subset e ⊆ Ω is denoted by [e] . For brevity we use the notation pe instead of p[e] .
Thus pe (∑a∈Ω λaa) = ∑a∈e λaa , λa ∈ C , a ∈Ω .

REMARK 5.1. If e, f ⊆ Ω then pe ∧ p f = pep f = pe∩ f and pe ∨ p f = pe∪ f .
Indeed, pe ∧ p f = pep f = p[e]∩[ f ] = p[e∩ f ] = pe∩ f , for Ω is a basis in H (see [2,

I.5.1.3]). Furthermore, pe ∨ p f = p([e]+[ f ])− . But ([e]+ [ f ])− = [e∪ f ] , therefore
pe ∨ p f = p[e∪ f ] = pe∪ f . Similarly, if Y is a family of subsets in Ω then

∨
e∈Y

pe =∨
e∈Y

p[e] = p(∑[e])− = p[∪e] = p∪Y , that is,
∨

e∈Y
pe = p∪Y (see [2, I.5.1.3]).

Now let A be a unital commutative ring, Y = Max(A) the set of all maximal ideals
of A ordered with respect to the usual inclusion, and let Ω(A) be the set all non-unit
(or non-invertible) elements of the ring A . Recall that a ∈ Ω(A) iff Aa is a proper
ideal, that is, Aa ⊆ e for some e ∈Max(A) . Thus Ω(A) = ∪Y . Consider the Hilbert
space HA = �2 (Ω(A)) with its Hilbert basis Ω(A) . The origin of the Hilbert space HA

and zero of the ring A should not be mixed up. They are different elements in HA . As
above for each e∈Y we have the projection pe ∈B (HA) . To avoid any cluttering with
the notations, we identify e with the relevant projection pe . Based on Remark 5.1, we
obtain a commutative family Y of projections in B (HA) such that

∨Y =
∨

e∈Y
e = p∪Y = pΩA = 1H ,

that is, Y is a domain on H called the domain of the spectrum of the ring A .
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LEMMA 5.1. Let e, f ∈ Y . Assume that there exists a finite subset γ ∈ Y f such
that ‖e f T‖� max{‖e f vT‖ : v ∈ γ} for all T ∈Y ′ . Then e ∈ γ or f ∈ γ .

Proof. Put u = e∩ f which is an ideal of the ring A , and let α = ∪γ = ∪τ∈γ τ be
the finite union of ideals in A . First let us prove that u⊆ α . If the latter is not the case
then u\u∩α �= ∅ and T = pu\u∩α �= 0. Using Remark 5.1, we obtain that

T = pu (1H − pu∩α) = pu

(
1H − ∨

τ∈γ
pu∩τ

)
= pu

(
1H− ∨

τ∈γ
pupτ

)

and pu = e f , pupτ = e f pτ ∈ Y ′ for all τ ∈ γ . Furthermore Y ′ being a von Neumann
algebra contains

∨
τ∈γ

pupτ too. Hence T ∈ Y ′ . If v ∈ γ then

e f vT = pupvT = pu∩vpu

(
1H − ∨

τ∈γ
pupτ

)
= pu

(
pu∩v− pu∩v

∨
τ∈γ

pu∩τ

)
= 0.

It follows that max{‖e f vT‖ : v ∈ γ} = 0 though e f T = puT = T and ‖puT‖ = 1, a
contradiction. Hence u ⊆ α . But γ is a finite family of prime ideals of A and u is
an ideal in ∪γ . Then u ⊆ ε for a certain ε ∈ γ [1, P.1.11]. Furthermore, u is the
intersection of the prime ideals e and f . In particular, e · f ⊆ u ⊆ ε , where e · f is the
ring product of ideals from A . Therefore e ⊆ ε or f ⊆ ε (just use the definition of a
prime ideal). But all ideals are the maximal ones either. Hence e = ε or f = ε , that is,
e ∈ γ or f ∈ γ . �

Note that Y is not a locally finite domain in H , for e f = pe∩ f �= 0 for all e , f ∈Y .
As above the algebraic sum of the domain Y is denoted by Y .

THEOREM 5.2. Let A be a unital commutative ring, whose maximal spectrum
Y is uncountable. The multinormed C∗ -algebra C∗Y (Y ) is not an injective quantum
space though its bounded part b(C∗Y (Y )) = Y ′ is an injective von Neumann algebra.
Thus Y is not an injective domain.

Proof. As in the proof of Theorem 5.1, we set H = ⊕e∈Y im(e) and let X =
{e : e ∈ Y} be the family of canonical orthogonal projections on H generated by the
latter decomposition. Thus X is a graded domain on H . We have the inclusion
C∗Y (Y )⊆C∗X (X ) , T = (T | im( f )) f∈Y =

(
T f

)
f∈Y (see to the proof of Theorem 5.1).

In particular, e = (e f ) f∈Y =
(
e f

)
f∈Y for each e ∈ Y . If C∗Y (Y ) were an injec-

tive quantum space, we would have a quantum contractive projection P : C∗X (X )→
C∗X (X ) onto C∗Y (Y ) . Thus for each e ∈ Y there corresponds α ∈ Y f such that∥∥∥P(∞) (z)

∥∥∥
e
� ‖z‖α , z ∈ M (C∗X (X )) , where ‖z‖α = ‖z · (∨α)‖ and ∨α = ∑ f∈α f .

Since ‖z‖e � ‖z‖α for all z ∈ C∗Y (Y ) , we can assume that e ∈ α . In particular,
P(X ′) = P(b(C∗X (X )))⊆ b(C∗Y (Y )) = Y ′ and∥∥∥P(∞) (x)

∥∥∥ = sup
e∈Y

∥∥∥P(∞) (x)
∥∥∥

e
� sup

α
‖x‖α � ‖x‖
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for all x ∈ X ′ , that is, P : X ′ → X ′ is a matrix contraction. But P(x) = x for all x ∈
Y ′ ⊆C∗Y (Y ) . Hence P : X ′ → X ′ is a matrix contractive projection onto Y ′ of norm
1. Using [2, II. 6.10.2], we conclude that P is a conditional expectation, that is, P
is Y ′ -linear mapping. It follows that P(ex) = eP(x) for all x ∈ X ′ and e ∈ Y . Then
‖eP(x)‖ = ‖P(x)‖e � ‖x‖α = ‖(∨α)x‖ . Thus if (∨α)x = 0 then P(ex) = 0. Take
any x ∈ X ′ . Then e(1−∨α)x = (1−∨α)ex and P(e(1−∨α)x) = 0. In particular,
P(ex) = P(e(∨α)x)+P(e(1−∨α)x) = P(e(∨α)x) .

Now pick e, f ∈Y . There are finite subsets α,β ∈Y f with the properties
∥∥∥P(∞) (z)

∥∥∥
e

� ‖z‖α and
∥∥∥P(∞) (z)

∥∥∥
f
� ‖z‖β , z ∈M (C∗X (X )) respectively. Put γ = α ∩β . Then

P(e f x) = P((∨α)e f x) = P( f ((∨α))ex) = P
((
∨β

)
f (∨α)ex

)
= P

((
∨β

)
(∨α)e f x

)
= P((∨γ)e f x)

for all x ∈ X ′ . In particular, e f T = P((∨γ)e f T ) for all T ∈Y ′ , and

‖e f T‖= ‖P((∨γ)e f T )‖� ‖(∨γ)e f T‖= max{‖e f vT‖ : v ∈ γ} .

By Lemma 5.1, e ∈ γ or f ∈ γ .
Finally, fix e ∈ Y . Put e1 = e , α1 = α . Pick e2 /∈ α1 and again α2 stands for

the finite subset in Y that corresponds to e2 . In a similar way, we get a sequence
(en)n∈N

such that en+1 /∈α1∪ . . .∪αn for all n . Consider the union ∪n∈Nαn which is a
countable subset in Y . By assumption, Y is not countable, therefore there is an element
f ∈Y\∪n αn with the relevant finite subset β in Y . For each couple en and f we have
f /∈ αn . Based on the fact that we have just proved above, we conclude that en ∈ β for
all n , that is, (en)n∈N

⊆ β . But β was a finite subset, a contradiction. Consequently,
C∗Y (Y ) is not an injective quantum space. �

Thus locally finite domains is a reasonable class to be considered from the injectiv-
ity point of view. Thus a locally finite domain Y is injective by Theorem 5.1, whereas
the domain of an uncountable affine scheme is an example of a non-injective domain
thanks to Theorem 5.2.

Acknowledgement. Let me express my thanks to all members of A. Ya. Helemskii’s
seminar for useful discussions certain details of the present work.
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