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TOEPLITZ OPERATORS ON POLY–ANALYTIC

SPACES VIA TIME–SCALE ANALYSIS

ONDREJ HUTNÍK AND MÁRIA HUTNÍKOVÁ

(Communicated by L. Rodman)

Abstract. This is a review paper based on the series of our papers devoted to a structure of true-
poly-analytic Bergman function spaces over the upper half-plane in the complex plane and to
a detailed study of properties of Toeplitz operators with separate symbols acting on them via
time-scale analysis approach.

1. Introduction

Analytic functions are the main object of classical complex analysis. One defini-
tion of analytic functions is in terms of Cauchy-Riemann operator

∂z :=
1
2

(
∂
∂x

+ i
∂
∂y

)
, z = x+ iy.

Then f is analytic in some (simply connected bounded or unbounded) domain Ω of
the complex plane C if ∂z f = 0 on Ω . A natural extension of this definition is to iterate
the Cauchy-Riemann operator which yields a notion of poly-analytic function, i.e., f
is poly-analytic (or, analytic of order n ) in Ω if ∂ n

z f = 0 on Ω . In this paper we will
consider Ω = Π – the upper half-plane in the complex plane. Poly-analytic functions
of order n > 1 which are not poly-analytic of other n−1 are called true-poly-analytic
of order n , see the two visionary papers of Vasilevski [16] and [17]. For further reading
on poly-analytic functions we refer to book of Balk [5] as well as a review of some
recent developments provided by Abreu and Feichtinger [3].

It was recently observed by Abreu in [2] that the true-poly-analytic Bergman space
of order k +1 (over the upper half-plane) may be alternatively viewed as the space of
wavelet transforms with Laguerre functions of order k . This perhaps unexpected result
enables us to see poly-analytic spaces and related operators of complex analysis from
a new perspective of time-scale (or, more generally, time-frequency) analysis, cf. [3].
In this paper we are especially interested in Toeplitz operators on (true)-poly-analytic
Bergman spaces. A recent interest of this topic may be seen e.g. in [7]. We provide a
survey of results from [11]-[14], where further results, details, and proofs can be found.
The majority of presented results and examples are based on the ideas, techniques, and
results by N. Vasilevski and his coauthors developed for the case of the Bergman spaces
and Toeplitz operators on these spaces.
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Outline. The main ingredients of the whole theory (on the hand of time-scale anal-
ysis) are the affine group G of orientation-preserving linear transformations of the
real line, and a parameterized family of admissible affine coherent states (wavelets)
{ψ(k)}k∈Z+ whose Fourier transform is related to Laguerre functions �k(x)= e−x/2Lk(x)
with Lk being the Laguerre polynomial of degree k ∈ Z+ . In this context we first de-
scribe the structure of the space A(k) of wavelet transforms (related to wavelet ψ(k) and
Hardy-space functions) inside the Hilbert space L2(G,dνL) , and link this construction
with the intertwining property of induced representations of G . This allows us to de-
scribe the direct and natural connection between wavelet subspaces and Hardy spaces.
Indeed, this study provides a time-scale approach to poly-analytic spaces as explained
in [2]. These results are then applied to the study of behavior of a parameterized fam-
ily of Toeplitz operators acting on wavelet subspaces (i.e., true-poly-analytic Bergman

spaces on Π). Given a function (symbol) a = a(ζ ) , ζ ∈ G , the Toeplitz operator T (k)
a

acting on A(k) is defined as usual by T (k)
a f = P(k)(a f ) , f ∈ A(k) , where P(k) is the

orthogonal projection of L2(G,dνL) onto A(k) . The following result (cf. Theorem 3.1)
gives an easy and direct access to important properties of Calderón-Toeplitz operators:

The Calderón-Toeplitz operator T (k)
a with a symbol a = a(u) , u ∈ R+ , acting on

wavelet subspace A(k) is unitarily equivalent to the multiplication operator A
(k)
a = γa,kI

acting on L2(R+) , where the function γa,k : R+ → C has the explicit form

γa,k(x) =
∫

R+
a
( u

2x

)
�2
k(u)du, x ∈ R+. (1)

As it can be seen, the function γa,k is obtained by integrating a dilation of a symbol

a = a(u) of an operator T (k)
a against a Laguerre function of order k . This result ex-

tends the result of Vasilevski for the Toeplitz operators acting on the Bergman space
(i.e., the case k = 0 in our notation) in very interesting way which differs from the case
of Toeplitz operators acting on weighted Bergman spaces studied in paper [9], and then
summarized in Vasilevski book [18]. Moreover, a number of results following imme-
diately from this equivalency may be derived including the spectral-type representation
of Toeplitz operators whose symbols depend only on imaginary coordinate in the upper
half-plane, as well as formulas for the Wick symbols and the star product in terms of
function γa,k .

Since the function γa,k given by (1) is responsible for many interesting features

and behavior of the corresponding Toeplitz operator T (k)
a acting on A(k) , we describe its

basic properties, e.g., the limit behavior of higher order derivatives of γa,k for bounded
as well as integrable symbols a , sufficient conditions for γa,k to be continuous on the
whole [0,+∞] : a question which is closely related to the behavior of a symbol a= a(u) ,
u ∈ R+ , at a neighborhood of points 0 and +∞ . The result of Theorem 3.15 states
that the limit at infinity and at zero of the function γa,k is independent of parameter
k . In fact, it depends only on a limit of the corresponding symbol a , but not on the
particularly chosen Laguerre functions, thus providing an interesting information about
asymptotic behavior of true-poly-analytic Bergman spaces.

In connection with the above mentioned results some operator algebras and a func-
tional dependence of Toeplitz operators may be described. In particular, if we consider



TOEPLITZ OPERATORS ON POLY-ANALYTIC SPACES VIA TIME-SCALE ANALYSIS 1109

a symbol a = a(u) ∈ L{0,+∞}
∞ (R+) (bounded on R+ having limits at the endpoints of

[0,+∞]) such that the corresponding function γa,k separates the points of [0,+∞] , then

we construct a function such that each Toeplitz operator T (k)
a acting on A(k) with a sym-

bol a = a(u) ∈ L{0,+∞}
∞ (R+) is the function of Toeplitz operator acting on the Bergman

space A2(Π) with symbol χ[0,λ ](u) . Interpretation and applicability of these results
from the viewpoint of localization in the time-frequency analysis are discussed.

An interesting and important feature of Toeplitz operators on wavelet subspaces is
that they can be bounded for symbols that are unbounded near the boundary. We show
that for unbounded symbols a = a(u) , u ∈ R+ , the behavior of certain iterated means
rather than the behavior of symbol a itself plays a crucial role in the boundedness
properties. Contrary to the case of Toeplitz operators on weighted Bergman spaces
these means do not depend on a weight parameter k . We present a number of examples
and construct wide families of unbounded symbols for which the Toeplitz operator
is not only bounded, but also belongs to the algebra of bounded Toeplitz operators

generated by L{0,+∞}
∞ (R+)-symbols.

Furthermore, for the case of symbols b = b(v) depending on horizontal variable

v of upper-half plane Π (or, for general symbols as well) the Toeplitz operator T (k)
b is

unitarily equivalent to certain pseudo-differential operator of the form(
B

(k)
b f
)

(x) =
∫

R+

2
√

xy

x+ y
Pk

(
8xy

(x+ y)2 −1

)
b̂(x− y) f (y)dy, x ∈ R+

with Pn being the Legendre polynomial of degree n ∈ Z+ . This class of operators
is interesting itself, because it extends and generalizes the class of pseudo-differential

operators considered in [6]. Therefore, having the unitary equivalent images of T (k)
a ,

a = a(u) ∈ L∞(R+) , and T (k)
b , b = b(v) ∈C(R) , we describe the Fredholm symbol al-

gebras of the Toeplitz operator algebras. An interesting feature of each of these algebras
studied in this case is that they are algebras with compact commutator and non-compact
semi-commutator property.

2. Time-scale approach to poly-analytic spaces: a description

Affine group and its induced representations. The affine group G consists of all
transformations Au,v of the real line R of the type Au,v(x) := ux + v , x ∈ R , where
u > 0, v ∈ R . Indeed, writing

G = {ζ = (u,v); u > 0,v ∈ R},

one has the multiplication law on G of the form ζ1 � ζ2 = (u1,v1) � (u2,v2) =
(u1u2,u1v2 +v1) . With respect to the multiplication � the group G is non-commutative
with the identity element e = (1,0) , and a locally compact Lie group on which the left-
invariant Haar measure is given by dνL(ζ ) = u−2 dudv . The usual identification of the
group G with the upper half-plane Π= {ζ = v+ iu; v∈R,u > 0} in the complex plane
C equippedwith the hyperbolicmetric and the corresponding (hyperbolic)measure dνL
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will also be used. Then L2(G,dνL) denotes the Hilbert space of all square-integrable
complex-valued functions on G with respect to the measure dνL .

The affine group G may be decomposed as a semi-direct product G = N � A ,
where N = {(1,v);v∈R} is the abelian normal closed subgroup, and the quotient group
A is isomorphic to the one-parameter closed subgroup {(u,0);u > 0}∼= R+ . Thus, if H
is a closed subgroup of G and X = G/H is the corresponding left-homogeneous space,
we may induce representations of G in the subspaces which depend on X = G/H with
H = {e} , H = A and H = N , respectively. Indeed,

(i) X = G/{e} = G – a character of the subgroup {e} induces a left-regular repre-
sentation of G on L2(X) = L2(G,dνL) in the form

[Λ(u,v)F ](x,y) := F

(
x
u
,
y− v

u

)
;

(ii) X = G/N∼= A = R+ – a character of the subgroup N induces a co-adjoint repre-
sentation of G on L2(G/N) = L2(R+) in the form

[ρ (u,v) f ] (x) := e−2π i v
x f
( x

u

)
;

(iii) X = G/A ∼= N = R – a character of the subgroup A induces a quasi-regular
representation of G on L2(G/A) = L2(R) in the form

[π (u,v) f ] (y) :=
1√
u

f

(
y− v

u

)
;

whenever (u,v),(x,y) ∈ G .
The Hilbert space L2 (R) under the action π contains precisely two closed proper

invariant subspaces H2 (R) and H2 (R)⊥ , called the Hardy and conjugate Hardy spaces,
respectively, such that L2(R) = H2(R)⊕H2(R)⊥ . Thus, π is a reducible representa-
tion on L2 (R) , and we can decompose it into two irreducible representations, such that
π(u,v) = π+(u,v)⊕π−(u,v) . From it follows that only the Hardy space H2(R) is con-
sidered, although the discussion and further results are equally valid for the conjugate
Hardy space H2 (R)⊥ . From the action on signals (we identify a signal with an element
f ∈ L2(R)) we observe that G consists precisely of the transformations we apply to a
signal: translation (time-shift) by an amount v , and zooming in or out by the factor u .
Hence, the group G naturally relates to the geometry of signals.

There is an intertwining operator between the co-adjoint representation ρ and
quasi-regular representation π . This is the Fourier transform F : L2(R) → L2(R) in
the form F{ f}(ξ ) := f̂ (ξ ) =

∫
R

f (x)e−2π ixξ dx , since it uses the characters which
induce those representations. Also there exists an intertwining operator between π and
Λ given by the identity [Wψ f ](u,v) := 〈 f ,π(u,v)ψ〉 , f ∈ L2(R) , which provides a
starting point for time-scale analysis on R . Usually it is desirable to make this map
unitary as well, and this is expressed by the following resolution of identity

〈 f ,g〉 =
∫

G

〈 f ,π(ζ )ψ〉〈π(ζ )ψ ,g〉dνL(ζ ),



TOEPLITZ OPERATORS ON POLY-ANALYTIC SPACES VIA TIME-SCALE ANALYSIS 1111

also known as the Calderón reproducing formula. To achieve this the mother wavelet
ψ ∈ L2(R) has to be admissible: for the affine group this is equivalent to∫

R+
|ψ̂(u)|2 du

u
= 1.

Wavelets from Laguerre functions and their subspaces. Here we describe an al-
ternative approach to true-poly-analytic Bergman spaces using wavelets built from La-
guerre functions. Thus, for k ∈ Z+ consider a parameterized family of admissible
wavelets ψ(k) on R defined on the Fourier transform side as follows

ψ̂(k)(ξ ) = χ+(ξ )
√

2ξ �k(2ξ ),

where �n(x) := e−x/2Ln(x) are the (simple) Laguerre functions with Ln(x) being the
Laguerre polynomial of order n∈Z+ and χ+ the characteristic function of the positive
half-line. Then according to the Calderón reproducing formula

f (v) =
∫

R+

((
Duψ(k))∗ (Duψ(k))∗ f

)
(v)

du
u2

for all f ∈H2(R) , where ∗ is the usual convolution on L2(R) . For each k ∈ Z+ define
the subspaces A(k) of L2(G,dνL) as follows

A(k) :=
{

[Wk f ](u,v) =
(

f ∗ (Duψ(k)))(v); f ∈ H2(R)
}

.

Indeed, Wk f are exactly the continuous wavelet transforms of functions f ∈ H2(R)
with respect to wavelets ψ(k) . Consequently, A(k) will be referred to as wavelet sub-
spaces of L2(G,dνL) . Note that it is possible to consider the “conjugate” wavelet

ψ̂
(k)

(ξ ) = ψ̂(k)(−ξ ) , the “conjugate” wavelet subspaces

A
(k)

:=
{

[Wk f ](u,v) =
(

f ∗ (Duψ(k)))(v); f ∈ H2(R)⊥
}

and to build up the theory in this setting. In what follows we will state the results only

for A(k) , similar results may be stated for its “conjugate” counterpart A
(k)

.

REMARK 2.1. Note that poly-analytic Bergman spaces and introduced wavelet
subspaces share intriguing patterns that may prove usable. A deeper study of this con-
nection is given in the recent paper [2]: the important and interesting observation of
that paper is that for k ∈ N the spaces A(k−1) of continuous wavelet transforms of
Hardy space functions with respect to wavelets from Laguerre functions coincide with
the true-poly-analytic Bergman spaces of order k on the upper half-plane (symmetri-

cally, A
(k−1)

corresponds to the space of all true-poly-anti-analytic functions of order k
from L2(Π)). This allows to study these objects of complex analysis using techniques
of time-scale analysis.
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L2(R) L2(R) L2(G, dνL)F−1 W−1
k

H2(R) L2(R+) A(k)
F Wk

PR χ+I P (k)

Figure 1: Relationship among the introduced spaces and operators

The relationship among the introduced spaces A(k) of wavelet transforms of H2(R)-
functions, and the unitary operators of continuous wavelet transform Wk and the Fourier
transform F is schematically described in Figure 1. For each k ∈ Z+ the spaces A(k)

are the reproducing kernel Hilbert spaces. Explicit formulas for their reproducing ker-
nels

K(k)
ζ (η) =

〈
π(η)ψ(k),π(ζ )ψ(k)

〉
and orthogonal projections P(k) : L2(G,dνL) → A(k) are described in [11].

Structural results. In accordance with the representation of L2(G,dνL) as tensor
product in the form

L2(G,dνL(ζ )) = L2(R+,u−2du)⊗L2(R,dv)

with ζ = (u,v) ∈ G , we consider the unitary operator

U1 = (I⊗F ) : L2(R,u−2du)⊗L2(R,dv) −→ L2(R+,u−2du)⊗L2(R,dω).

For the purpose to “linearize” the hyperbolic measure dνL onto the usual Lebesgue
plane measure we introduce the unitary operator

U2 : L2(R+, u−2du)⊗L2(R, dω) −→ L2(R+, dx)⊗L2(R, dy)

given by

U2 : F(u,ω) 
−→
√

2|y|
x

F

(
x

2|y| ,y
)

.

Immediately we get the following theorem describing the structure of A(k) inside
L2(G,dνL) .

THEOREM 2.2. ([11], Theorem 2.1) The unitary operator U =U2U1 gives an iso-
metrical isomorphism of the space L2(G,dνL) onto L2(R+, dx)⊗ L2(R, dy) under
which

(i) the wavelet subspace A(k) is mapped onto Lk⊗L2(R+) , where Lk is the rank-one
space generated by Laguerre function �k(x);
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(ii) the orthogonal projection P(k) : L2(G,dνL) → A(k) is unitarily equivalent to the

following one UP(k)U−1 = P(k)
0 ⊗ χ+I, where P(k)

0 is the one-dimensional pro-
jection of L2(R+,dx) onto Lk .

REMARK 2.3. Let us mention that connection between certain spaces of wavelet
transforms and Bergman spaces is already well-known, see e.g. [15]: the Bergman
transform [BαF ](u,v) = u−α−1/2F(u,v) with α > 0 gives an isometrical isomorphism
of the space L2(G,dνL) onto L2(G,u2α−1dudv) under which the space of continuous
wavelet transforms of H2(R)-functions with respect to the Bergman wavelet given by
ψ̂α(ξ ) = χ+(ξ )cαξαe−2πξ is mapped onto the weighted Bergman space A2α−1(G) .
Here, cα is a certain normalization constant.

However, we may say more about the connection between the wavelet subspaces
and Hardy spaces which reads as follows. Let us mention that the orthogonal projection
PR of L2(R) onto H2(R) is called the Szegö projection.

THEOREM 2.4. The unitary operator V = (I⊗F−1)U2(I⊗F ) gives an isomet-
rical isomorphism of the space L2(G,dνL) onto L2(R+, dx)⊗L2(R, dy) under which

(i) A(k) and H2(R) are connected by the formula V
(
A(k)
)

= Lk ⊗H2(R);

(ii) P(k) and PR are connected by the formula VP(k)V−1 = P(k)
0 ⊗PR .

L2(G, dνL) L2(R+) ⊗ L2(R) L2(R+) ⊗ L2(R)U−1 U1

A(k) Lk ⊗ L2(R+) Lk ⊗ H2(R)U U−1
1

P (k) P
(k)
0 ⊗ χ+I P

(k)
0 ⊗ PR

Figure 2: Visualizing the results of Theorem 2.2 and Theorem 2.4

The diagram in Figure 2 schematically describes all the relations among the con-
structed operators and spaces appearing in the above two theorems. A detailed analysis
of the construction and origin of unitary operators describing the structure of wavelet
subspaces from the viewpoint of induced representations of G is done in [8]. It was
shown that these unitary maps have the following properties related to group represen-
tations:

(i) they intertwine respective representations of the affine group G ;

(ii) they provide a spatial separation of the irreducible components of the affine
group’s representations.

Indeed, these properties make the unitary maps useful for characterization of A(k) inside
the space L2(G,dνL) .
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REMARK 2.5. The suggested time-scale (or, more general time-frequency) point
of view was recently successfully used in Abreu’s paper [1] to obtain a complete char-
acterization of all lattice sampling and interpolating sequences in the Segal-Bargmann-
Fock space of poly-analytic functions or, equivalently, of all lattice vector-valued Gabor
frames and vector-valuedGabor Riesz sequences with Hermite functions for L2(R,Cn) .
This again underlines a new, and perhaps unexpected, connection between poly-analytic
functions and time-frequency analysis having a great potential in various applications.

3. Toeplitz operators on poly-analytic spaces

Toeplitz operators form one of the most significant classes of concrete operators
because of their importance both in pure and applied mathematics and in many other
sciences. In the context of true-poly-analytic Bergman spaces (or, equivalently, wavelet

subspaces) for a given bounded function a on G define the Toeplitz operator T (k)
a :

A(k) → A(k) with symbol a usually as T (k)
a := P(k)Ma , where Ma is the operator of

pointwise multiplication by a on L2(G,dνL) and P(k) is the orthogonal projection
from L2(G,dνL) onto A(k) . In fact, this provides a mapping between the same wavelet
subspaces. It is worth noting that in the case of many wavelet subspaces (parameterized
by k ) other Toeplitz- and Hankel-type operators may be defined, e.g.

T (k,l)
a := P(k)MaP

(l),

h(k,l)
a := P

(k)
MaP

(l),

H(k,l)
a :=

(
I−

k

∑
j=0

P( j)

)
MaP

(l).

In what follows we restrict our attention only to the case k = l . The mapping a 
→ T (k)
a

is then interpreted as the quantization rule “on the level k”.

3.1. Unitarily equivalent images of Toeplitz operators for symbols depending on
ℑζ

It was observed in several cases, cf. [18], that Toeplitz operators can be trans-
formed into pseudo-differential operators by means of certain unitary maps constructed
as an exact analog of the Bargmann transform mapping the Segal-Bargmann-Fock
space F2(Cn) of Gaussian square-integrable entire functions on complex n -space onto

L2(Rn) . Via this mapping Toeplitz operator T (k)
a : A(k) → A(k) can be identified with

certain pseudo-differential operator T
(k)
a : L2(R)→ L2(R) which provides an analog of

the Berezin reducing of Toeplitz operators with anti-Wick symbols on the Fock space
F2(Cn) to Weyl pseudo-differential operators on L2(Rn) . This construction may be
better seen if we apply this procedure to operator symbols a(u,v) that are only depend-
ing on individual variables. Indeed, for the case when a = a(u) depends only on the

first spatial variable of G the operator T (k)
a is simply a multiplication operator with

explicitly computable symbol.
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THEOREM 3.1. ([13], Theorem 3.2) Let (u,v) ∈ G . If a measurable symbol a =
a(u) does not depend on v, then T (k)

a acting on A(k) is unitarily equivalent to the

multiplication operator A
(k)
a = γa,kI acting on L2(R+) , where the function γa,k : R+ →

C is given by

γa,k(ξ ) =
∫

R+
a

(
u
2ξ

)
�2
k(u)du, ξ ∈ R+. (2)

EXAMPLE 3.2. Given a point λ0 ∈ R+ we have

γχ[0,λ0],k(ξ ) = χ+(ξ )
∫

R+
χ[0,λ0]

(
u
2ξ

)
�2
k(u)du = χ+(ξ )

∫ 2λ0ξ

0
�2
k(u)du.

Immediately, for λ0 = 1
2 and k = 0 we have γχ[0,1/2],0(ξ ) = 1− e−ξ , ξ ∈ R+ .

The function γa,k is obtained by integrating a dilation of a symbol a = a(u) of T (k)
a

against a Laguerre function of order k . This result extends the result of Vasilevski for
the classical Toeplitz operators acting on the Bergman space (i.e., the case k = 0 in our
notation) in very interesting way which differs from the case of Toeplitz operators act-
ing on weighted Bergman spaces summarized in Vasilevski book [18]. Moreover, the
function γa,k sheds a new light upon the investigation of main properties of the corre-

sponding Toeplitz operator T (k)
a with a symbol a = a(u) (measurable and unbounded,

in general), such as boundedness, spectrum, invariant subspaces, norm value, etc. Fur-
thermore, the use unitarily equivalent images as model, or local representatives, permits
us to study Toeplitz operators with much more general symbols.

Since the function γa,k : R+ → C is responsible for many interesting features of

the corresponding Toeplitz operator T (k)
a , we present here certain interesting and useful

properties of γa,k in what follows.

THEOREM 3.3. Let (u,v)∈G . If a = a(u)∈L1(R+)∪L∞(R+) such that γa,k(ξ )∈
L∞(R+) , then for each n = 1,2, . . .

lim
ξ→+∞

dnγa,k(ξ )
dξ n = 0

holds for each k ∈ Z+ . Moreover, if a = a(u) ∈ C∞
b (R+) such that for each n ∈ N

holds

lim
u→+∞

un a(n)(u) = 0,

then also

lim
ξ→0

ξ n dnγa,k(ξ )
dξ n = 0

for each n ∈ N and each k ∈ Z+ .
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The result of above theorem states that the behavior of derivatives of γa,k does
not depend on parameter k . In fact, it depends only on behavior of the corresponding
symbol a (or, its derivatives), but not on the particularly chosen Laguerre functions.
This is quite surprising because, as we have already stated, the wavelet transforms
with Laguerre functions of order k live, up to a multiplier isomorphism, in the true-
poly-analytic Bergman space of order k , which is rather different from the classical
Bergman space of analytic functions. Thus, we have the remarkable observation that,
asymptotically, all the true-poly-analytic Bergman spaces have “the same behavior”.
This result has some important consequences in quantum physics, signal analysis and
in the asymptotic theory of random matrices, which are not yet completely understood.

REMARK 3.4. The special case n = 1 yields the following result: if a ∈C1
b(R+)

with lim
u→+∞

ua′(u) = 0, then for each k ∈ Z+ the function γa,k is slowly varying at

infinity (in the additive sense) and slowly varying at zero (in the multiplicative sense).

Easily, for each k ∈ Z+ and each a = a(u) ∈ L∞(R+) we have

sup
ξ∈R+

|γa,k(ξ )| � sup
u∈R+

|a(u)|
∫

R+
�2
k(u)du < +∞,

i.e., γa,k is bounded on R+ for each k ∈ Z+ . Moreover, in such a case of bounded
symbol a the function γa,k(ξ ) is also continuous in each finite point ξ ∈ R+ , and thus
γa,k ∈ Cb(R+) . However, as the following examples show γa,k may be bounded even
for unbounded symbols.

EXAMPLE 3.5. (i) For unbounded symbol

a(u) =
1√
u

sin
1
u
, u ∈ R+,

we have

γa,1(ξ ) =
√

2π
4

e−2
√
ξ

[(
2
√
ξ −8ξ

) cos2
√
ξ

2
√
ξ

+
(
3−2

√
ξ
) sin2

√
ξ

2
√
ξ

]

for ξ ∈ R+ , which is a bounded function on R+ . However, due to computational
limitations we can not say anything about the boundedness of γa,k(ξ ) for arbitrary k .

(ii) For oscillating symbol a(u) = e2ui we have again the bounded function

γa,k(ξ ) =
(−1)k

(ξ − i)2k+1

k

∑
j=0

(−1) j
[(

k
j

)]2

ξ 2 j+1, ξ ∈ R+.

Moreover, γa,k(ξ ) ∈C[0,+∞] for each k ∈ Z+ .

These examples motivate to study this interesting feature in more detail consider-
ing unbounded symbols to have a sufficiently large class of them common to all admis-
sible k . For this purpose denote by L1(R+,0) the class of functions a = a(u) such that
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a(u)e−εu ∈ L1(R+) for any ε > 0. For any such L1(R+,0)-symbol a(u) define the
following averaging functions

C(1)
a (u) =

∫ u

0
a(t)dt, C(m)

a (u) =
∫ u

0
C(m−1)

a (t)dt, m = 2,3, . . .

The functions C(m)
a constitute a “sequence of iterated integrals” of symbol a .

THEOREM 3.6. Let a = a(u) ∈ L1(R+,0) .

(i) If for any m ∈ N the function C(m)
a has the following asymptotic behavior

C(m)
a (u) = O(um), as u → 0 as well as u → +∞, (3)

then for each k ∈ Z+ we have supξ∈R+ |γa,k(ξ )| < +∞ .

(ii) If for any m,n ∈ N , any λ1 ∈ R+ and any λ2 ∈ (0,n+1) holds

C(m)
a (u) = O

(
um+λ1

)
, as u → 0, (4)

and
C(n)

a (u) = O
(
un−λ2

)
, as u → +∞,

then for each k ∈ Z+ we have lim
ξ→+∞

γa,k(ξ ) = 0 = lim
ξ→0

γa,k(ξ ) .

REMARK 3.7. The condition (3) guarantees the boundedness of the function
γa,k(ξ ) at a neighborhood of ξ = +∞ , as well as at a neighborhood of ξ = 0. Ob-
serve that if the both conditions in (3) hold for some m = m0 , then they hold also for
m = m0 +1. Indeed,

|C(m0+1)
a (u)| �

∫ u

0
|C(m0)

a (t)|dt � const
∫ u

0
tm0 dt � constum0+1.

The main advantage of Theorem 3.6 is that we need not have an explicit form of
the corresponding function γa,k for an unbounded symbol a = a(u) to decide about its
boundedness. Also, it gives the condition on the behavior of L1(R+,0)-symbols such
that the function γa,k(ξ ) ∈C[0,+∞] .

EXAMPLE 3.8. For α > 0 and β ∈ (0,1) consider the unbounded symbol

a(u) = u−β sinu−α , u ∈ R+.

However, the function a(u) is continuous at u = +∞ for all admissible values of pa-
rameters, and therefore γa,k(0) = a(+∞) = 0. On the other side, it is difficult to verify
the behavior of function γa,k(ξ ) at the endpoint +∞ by a direct computation. Since

C(1)
a (u) =

uα−β+1

α
cosu−α +O(u2α−β+1), as u → 0,
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then for α > β the first condition in (4) holds for m = 1 and λ1 = α −β . By Theo-
rem 3.6 the function γa,k(ξ ) is bounded.

If α � β , then

C(m)
a (u) = O(umα−β+m), as u → 0.

Thus, for each α � β there exists m0 ∈ N such that m0α > β , and therefore the first
condition in (4) holds for m = m0 and λ1 = m0α −β , which guarantees that γa,k(ξ )
is continuous at ξ = 0. Thus, for all parameters α > 0 and β ∈ (0,1) the function
γa,k(ξ ) ∈C[0,+∞] for each k ∈ Z+ .

We also mention an alternative way to the properties of γa,k : using the explicit
form of Laguerre polynomial we may write

γa,k(ξ ) = 2ξ
∫

R+
a(u)�2

k(2uξ )du =
k

∑
i=0

k

∑
j=0

κ(k, i, j) γ̃a,i+ j(ξ ), (5)

where

γ̃a,λ (ξ ) := (2ξ )λ+1
∫

R+
a(u)uλ e−2uξ du = ξλ+1

∫
R+

a(u/2)uλ e−uξ du,

and

κ(k, i, j) :=
(−1)i+ j

i! j!

(
k
i

)(
k
j

)
.

It is immediate that the boundedness of each function γ̃a,λ for λ ∈ {0,1, . . . ,2k} im-
plies the boundedness of function γa,k . Therefore, given λ ∈ Z+ and a locally sumable
function a = a(u) we now introduce the weighted means of symbol a as follows

D(1)
a,λ (u) =

∫ u

0
a(t/2)tλ dt, D(m)

a,λ (u) =
∫ u

0
D(m−1)

a,λ (t)dt, m = 2,3, . . .

It is obvious that D(m)
a,0 (u) = 2mC(m)

a (u/2) for each m ∈ N . In this setting the result of
Theorem 3.6 reads as follows: if a = a(u) ∈ L1(R+,0) and for any m ∈ N the function

D(m)
a,0 has the asymptotic behavior

D(m)
a,0 (u) = O(um), as u → 0 as well as u → +∞,

then each function γ̃a,λ is bounded on R+ for every λ ∈ Z+ , which means that γa,k

is bounded on R+ for each k ∈ Z+ . Moreover, we may extend the above observation
about asymptotic behavior using any (positive) weight λ0 ∈ Z+ appearing in weighted

means D(m)
a,λ0

.

THEOREM 3.9. Let a = a(u)∈ L1(R+,0) . If for any λ0 ∈ Z+ and for any m ∈ N

the function D(m)
a,λ0

has the following asymptotic behavior

D(m)
a,λ0

(u) = O(uλ0+m), as u → 0 as well as u → +∞,

then γa,k is bounded for each k ∈ Z+ .
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Furthermore, if a = a(u) is a bounded symbol on G , then the operator T (k)
a is

clearly bounded on each A(k) , and for its operator norm holds ‖T (k)
a ‖ � ess-sup |a(u)| .

Thus, all spaces A(k) , k ∈ Z+ , are naturally appropriate for Toeplitz operators with
bounded symbols. However, we may observe that the result of Theorem 3.1 suggests
considering not only L∞(G,dνL)-symbols, but also unbounded ones. In this case we
obviously have

COROLLARY 3.10. The operator T (k)
a with a measurable symbol a = a(u) , u ∈

R+ , is bounded on A(k) if and only if the corresponding function γa,k(ξ ) is bounded
on R+ , and

‖T (k)
a ‖ = sup

ξ∈R+

|γa,k(ξ )|.

From this result we immediately have that all the obtained results for boundedness
of γa,k in terms of iterated integrals are, in fact, sufficient conditions for boundedness of

the corresponding Toeplitz operator T (k)
a on each A(k) . The following result provides

another criteria for simultaneous boundedness of Toeplitz operators on each wavelet
subspaces.

THEOREM 3.11. (i) Let a = a(u) ∈ L1(R+,0) be non-negative almost every-

where. If T (0)
a is bounded on A(0) , then the operator T (k)

a is bounded on A(k) for
each k ∈ Z+ .

(ii) Let C(m)
a be non-negative almost everywhere for a certain m = m0 . If T (0)

a is

bounded on A(0) , then the operator T (k)
a is bounded on A(k) for each k ∈ Z+ .

Theorem states that under the assumption of non-negativity of a symbol a ∈
L1(R+,0) , or its mean C(m)

a for certain m ∈ N , the boundedness of Toeplitz operator

Ta = T (0)
a on the Bergman space A2(Π) = A(0) implies the boundedness of Toeplitz

operator T (k)
a acting on A(k) for each k ∈ Z+ . However, if a ∈ L1(R+,0) , the question

whether the boundedness of T (k0)
a on A(k0) for certain k0 ∈ N implies the boundedness

of T (k)
a acting on A(k) for each k ∈Z+ (smaller, or greater than k0 ) is still open. This is

related to question whether the boundedness of T (k)
a may happen only simultaneously

for all k ∈ Z+ .
It is immediate that an unbounded symbol must have a sufficiently sophisticated

oscillating behavior at neighborhoods of the points 0 and +∞ to generate a bounded
Toeplitz operator. In what follows we show that infinitely growing positive symbols
cannot generate bounded Toeplitz operators in general. For this purpose for a non-
negative function a = a(u) put

θa(u) = inf
t∈(0,u)

a(t) and Θa(u) = inf
t∈(u/2,u)

a(t).

THEOREM 3.12. For a given non-negative symbol a = a(u) if

either lim
u→0

θa(u) = +∞, or lim
u→+∞

Θa(u) = +∞, (6)
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then T (k)
a is unbounded on each A(k) , k ∈ Z+ .

EXAMPLE 3.13. For a family of non-negative symbols on R+ in the form

a(u) = u−β ln2 u−α , β ∈ [0,1], α > 0,

we have that for all admissible parameters holds lim
u→0

θa(u) = +∞ , and thus T (k)
a is

unbounded on A(k) for each k ∈ Z+ .

In the following we provide an interesting example of symbols a,b for which

T (k)
a ,T (k)

b are bounded, but T (k)
ab is not on the whole scale of parameters k .

EXAMPLE 3.14. Let us consider two symbols on R+ in the form

a(u) = u−β sinu−α , β ∈ (0,1), α � β , and b(u) = uτ sinu−α , τ ∈ (0,β ).

Then T (k)
a is bounded for each k ∈ Z+ , and since b(u) ∈ C[0,+∞] , then T (k)

b is
bounded for each k ∈ Z+ as well. Put

c(u) = a(u)b(u) =
u−δ

2
− u−δ

2
cos2u−α = c1(u)+ c2(u),

where δ = β − τ ∈ (0,1) . Clearly, c(u) is an unbounded symbol. However, T (k)
c2 is

bounded for each k ∈ Z+ . Since

θc1(u) = inf
t∈(0,u)

1

2tδ
=

1

2uδ
→ +∞, as u → 0,

then the operator T (k)
c1 is unbounded for each k ∈ Z+ . Thus, the Toeplitz operator T (k)

ab

is unbounded on A(k) for each k ∈ Z+ showing that the semi-commutator
[
T (k)
a ,T (k)

b

)
is not compact.

Perhaps the most surprising feature of behavior of Toeplitz operators on A(k) with
symbols depending only on vertical coordinate in the upper half-plane is appearance
of certain commutative algebras of Toeplitz operators on these spaces which are practi-

cally unknown in the literature. Therefore, denote by L{0,+∞}
∞ (R+) the C∗ -subalgebra

of L∞(R+) which consists of all functions having limits at the points 0 and +∞ . For

k ∈ Z+ denote by Tk

(
L{0,+∞}
∞ (R+)

)
the C∗ -algebra generated by all operators T (k)

a

acting on A(k) with symbols a ∈ L{0,+∞}
∞ (R+) .

THEOREM 3.15. For a ∈ L{0,+∞}
∞ (R+) the corresponding functions γa,k(ξ ) , k ∈

Z+ , possess the following properties:

(i) γa,k(ξ ) ∈C[0,+∞];
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(ii) γa,k(+∞) = lim
ξ→+∞

γa,k(ξ ) = lim
u→0

a(u) = a(0);

(iii) γa,k(0) = lim
ξ→0

γa,k(ξ ) = lim
u→+∞

a(u) = a(+∞) .

Indeed, the behavior of a bounded function a(u) near the point 0 , or +∞ de-
termines the behavior of function γa,k(ξ ) near the point +∞ , or 0 , respectively. An
interesting observation is that the limits at infinity and at zero of the function γa,k are
completely independent of parameter k , which is rather surprising in this case and it
again may be useful in various contexts. The existence of limits of a(u) at these end-
points guarantees the continuity of γa,k(ξ ) on [0,+∞] , however this condition is not
necessary even for bounded symbols as the following example shows.

EXAMPLE 3.16. For a(u) = sinu , u ∈ R+ , we have

γa,1(ξ ) = 2ξ
∫

R+
sinue−2uξ (1−2uξ )2 du =

2ξ (1−16ξ 2 +48ξ 4)
(1+4ξ 2)3 , ξ ∈ R+,

which yields
lim

ξ→+∞
γa,1(ξ ) = lim

ξ→0
γa,1(ξ ) = 0.

On the other hand, Example 3.5(i) provides an example of unbounded symbol a(u)
such that the corresponding function γa,k is continuous on [0,+∞] for each k ∈ Z+ .

COROLLARY 3.17. Each C∗ -algebra Tk

(
L{0,+∞}
∞ (R+)

)
, k ∈ Z+ , is isometric

and isomorphic to C[0,+∞] . The corresponding isomorphism is generated by the fol-

lowing mapping τ(k) : T (k)
a 
−→ γa,k(ξ ) .

According to this result the symbol algebra L{0,+∞}
∞ (R+) is an example of algebra

such that the operator algebra Tk

(
L{0,+∞}
∞ (R+)

)
generated by Toeplitz operators T (k)

a

with symbol a∈ L{0,+∞}
∞ (R+) is commutative for each k ∈Z+ . An interesting question

may be a characterization of all such algebras A of symbols for which the operator
algebra Tk(A ) is commutative for each k . It seems to be a challenging problem.

Easily, continuity of function γa,k on the whole R+ guarantees its boundedness,

and therefore the boundedness of the corresponding Toeplitz operator T (k)
a on A(k) .

Moreover, T (k)
a with a symbol a = a(u) belongs to the algebra Tk

(
L{0,+∞}
∞ (R+)

)
if

and only if the corresponding function γa,k(ξ ) belongs to C[0,+∞] . This means that

the algebra Tk

(
L{0,+∞}
∞ (R+)

)
also contains (bounded) Toeplitz operators whose (gen-

erally unbounded) symbols a(u) need not have limits at the endpoints 0 and +∞ . For
instance, Example 3.5(ii) provides oscillating symbols a = a(u) for which Toeplitz

operator T (k)
a belongs to the algebra Tk

(
L{0,+∞}
∞ (R+)

)
for the whole range of pa-

rameters k . Now we give an example of a bounded oscillating symbol such that the

bounded operator T (k)
a does not belong to the algebra Tk

(
L{0,+∞}
∞ (R+)

)
.
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EXAMPLE 3.18. The function a(u) = ui = ei lnu , u ∈ R+, is oscillating near the

endpoints 0 and +∞ , but it is bounded on R+ , and therefore T (k)
a is bounded for each

k ∈ R+ . Changing the variable x = 2uξ yields

γa,k(ξ ) = 2ξ
∫

R+
ui�2

k(2uξ )du = (2ξ )−i
∫

R+
xi�2

k(x)dx.

Since the last integral is a constant depending on k , the function γa,k(ξ ) oscillates and
has no limit when ξ → 0 as well as when ξ → +∞ . Thus, the bounded Toeplitz oper-

ator T (k)
a does not belong to the algebra Tk

(
L{0,+∞}
∞ (R+)

)
. Hence not all oscillating

symbols (even bounded and continuous) generate an operator from Tk

(
L{0,+∞}
∞ (R+)

)
.

Introduce now the C∗ -subalgebra T
(
T (0)
a+

)
of the algebra T0

(
L{0,+∞}
∞ (R+)

)
which is generated by identity and the Toeplitz operator T (0)

a+ with symbol a+ = χ[0,1/2] .

By Example 3.2 the corresponding function γa+,0 ∈ L{0,+∞}
∞ (R+) is continuous on

[0,+∞] , therefore T (0)
a+ is self-adjoint and spT (0)

a+ = Rangeγa+,0 = [0,1] . Also, the
function γa+,0 is a strictly increasing real-valued function which separates points of

[0,+∞] . Thus, the algebra T
(
T (0)
a+

)
consists of all operators of the form h

(
T (0)
a+

)
with h ∈C[0,1] by functional calculus for C∗ -algebras. Summarizing, we have

THEOREM 3.19. The algebra T0

(
L{0,+∞}
∞ (R+)

)
= T

(
T (0)
a+

)
, and

(i) is isomorphic and isometric to C[0,+∞];

(ii) is generated by identity and the single Toeplitz operator T (0)
a+ ;

(iii) consists of all operators of the form h
(
T (0)
a+

)
with h ∈C[0,1] .

We have chosen Toeplitz operator T (0)
a+ as the starting operator because in this

specific case the equation x = γa+,0(ξ ) = 1− e−ξ admits an explicit solution. But we

can start from any operator T (0)
χ[0,λ ]

with symbol a(u) = χ[0,λ ](u) , λ ∈ R+ . Indeed, the
function γχ[0,λ ],0(ξ ) is strictly increasing which implies that the function

Δλ (x) = 1− (1− x)2λ , x ∈ [0,1],

is strictly increasing as well, and thus the function Δ−1
λ is well defined and continuous

on [0,1] . Clearly, for λ1,λ2 ∈ R+ we have(
Δλ2

◦Δ−1
λ1

)(
T (0)
χ[0,λ1]

)
= T (0)

χ[0,λ2]
,

where ◦ is the usual composition of real functions. This means that for any symbol

a = a(u) = χ[0,λ ](u) the operator T (0)
a belongs to the algebra T

(
T (0)
a+

)
, and is the
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function of T (0)
a+ , i.e., T (0)

χ[0,λ ]
= Δλ

(
T (0)
a+

)
. In fact, the (localization) operator T (0)

a+ gives

a reconstruction of a signal on the segment Ω1/2 = R× (0,1/2] and level 0. Then

we may obtain any operator T (0)
χ[0,λ ]

(giving a reconstruction of a signal on the segment

Ωλ = R× (0,λ ] and level 0) from this operator T (0)
a+ , i.e., from the reconstruction of

a signal on the segment Ω1/2 and level 0 we may obtain a reconstruction of the same
signal on the same level on an arbitrary segment Ωλ using the function Δλ which is
easy to compute.

In particular and quite surprisingly, each Toeplitz operator T (k)
a with symbols a ∈

L{0,+∞}
∞ (R+) is a certain continuous function of the initial operator and this function

can be figured out.

THEOREM 3.20. For each a = a(u) ∈ L{0,+∞}
∞ (R+) the Toeplitz operator T (k)

a

belongs to the algebra T
(
T (0)
a+

)
, and is the following function of the operator T (0)

a+(
∇(k)

a,λ ◦Δλ
)(

T (0)
a+

)
= T (k)

a ,

where

∇(k)
a,λ (x) = − 1

λ
ln(1− x)

∫
R+

a(u)(1− x)u/λL2
k

(
− u
λ

ln(1− x)
)

du

with λ ∈ R+ and x ∈ [0,1] .

Theorem 3.20 states that if we know the reconstruction of a signal on a segment
Ωλ and level 0, we might get an arbitrary reconstruction of the signal (as its filtered ver-
sion using a real bounded function a of scale having limits in critical points of boundary
of R+ such that the corresponding function γ· separates the points of R+ ) on an arbi-

trary level k using the function ∇(k)
a,λ . Theoretically, for the purpose to study localiza-

tion of a signal in the time-scale plane the result of Theorem 3.20 suggests to consider
certain “nice” symbols on the first level 0 (indeed, Toeplitz operators on A2(Π) with
symbols as characteristic functions of some interval in R+ ) instead of possibly compli-

cated L{0,+∞}
∞ (R+)-symbols with respect to “different microscope” represented by the

level k . On the other hand, to compute the corresponding function ∇(k)
a,λ need not be

always easy.

3.2. Unitarily equivalent images of Toeplitz operators for symbols depending on
ℜζ

For general symbols a = a(u,v) the operator T (k)
a is no longer unitarily equivalent

to a multiplication operator A
(k)
a . For symbols depending on the first (horizontal) vari-

able in the upper half-plane Π a certain class of pseudo-differential operaors appears.
In what follows R

2
+ := R+ ×R+ .
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THEOREM 3.21. ([13], Theorem 3.3) Let (u,v) ∈ G . If a measurable function

b = b(v) does not depend on u, then T (k)
b acting on A(k) is unitarily equivalent to the

operator B
(k)
b acting on L2(R+) given by[

B
(k)
b f
]
(ξ ) =

∫
R+

Bk(ξ ,t) b̂(ξ − t) f (t)dt, ξ ∈ R+,

where the function Bk : R2
+ → C has the form

Bk(ξ ,t) =
2
√

tξ
t + ξ

Pk

(
8tξ

(t + ξ )2 −1

)
(7)

with

Pn(x) =
1

2nn!
dn

dxn (x2 −1)n

being the Legendre polynomial of degree n ∈ Z+ for x ∈ [−1,1] .

Immediately, for each k ∈ Z+ the function Bk : R2
+ → R has the following re-

markable properties:

(i) Bk is continuous and bounded on R2
+ ;

(ii) Bk is a symmetric function, i.e., Bk(ξ ,t) = Bk(t,ξ ) for each (ξ , t) ∈ R2
+ ;

(iii) Bk(ξ , t) ∈C∞(R2
+) ;

(iv) Bk is homogeneous (of order 0), i.e., for each α > 0 holds Bk(αξ ,αt) = Bk(ξ ,t)
for each (ξ , t) ∈ R2

+ ;

(v) Bk(ξ ,ξ ) = 1 for all ξ ∈ R+ .

Again, the above result includes the well-known result for classical Toeplitz opera-
tors on the Bergman space A2(Π) as a special case. In fact, for k = 0 Toeplitz operator
Tb with a symbol b = b(ℜζ ) = b(v) acting on the Bergman space A2(Π) is unitarily
equivalent to the following integral operator

[Bb f ] (x) =
∫

R+

2
√

xy

x+ y
K(y− x) f (y)dy, x ∈ R+,

where K is the Fourier transform of the function b(−v) . As we have already men-

tioned, our case of Toeplitz operators T (k)
a depending on a “discrete” weight parameter

k ∈ Z+ is different from the case of Toeplitz operators T (λ )
a depending on a “continu-

ous” weight parameter λ ∈ (−1,+∞) studied in [18] for weighted Bergman spaces.
In what follows we deal with the Fredholm theory for Toeplitz operator algebras

on poly-analytic spaces. Thus, consider a class of integral operators on R+ of the form

(H f )(x) =
∫

R+
h(x,y)K(x− y) f (y)dy, x ∈ R+, (8)

where
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(H1) for the Fourier transform K̂ of the function K holds |K̂( j)(ω)| � Cj

(1+ω2) j/2 for

each j ∈ Z+ ;

(H2) there exists limits K̂± = lim
ω→±∞ K̂(ω) , and the Fourier transform of a function

K0 ∈ L1(R) may be written in the form

K̂0(ω) = K̂(ω)− K̂+χ+(ω)− K̂−χ−(ω);

(H3) h(x,y) ∈C∞(R2
+) , and for all α > 0 holds h(αx,αy) = h(x,y) ;

(H4) ∫
R+

|h(1,t)|
1+ t

dt√
t

< +∞.

With the operator H we associate the function qH on R as follows

qH(λ ) =
1
iπ

∫
R+

t−iλ h(1,t)
1− t

dt√
t
, λ ∈ R.

Denote by SV∞(R+) the class of functions f (x) ∈C∞
b (R+) which are slowly varying at

infinity (in the additive sense) and slowly varying at zero (in the multiplicative sense),
see Remark 3.4, i.e., limx→+∞ f ′(x) = 0 and limx→0 x f ′(x) = 0. Let SV(R+) be the
closure of SV∞(R+) in Cb(R+) . Further, denote by H the C∗ -algebra generated by
the integral operators H of the form (8) with the property

sup
λ∈R

|qH(λ )| < +∞, (9)

and the multiplication operators f (x)I with f ∈ SV∞(R+) . In such a case the commu-
tator [ f (x)I,H] = f (x)H −H f (x)I is compact on L2(R+) .

For each k ∈ Z+ the operator B
(k)
b with b(v) ∈ L∞(R) is of the form (8) with

K̂(ω) = b(−ω) and is clearly bounded on L2(R+) . The associated function q
B

(k)
b

has

the form

q
B

(k)
b

(λ ) =
2
iπ

∫
R+

t−iλ

(1+ t)(1− t)
Pk

(
8t

(t +1)2 −1

)
dt, λ ∈ R,

and it is possible to prove, see [14], that for each k ∈ Z+

sup
λ∈R

∣∣∣∣qB
(k)
b

(λ )
∣∣∣∣< +∞,

which implies that B
(k)
b ∈ H for each k ∈ Z+ whenever b = b(v) ∈ C(R) . Ac-

cording to Theorem 3.3, γa,k(x) ∈ SV(R+) whenever a = a(u) ∈ C1
b(R+) such that

lim
u→+∞

ua′(u)= 0, and therefore γa,k(x)I ∈H . Thus, denote by S̃V(R+) the C∗ -algebra
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generated by functions a = a(u) ∈ C1
b(R+) with lim

u→+∞
ua′(u) = 0. For each k ∈ Z+

consider the C∗ -algebra

Tk = Tk

(
C(R), S̃V (R+)

)
generated by all Toeplitz operators T (k)

b with b = b(v) ∈ C(R) , and T (k)
a with a =

a(u)∈ S̃V (R+) acting on A(k) , where ζ = (u,v)∈ G . It is immediate that Tk provides
a parameterized family of operator algebras with compact commutator property and
non-compact semi-commutator property.

Now, introduce two ideals of the algebra SV(R+) ,

C0
0(R+) =

{
a(u) ∈ SV (R+); lim

u→0
a(u) = 0

}
;

C+∞
0 (R+) =

{
a(u) ∈ SV (R+); lim

u→+∞
a(u) = 0

}
,

and let SymH = H /K = Ĥ be the Fredholm symbol algebra of the algebra H ,
where K is the ideal of all compact operators on L2(R+) . For each ξ0 ∈ R+ the local
algebra is defined as H (ξ0) = Ĥ /J(ξ0) , where J(ξ0) is the closed two-sided ideal of
the algebra Ĥ generated by the maximal ideal of C(R+) corresponding to the point
ξ0 . Clearly, C(R+) is a central commutative subalgebra of Ĥ . Denote by S the
C∗ -algebra of all vector-valued functions σ continuous on R+ , where σ(ξ ) ∈ H (ξ )
for each ξ ∈ R+ , with point-wise operations, and the norm ‖σ‖ = supξ∈R+

‖σ(ξ )‖ .

THEOREM 3.22. For each k∈Z+ the Fredholm symbol algebra SymTk = Tk/K
of Toeplitz operator algebra Tk is isomorphic and isometric to the algebra S . The
symbol homomorphism

symk : Tk −→ SymTk = S

is generated by the following mapping of the generators of the algebra H

symk : T (k)
a 
−→

⎧⎪⎨⎪⎩
γa,k(ξ )+C0

0(R+), ξ = 0

(γa,k(ξ ),γa,k(ξ )), ξ ∈ R+;

γa,k(ξ )+C+∞
0 (R+), ξ = +∞

symk : T (k)
b 
−→

⎧⎪⎪⎨⎪⎪⎩
1
2

[(
b(−∞)+b(+∞)

)
+
(
b(−∞)−b(+∞)

)
q

B
(k)
b

(λ )
]
, ξ = 0

(b(−∞),b(+∞)), ξ ∈ R+;

b(−ω), ξ = +∞

where a = a(u) ∈ S̃V (R+) and b = b(v) ∈C(R) with ζ = (u,v) ∈ G .
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4. Conclusion

In this paper we review our recent results on Toeplitz operators on wavelet sub-
spaces with respect to a special parameterized family of wavelets from Laguerre func-
tions. As it was shown in [2] such spaces are in fact the true-poly-analytic Bergman
spaces over the upper half-plane Π providing thus a useful and interesting tool for in-
vestigating basic properties of Toeplitz operators acting on them and their algebras via
time-scale approach. We list here some questions and possible directions which could
be interesting (from our point of view) for further study.

(i) We suppose that considering an appropriate family of admissible wavelets
ψ(k,α) related to generalized Laguerre functions

�
(α)
k (x) :=

[
k!

Γ(k+α+1)

]1/2

xα/2 e−x/2L(α)
k (x), x ∈ R+,

we may obtain analogous structural results and representations of weighted (true)-poly-
analytic Bergman spaces. What are the corresponding Toeplitz (Hankel, etc.) operators
acting on these spaces and which properties do they have?

(ii) In connection with the results of this paper we may ask what happens to prop-

erties of Toeplitz operators T (k)
a acting on true-poly-analytic Bergman spaces (wavelet

subspaces A(k) ) when the weight parameter k ∈ Z+ varies?

(iii) In particular, to study the spectral properties of a Toeplitz operator T (k)
a and

the related asymptotic properties of function γa,k in dependence on k , and compare
their limit behavior under k → +∞ with corresponding properties of the initial symbol
a . Also, the similar questions may be stated for the above mentioned Toeplitz operator
acting on weighted poly-analytic spaces, but here the question of a varying parameter
is not clear, because in this case at least two weighted parameters will appear.

(iv) Recently, an interesting result has been obtained in [10] for the classical
Bergman space of analytic functions on the upper half-plane. As it is already known,
the C∗ -algebra generated by Toeplitz operators with bounded symbols (depending on
vertical coordinate u = Im(ζ ) only, the so-called vertical Toeplitz operators in ter-
minology of [10]) is isometrically isomorphic to the C∗ -algebra generated by the set
Γ0 := {γa,0; a ∈ L∞(R+)} . In [10] authors showed that Γ0 is dense in the space
VSO(R+) of all very slowly oscillating functions on the positive half-line. Thus, we
conjecture the following more general result: for each k ∈ Z+ the set

Γk := {γa,k; a ∈ L∞(R+)}

is dense in VSO(R+) .
(v) In practical applications certain algebraic operations with symbols and opera-

tors naturally appear. In signal analysis, the problem of finding a filter that has the same
effect as two filters arranged in series amounts to the computation of the product of two
localization operators. Thus, what is the product of two Toeplitz operators (in exact, or
at least approximate formulas)? The answer does not seem to be so simple and seems
to depend on the availability of a useful formula for Toeplitz operator. We think that
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some technical information in this direction obtained in this paper studying the particu-
lar cases of symbols on the affine group G (e.g., if a depends only on vertical variable

u ∈ R+ in the upper half-plane, then T (k)
a is a Fourier multiplier) may be helpful and

crucial.
(vi) The continuous wavelet transform in the one-dimensional case can be obtained

in two ways: one from the theory of square-integrable group representation, and the
other from the Calderón representation formula. Also, it is known that in the one-
dimensional case these two different ways can induce the same results. However, in
the higher dimensional case these two ways will induce two different results. One
is the Calderón representation formula, which induces a decomposition of L2(R+ ×
R

n,u−n−1dudv) , and the other is the wavelet transform associated with the square-
integrable group representation. Also, there exist other ways how to extend wavelet
analysis to higher dimensions, cf. [4]. Each such a case generates its own (possibly
different) class of localization operators. What is the “natural” extension of our results
for Toeplitz operators to higher dimensions?

Immediately, there are many other questions dealing with various contexts, e.g.,
in quantization problems, (discrete and continuous) frame theory, engineering applica-
tions, etc. We hope this paper will stimulate a further interest and development in this
topic of intersection of poly-analytic function theory and time-scale (or, more generally,
time-frequency) analysis.
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