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A RADON–NIKODYM TYPE THEOREM FOR

α –COMPLETELY POSITIVE MAPS ON GROUPS
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Abstract. We show that an operator valued α -completely positive map on a group G is given by
a unitary representation of G on a Krein space which satisfies certain conditions. Moreover, two
such of unitary representations, which are unitarily equivalent, define the same α -completely
positive map. Also we introduce a pre-order relation on the collection of α -completely pos-
itive maps on a group and we characterize this relation in terms of the unitary representation
associated to each map.

1. Introduction

The study of completely positive maps is motivated by their applications in the the-
ory of quantum measurements, operational approach to quantum mechanics, quantum
information theory, where operator-valued completely positive maps on C∗ -algebras
are used as a mathematical model for quantum operations, and quantum probability
[8, 7, 6]. On the other hand, the notion of locality in the Wightman formulation of gauge
quantum field theory conflicts with the notion of positivity. To avoid this, Jakobczyk
and Strocchi [6] introduced the concept of α -positivity. Motivated by the notions of α -
positivity and P-functional [5, 1], recently, Heo, Hong and Ji [4] introduced the notion
of α -completely positive map between C∗ -algebras, and they provided a Kasparov-
Stinespring-Gelfand-Naimark-Segal type construction for α -completely positive maps.

In [2], Heo introduced the notion of α -completely positive map from a group G to
a C∗ -algebra A . By analogy with the KSGNS construction for α -completely positive
maps on C∗ -algebras [4], he associated to an α -completely positive map ϕ from a
group G to the C∗ -algebra L(X) of all adjointable operators on a Hilbert C∗ -module X
a quadruple

(
πϕ ,Xϕ ,Jϕ ,Vϕ

)
consisting of a Krein C∗ -module

(
Xϕ ,Jϕ

)
, a Jϕ -unitary

representation πϕ of G on Xϕ and a bounded linear operator Vϕ such that the linear
space generated by {πϕ (g)Vϕx;g ∈ G,x ∈ X} is dense in Xϕ , V ∗

ϕ πϕ (g)∗ πϕ (g′)Vϕ =
V ∗

ϕ πϕ
(
α

(
g−1

)
g′

)
Vϕ for all g,g′ ∈ G and ϕ (g) = V ∗

ϕ πϕ (g)Vϕ for all g ∈ G . But, in
general, a such of quadruple does not define an α -completely positive map (Remark
2.6). In this paper, we consider α -completely positive maps from a group G to L(H ) ,
the C∗ -algebra of all bounded linear operators on a Hilbert space H , and we show
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that under some conditions, a quadruple (π ,H ,J ,V ) consisting of a Krein space
(H ,J ) , a J -unitary representation π of G on H and a bounded linear operator V
defines an α -completely positive map and we associate to each α -completely positive
map a such of quadruple, that is unique up to unitary equivalence. In Section 3, we
prove a Radon-Nikodym theorem type for α -completely positive maps on groups.

2. Stinespring type theorem for α -completely positive maps

Let G be a (topological) group with an involution α (that is, a (continuous) map
α : G → G such that α2 = idG,α (e) = e and α

(
g−1

)
= α (g)−1 for all g ∈ G) and

H a Hilbert space.

DEFINITION 2.1. [2, Definition 2.1] A map ϕ : G→ L(H ) is α -completely pos-
itive if:

1. ϕ (α (g1)α (g2)) = ϕ (α (g1g2)) = ϕ (g1g2) for all g1,g2 ∈ G;

2. for all g1, ...,gn ∈ G , the matrix
[
ϕ

(
α (gi)

−1 g j

)]n

i, j=1
is positive in L(H ) ;

3. there is K > 0, such that[
ϕ (gi)

∗ ϕ (g j)
]n
i, j=1 � K

[
ϕ

(
α (gi)

−1 g j

)]n

i, j=1

for all g1, ...,gn ∈ G;

4. for all g ∈ G , there is M(g) > 0 such that[
ϕ

(
α (ggi)

−1 gg j

)]n

i, j=1
� M(g)

[
ϕ

(
α (gi)

−1 g j

)]n

i, j=1

for all g1, ...,gn ∈ G .

REMARK 2.2. Let ϕ : G → L(H ) be an α -completely positive map. Then:

1. ϕ (α (g)) = ϕ (g) for all g ∈ G;

2. ϕ
(
α

(
g−1

))
= ϕ (g)∗ for all g ∈ G;

3. ϕ
(
g−1

)
= ϕ (g)∗ for all g ∈ G.

Let H be a Hilbert space and J a bounded linear operator on H such that
J = J ∗= J −1 . Then we can define an indefinite inner product by [x,y] = 〈J x,y〉 .
The pair (H ,J ) is called a Krein space. A representation of G on the Krein space
(H ,J ) is a morphism π : G → L(H ) . A J -unitary representation of G on the
Krein space (H ,J ) is a representation π such that π

(
g−1

)
= J π (g)∗J for all

g ∈ G and π (e) = idH . If π is a representation of G on H , [π (G)H ] denotes the
closed linear subspace of H generated by {π (g)ξ ;g ∈ G,ξ ∈ H }.
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THEOREM 2.3. [2, Theorem2.2] Let ϕ : G→ L(H ) be an α -completely positive
map. Then there are a Krein space

(
Hϕ ,Jϕ

)
, a Jϕ -unitary representation πϕ of G

on
(
Hϕ ,Jϕ

)
and a bounded linear operator Vϕ : H → Hϕ such that

1. ϕ (g) = V ∗
ϕ πϕ (g)Vϕ for all g ∈ G;

2.
[
πϕ (G)VϕH

]
= Hϕ ;

3. V ∗
ϕ πϕ (g)∗ πϕ (g′)Vϕ = V ∗

ϕ πϕ
(
α

(
g−1

)
g′

)
Vϕ for all g,g′ ∈ G.

The quadruple
(
πϕ ,Hϕ ,Jϕ ,Vϕ

)
is called the minimal Naimark -KSGNS dilation

of ϕ [2].

REMARK 2.4. If
(
πϕ ,Hϕ ,Jϕ ,Vϕ

)
is the minimal Naimark -KSGNS dilation of

ϕ in the sense of Heo, then
(
πϕ ,Hϕ ,Jϕ ,W

)
, where W = Jϕ Vϕ , is a minimal

Naimark -KSGNS dilation of ϕ too. Indeed, we have:

1. ϕ (g) = ϕ
(
g−1

)∗ =
(
V ∗

ϕ πϕ
(
g−1

)
Vϕ

)∗ =
(
V ∗

ϕ Jϕ πϕ (g)∗JϕVϕ
)∗

=
(
W ∗πϕ (g)∗W

)∗ = W ∗πϕ (g)W for all g ∈ G.

2. Since V ∗
ϕ πϕ (g)∗ πϕ (g′)Vϕ = V ∗

ϕ πϕ
(
α

(
g−1

)
g′

)
Vϕ for all g,g′ ∈ G, and[

πϕ (G)VϕH
]
= Hϕ , we have

V ∗
ϕ πϕ (g)∗ = V ∗

ϕ πϕ
(
α

(
g−1))

for all g ∈ G , and then

πϕ (g)Vϕ = Jϕ πϕ (α (g))JϕVϕ

for all g ∈ G. Then[
πϕ (G)WH

]
= Jϕ

[
Jϕ πϕ (α (G))VϕH

]
= Jϕ

[
πϕ (G)VϕH

]
= JϕHϕ = Hϕ .

3. Let g,g′ ∈ G . Then

W ∗πϕ (g)∗ πϕ
(
g′

)
W = V ∗

ϕ Jϕ πϕ (g)∗ πϕ
(
g′

)
JϕVϕ

= V ∗
ϕ πϕ

(
g−1)Jϕπϕ

(
g′

)
JϕVϕ

= V ∗
ϕ πϕ

(
g−1)πϕ

(
α

(
g′

))
Vϕ

= V ∗
ϕ πϕ

(
g−1α

(
g′

))
Vϕ = ϕ

(
g−1α

(
g′

))
= ϕ

(
α

(
g−1)g′

)
= ϕ

(
g′−1α (g)

)∗
=

(
V ∗

ϕ πϕ
(
g′−1α (g)

)
Vϕ

)∗
=

(
V ∗

ϕ Jϕπϕ
(
α

(
g−1)g′

)∗
JϕVϕ

)∗

=
(
W ∗πϕ

(
α

(
g−1)g′

)∗
W

)∗
= W ∗πϕ

(
α

(
g−1)g′

)
W.
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REMARK 2.5. We remark that Jϕ πϕ (g)Vϕ = πϕ (α (g))Vϕ for all g∈G , if and
only if, V ∗

ϕ πϕ (g)∗ πϕ (g′)Vϕ =V ∗
ϕ πϕ

(
α

(
g−1

)
g′

)
Vϕ for all g,g′ ∈G and JϕVϕ =Vϕ .

Indeed, if Jϕ πϕ (g)Vϕ = πϕ (α (g))Vϕ for all g ∈ G , then JϕVϕ = Vϕ and

V ∗
ϕ πϕ (g)∗ πϕ

(
g′

)
Vϕ = V ∗

ϕ Jϕ πϕ
(
g−1)Jϕ πϕ

(
g′

)
Vϕ

= V ∗
ϕ πϕ

(
g−1)πϕ

(
α

(
g′

))
Vϕ = V ∗

ϕ πϕ
(
g−1α

(
g′

))
Vϕ

= ϕ
(
g−1α

(
g′

))
= ϕ

(
α

(
g−1)g′

)
= V ∗

ϕ πϕ
(
α

(
g−1)g′

)
Vϕ

for all g,g′ ∈ G.
Conversely, if V ∗

ϕ πϕ (g)∗ πϕ (g′)Vϕ = V ∗
ϕ πϕ

(
α

(
g−1

)
g′

)
Vϕ for all g,g′ ∈ G , then

πϕ (g)Vϕ = Jϕπϕ (α (g))JϕVϕ (Remark 2.4 (2))

for all g ∈ G , and taking into account that JϕVϕ = Vϕ , we have

Jϕπϕ (g)Vϕ = πϕ (α (g))JϕVϕ = πϕ (α (g))Vϕ

for all g ∈ G .

REMARK 2.6. If G is a group with an involution α, π is a J -unitary repre-
sentation of G on (K ,J ) and V a bounded linear operator from a Hilbert space
H to K such that [π (G)VH ] = K and V ∗π (g)∗ π (g′)V =V ∗π

(
α

(
g−1

)
g′

)
V for

all g,g′ ∈ G , then the map ϕ : G → L(H ) defined by ϕ (g) = V ∗π (g)V is not in
general an α -completely positive map.

EXAMPLE. Let Z be the additive group of integers and α (n) = −n an involution
of Z . The map J : C2 →C2 defined by J (x,y) = (y,x) is a bounded linear operator
such that J = J ∗ = J −1 , the map π : Z →L(C2) defined π (n)(x,y) = (enx,e−ny)
is a J -unitary representation of Z on

(
C2,J

)
, and the map V : C2 →C2 defined by

V (x,y) = (x− y,y) is a bounded linear operator. It is easy to verify that
[
π (Z)VC2

]
=

C2 and V ∗π (n)∗ π (m)V = V ∗π (n+m)V = V ∗π (α (−n)+m)V for all n,m ∈ Z , but
ϕ : Z →L(C2) defined by ϕ (n) = V ∗π (n)V is not α -completely positive, because
ϕ (n) �= ϕ (−n) = ϕ (α (n)) .

PROPOSITION 2.7. Let G be a group with an involution α, π a J -unitary rep-
resentation of G on (K ,J ) and V a bounded linear operator from a Hilbert space
H such that [π (G)VH ] = K and J π (g)V = π (α (g))V for all g ∈ G. Then the
map ϕ : G → L(H ) defined by ϕ (g) = V ∗π (g)V is an α -completely positive map.

Proof. It is similar to the proof of Proposition 3.1. �

THEOREM 2.8. Let ϕ : G → L(H ) be an α -completely positive map.

1. There are a Krein space
(
Hϕ ,Jϕ

)
, a Jϕ -unitary representation πϕ of G on(

Hϕ ,Jϕ
)

and a bounded linear operator Vϕ : H → Hϕ such that
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(a) ϕ (g) = V ∗
ϕ πϕ (g)Vϕ for all g ∈ G;

(b)
[
πϕ (G)VϕH

]
= Hϕ ;

(c) Jϕ πϕ (g)Vϕ = πϕ (α (g))Vϕ for all g ∈ G.

2. If π is a J -unitary representation of G on a Krein space (K ,J ) and V :
H → K is a bounded linear operator such that

(a) ϕ (g) = V ∗π (g)V for all g ∈ G;

(b) [π (G)VH ] = K ;

(c) J π (g)V = π (α (g))V for all g ∈ G,

then there is a unitary operator U : Hϕ → K such that

i. UJϕ = JU ;

ii. UVϕ = V ;

iii. Uπϕ(g) = π (g)U for all g ∈ G.

Proof. (1). We will give a sketch of proof (see [2, Theorem 2.2] and Remark 2.5
for the detailed proof). Let F (G,H ) be the vector space of all functions from G to
H with finite support. The map 〈·, ·〉 : F (G,H )×F (G,H ) → C defined by

〈 f1, f2〉 = ∑
g,g′

〈
f1 (g) ,ϕ

(
α

(
g−1

)
g′

)
f2 (g′)

〉
is a positive semi-definite sesquilinear form and Hϕ is the Hilbert space obtained by
the completion of the pre-Hilbert space F (G,H )/Nϕ , where Nϕ = { f ∈F (G,H )/
〈 f , f 〉 = 0} .

The linear map Jϕ : F (G,H ) → F (G,H ) given by Jϕ ( f ) = f ◦α extends
to a bounded linear operator Jϕ : Hϕ → Hϕ . Moreover, Jϕ = J ∗

ϕ = J −1
ϕ and(

Hϕ ,Jϕ
)

is a Krein space. For each g ∈G , the map πϕ (g) : F (G,H )→F (G,H )
given by πϕ (g)( f ) (g′) = f

(
g−1g′

)
extends to a bounded linear operator from Hϕ to

Hϕ , and the map g 
→ πϕ (g) is a Jϕ -unitary representation πϕ of G on
(
Hϕ ,Jϕ

)
.

The linear map Vϕ : H →F (G,H ) given by Vϕξ = ξ δe , where δe : G→C,δe (g) =
0 if g �= e and δe (e) = 1.

(2). We consider the linear map U :span{πϕ (g)Vϕξ ;g ∈ G,ξ ∈ H } →
span{π (g)Vξ ; g ∈ G,ξ ∈ H } defined by

U
(
πϕ (g)Vϕξ

)
= π (g)Vξ .

Since 〈
U

(
∑n

i=1 πϕ (gi)Vϕξi
)
,U

(
∑m

j=1 πϕ

(
g′j

)
Vϕζ j

)〉
= ∑n

i=1 ∑m
j=1

〈
π (gi)Vξi,π

(
g′j

)
Vζ j

〉
= ∑n

i=1 ∑m
j=1

〈(
V ∗π

(
g′j

)∗
π (gi)Vξi

)
,ζ j

〉
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= ∑n
i=1 ∑m

j=1

〈
V ∗π

(
α

(
g′−1

j

)
gi

)
Vξi,ζ j

〉
= ∑n

i=1 ∑m
j=1

〈
ϕ

(
α

(
g′−1

j

)
gi

)
ξi,ζ j

〉
= ∑n

i=1 ∑m
j=1

〈
V ∗

ϕ πϕ

(
α

(
g′−1

j

)
gi

)
Vϕξi,ζ j

〉
=

〈
∑n

i=1 πϕ (gi)Vϕξi,∑m
j=1 πϕ

(
g′j

)
Vϕζ j

〉
for all g1, ...,gn,g′1, ...,g

′
m ∈ G and for all ξ1, ...,ξn,ζ1, ...,ζm ∈ H , U extends to a

unitary operator U from Hϕ to K . Moreover, Uπϕ(g) = π (g)U for all g ∈ G and
UVϕ = V . Since

UJϕ
(
πϕ (g)Vϕξ

)
= U

(
πϕ (α (g))Vϕξ

)
= π (α (g))Vξ

= J (π (g)Vξ ) = JU
(
πϕ (g)Vϕξ

)
for all g ∈ G and for all ξ ∈ H , and since

[
πϕ (G)VϕH

]
= Hϕ , we have UJϕ =

JU. �

If G is a topological group and ϕ is bounded, then the Jϕ -unitary representation
πϕ is strictly continuous.

The triple
(
πϕ ,

(
Hϕ ,Jϕ

)
,Vϕ

)
is called the minimal Stinespring construction as-

sociated to ϕ .

3. Radon-Nikodym type theorem for α -completely positive maps

Let G be a group with an involution α , H a Hilbert space and α −CP(G,H ) =
{ϕ : G → L(H );ϕ is α -completely positive} .

Let ϕ ∈ α −CP(G,H ) and let
(
πϕ ,

(
Hϕ ,Jϕ

)
,Vϕ

)
be the minimal Stinespring

construction associated to ϕ .

PROPOSITION 3.1. Let T ∈ πϕ (G)′ ⊆ L
(
Hϕ

)
such that T � 0 and TJϕ =

JϕT , where πϕ (G)′ is the commutant of πϕ (G)′ in L(Hϕ ). Then the map ϕT : G →
L(Hϕ ) defined by ϕT (g) = V ∗

ϕ Tπϕ (g)Vϕ is α -completely positive.

Proof. From

ϕT (α (g1)α (g2)) = V ∗
ϕ Tπϕ (α (g1))πϕ (α (g2))Vϕ

= V ∗
ϕ Tπϕ (α (g1))Jϕπϕ (g2)Vϕ

= V ∗
ϕ Jϕ πϕ (α (g1))JϕTπϕ (g2)Vϕ

= V ∗
ϕ πϕ

(
α

(
g−1

1

))∗
Tπϕ (g2)Vϕ

= V ∗
ϕ πϕ

(
g−1

1

)∗
JϕTπϕ (g2)Vϕ

= V ∗
ϕ Jϕ πϕ (g1)Tπϕ (g2)Vϕ

= V ∗
ϕ Tπϕ (g1g2)Vϕ = ϕT (g1g2)
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and

ϕT (α (g1g2)) = V ∗
ϕ Tπϕ (α (g1g2))Vϕ = V ∗

ϕ TJϕ πϕ (g1g2)Vϕ

= V ∗
ϕ JϕTπϕ (g1g2)Vϕ = V ∗

ϕ Tπϕ (g1g2)Vϕ = ϕT (g1g2)

for all g1,g2 ∈ G , we deduce that ϕT (α (g1)α (g2)) = ϕT (α (g1g2)) = ϕT (g1g2) for
all g1,g2 ∈ G .

Let g1, ...,gn ∈ G and ξ1, ...,ξn ∈ H . Then〈[
ϕT

(
α

(
g−1

i

)
g j

)]n
i, j=1 (ξk)

n
k=1 ,(ξk)

n
k=1

〉
=

n
∑

i, j=1

〈
ϕT

(
α

(
g−1

i

)
g j

)
ξ j,ξi

〉
=

n
∑

i, j=1

〈
V ∗

ϕ Tπϕ
(
α

(
g−1

i

)
g j

)
Vϕξ j,ξi

〉
=

n
∑

i, j=1

〈
Tπϕ (g j)Vϕξ j,πϕ

(
α

(
g−1

i

))∗
Vϕξi

〉
=

n
∑

i, j=1

〈
Tπϕ (g j)Vϕξ j,Jϕ πϕ (α (gi))JϕVϕξi

〉
=

n
∑

i, j=1

〈
Tπϕ (g j)Vϕξ j,Jϕ πϕ (α (gi))Vϕξi

〉
=

〈
T

n
∑
j=1

πϕ (g j)Vϕξ j,
n
∑
i=1

πϕ (gi)Vϕξi

〉
� 0

and 〈[
ϕT (gi)∗ ϕT (g j)

]n
i, j=1 (ξk)

n
k=1 ,(ξk)

n
k=1

〉
=

n
∑

i, j=1

〈
V ∗

ϕ Tπϕ (g j)Vϕξ j,V ∗
ϕ Tπϕ (gi)Vϕξi

〉
=

〈
T ∗VϕV ∗

ϕ T
n
∑
j=1

πϕ (g j)Vϕξ j,
n
∑
i=1

πϕ (gi)Vϕξi

〉

�
∥∥Vϕ

∥∥2 ‖T‖
n
∑

i, j=1

〈
V ∗

ϕ Jϕ πϕ
(
g−1

i

)
JϕTπϕ (g j)Vϕξ j,ξi

〉
=

∥∥Vϕ
∥∥2 ‖T‖

n
∑

i, j=1

〈
V ∗

ϕ Tπϕ
(
g−1

i

)
πϕ (α (g j))Vϕξ j,ξi

〉
=

∥∥Vϕ
∥∥2 ‖T‖

n
∑

i, j=1

〈
V ∗

ϕ Tπϕ
(
g−1

i α (g j)
)
Vϕξ j,ξi

〉
=

∥∥Vϕ
∥∥2 ‖T‖

n
∑

i, j=1

〈
ϕT

(
g−1

i α (g j)
)

ξ j,ξi
〉

=
∥∥Vϕ

∥∥2 ‖T‖
n
∑

i, j=1

〈
ϕT

(
α

(
g−1

i

)
g j

)
ξ j,ξi

〉
=

∥∥Vϕ
∥∥2 ‖T‖

〈[
ϕT

(
α

(
g−1

i

)
g j

)]n
i, j=1 (ξk)

n
k=1 ,(ξk)

n
k=1

〉
.
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From these relations, we deduce that ϕT verifies the conditions (2) and (3) from
Definition 2.1.

Let g ∈ G . From〈[
ϕT

(
α (ggi)−1 gg j

)]n

i, j=1
(ξk)

n
k=1 ,(ξk)

n
k=1

〉
=

n
∑

i, j=1

〈
V ∗

ϕ Tπϕ

(
α (ggi)−1

)
πϕ (gg j)Vϕξ j,ξi

〉
=

n
∑

i, j=1

〈
Tπϕ (gg j)Vϕξ j,Jϕπϕ (α (ggi))JϕVϕξi

〉
=

n
∑

i, j=1

〈
Tπϕ (g)πϕ (g j)Vϕξ j,πϕ (ggi)Vϕξi

〉
=

〈
πϕ (g)∗ πϕ (g)

n
∑
j=1

|T |πϕ (g j)Vϕξ j,
n
∑
i=1

|T |πϕ (gi)Vϕξi

〉

�
∥∥πϕ (g)

∥∥2

〈
T

n
∑
j=1

πϕ (g j)Vϕξ j,
n
∑
i=1

πϕ (gi)Vϕξi

〉
=

∥∥πϕ (g)
∥∥2

〈[
ϕT

(
α

(
g−1

i

)
g j

)]n
i, j=1 (ξk)

n
k=1 ,(ξk)

n
k=1

〉
for all g1, ...,gn ∈ G and ξ1, ...,ξn ∈ H , we deduce that ϕT verifies the condition (4)
from Definition 2.1. �

Let ϕ ,ψ be two α -completely positive maps. We say that ψ � ϕ if ϕ −ψ
is an α -completely positive map, and ψ is uniformly dominated by ϕ , denoted by
ψ �u ϕ , if there is λ > 0 such that ψ � λ ϕ . The α -completely positive maps ϕ ,ψ
are uniformly equivalent, ψ ≡u ϕ , if ψ �u ϕ and ϕ �u ψ .

PROPOSITION 3.2. Let ϕ ,ψ be two α -completely positive maps from G to L(H ) .
If ψ �u ϕ , then there is T ∈ πϕ (G)′ ⊆ L

(
Hϕ

)
, T � 0 and TJϕ = JϕT such that

ψ = ϕT . Moreover, T is unique.

Proof. Let
(
πψ ,

(
Hψ ,Jψ

)
,Vφ

)
be the minimal Stinespring construction associ-

ated to ψ . From 〈
∑n

i=1 πψ (gi)Vψξi,∑n
i=1 πψ (gi)Vψξi

〉
= ∑n

i, j=1

〈
V ∗

ψπψ (g j)∗ πψ (gi)Vψξi,ξ j
〉

= ∑n
i, j=1

〈
V ∗

ψπψ

(
α

(
g−1

j

)
gi

)
Vψξi,ξ j

〉
=

〈[
ψ

(
α

(
g−1

j

)
gi

)]n

i, j=1
(ξk)

n
k=1 ,(ξk)

n
k=1

〉
� λ

〈[
ϕ

(
α

(
g−1

j

)
gi

)]n

i, j=1
(ξk)

n
k=1 ,(ξk)

n
k=1

〉
= λ

〈
∑n

i=1 πϕ (gi)Vϕξi,∑n
i=1 πϕ (gi)Vϕξi

〉
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we deduce that there is a bounded linear operator S : Hϕ →Hψ such that S
(
πϕ (g)Vϕξ

)
= πψ (g)Vψξ . Clearly, Sπϕ (g) = πψ (g)S for all g ∈ G , and SVϕ = Vψ . Moreover,
SJϕ = JψS , since

SJϕ
(
πϕ (g)Vϕξ

)
= S

(
πϕ (α (g))Vϕξ

)
= πψ (α (g))Vψξ

= Jψ πψ (g)Vψξ = JψS
(
πϕ (g)Vϕξ

)
for all g ∈ G and for all ξ ∈ H .

Let T = S∗S . Then TJϕ = JϕT and Tπϕ (g) = πϕ (g)T for all g ∈ G . More-
over,

ϕT (g) = V ∗
ϕ Tπϕ (g)Vϕ = V ∗

ϕ S∗πψ (g)SVϕ = V ∗
ψπψ (g)Vψ = ψ (g)

for all g ∈ G .
Suppose that there is another T1 ∈ πϕ (G)′ ⊆ L

(
Hϕ

)
, T1 � 0 and T1Jϕ = JϕT1

such that ψ = ϕT1 . Then〈
(T −T1)

(
πϕ (g)Vϕξ

)
,πϕ

(
g′

)
Vϕη

〉
=

〈
V ∗

ϕ Jϕπϕ
(
g′−1)Jϕ (T −T1)

(
πϕ (g)Vϕξ

)
,η

〉
=

〈
V ∗

ϕ (T −T1)Jϕπϕ
(
g′−1)(

πϕ (α (g))Vϕξ
)
,η

〉
=

〈
V ∗

ϕ (T −T1)πϕ
(
α

(
g′−1)g

)
Vϕξ ,η

〉
=

〈
ϕT

(
α

(
g′−1)g

)
ξ −ϕT1

(
α

(
g′−1)g

)
ξ ,η

〉
= 0

for all g,g′ ∈ G , and for all ξ ,η ∈ H , and since
[
πϕ (G)VϕH

]
= Hϕ , we have

T = T1 . �
From the proof of Proposition 3.1, we obtain the following corollary.

COROLLARY 3.3. If ϕ ,ψ are two α -completely positive maps from G to L(H )
and ψ � ϕ , then there is a unique positive operator T in πϕ (G)′ ⊆ L

(
Hϕ

)
such that

T � idHϕ , TJϕ = JϕT and ψ = ϕT .

Let ϕ ,ψ be two α -completely positive maps from G to L(H ) such that ψ �u ϕ .
A positive operator T ∈ πϕ (G)′ ⊆ L

(
Hϕ

)
with TJϕ = JϕT and such that ψ = ϕT ,

denoted by Δϕ (ψ) , is called the Radon-Nikodym derivative of ψ with respect to ϕ .

REMARK 3.4. If ψ �u ϕ , then the minimal Stinespring construction associated
to ψ can be recovered by the minimal Stinespring construction associated to ϕ .

Let PkerΔϕ (ψ) and PHϕ�kerΔϕ (ψ) be the orthogonal projections on kerΔϕ (ψ) , re-

spectively Hϕ � kerΔϕ (ψ) . Since Δϕ (ψ) ∈ πϕ (G)′ ⊆ L
(
Hϕ

)
and Δϕ (ψ)Jϕ =

JϕΔϕ (ψ) , PkerΔϕ(ψ), PHϕ�kerΔϕ(ψ) ∈πϕ (G)′ ⊆ L
(
Hϕ

)
,PkerΔϕ (ψ)Jϕ = JϕPkerΔϕ (ψ)

and PHϕ�kerΔϕ (ψ)Jϕ = JϕPHϕ�kerΔϕ (ψ) . Then
(
Hϕ �kerΔϕ (ψ) ,Jϕ |Hϕ�kerΔϕ (ψ)

)
is a Krein space and it is easy to check that(

πϕ |Hϕ�kerΔϕ (ψ)

(
Hϕ �kerΔϕ (ψ) ,Jϕ |Hϕ�kerΔϕ(ψ)

)
,PHϕ�kerΔϕ (ψ)Δϕ (ψ)

1
2 Vϕ

)
is unitarily equivalent to the minimal Stinespring construction associated to ψ .
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PROPOSITION 3.5. Let ϕ ,ψ ∈ α −CP(G,H ) . If ϕ ≡u ψ , then the Stinespring
construction associated to ϕ is unitarily equivalent to the Stinespring construction
associated to ϕ .

Proof. If ϕ ≡u ψ , then ψ �u ϕ and ϕ �u ψ , and by Proposition 3.2, there are
two bounded linear operators S1 : Hϕ → Hψ such that S1

(
πϕ (g)Vϕξ

)
= πψ (g)Vψξ

and S2 : Hψ → Hϕ such that S2
(
πψ (g)Vψξ

)
= πϕ (g)Vϕξ . From S2S1

(
πϕ (g)Vϕξ

)
= πϕ (g)Vϕξ , S1S2

(
πψ (g)Vψξ

)
= πψ (g)Vψξ , and taking into account that[

πϕ (G)VϕH
]

= Hϕ and
[
πψ (G)VψH

]
= Hψ , we deduce that S1 is invertible.

Then Δϕ (ψ) = S∗1S1 is invertible, and so there is a unitary operator U : Hϕ → Hψ

such that S1 = UΔϕ (ψ)
1
2 . It is easy to check that UJϕ = JψU,UVϕ = Vψ and

Uπϕ(g) = πψ (g)U for all g ∈ G. �

THEOREM 3.6. Let ϕ be an α -completely positive map from G to L(H ) . Then
the map ψ 
→ Δϕ (ψ) is an affine bijective map from {ψ ∈ α −CP(G,H );ψ �u

ϕ} onto {T ∈ πϕ (G)′ ⊆ L(Hϕ );TJϕ = JϕT,T � 0} which preserves the pre-order
relation.

Proof. By Propositions 3.1 and 3.2, the map ψ 
→ Δϕ (ψ) is well defined and
bijective, its inverse is given by T 
→ ϕT . Let t ∈ [0,1],ψ1 �u ϕ and ψ2 �u ϕ . Then
tψ1 +(1− t)ψ2 �u ϕ and so

ϕΔϕ (tψ1+(1−t)ψ2) (g) = tψ1 (g)+ (1− t)ψ2 (g) = tϕΔϕ (ψ1) (g)+ (1− t)ϕΔϕ(ψ2) (g)

= V ∗
ϕ

(
tΔϕ (ψ1)+ (1− t)Δϕ (ψ2)

)
πϕ (g)Vϕ

for all g∈G , whence we deduce that Δϕ (tψ1 +(1− t)ψ2)= tΔϕ (ψ1)+(1−t)Δϕ (ψ2) .
Therefore, the map ψ 
→ Δϕ (ψ) is affine.

Let ψ1 �u ψ2 �u ϕ . Then there is λ � 0 such that λ ψ2 −ψ1 is α -completely
positive. From

0 �
〈[

(λ ψ2−ψ1)
(

α (gi)
−1 g j

)]n

i, j=1
(ξi)

n
i=1 ,(ξi)

n
i=1

〉
= λ

n
∑

i, j=1

〈
ϕΔϕ (ψ2)

(
α (gi)

−1 g j

)
ξ j,ξi

〉
−

n
∑

i, j=1

〈
ϕΔϕ (ψ1)

(
α (gi)

−1 g j

)
ξ j,ξi

〉
=

n
∑

i, j=1

〈
V ∗

ϕ
(
λ Δϕ (ψ2)−Δϕ (ψ1)

)
πϕ

(
α (gi)

−1 g j

)
Vϕξ j,ξi

〉
=

n
∑

i, j=1

〈(
λ Δϕ (ψ2)−Δϕ (ψ1)

)
πϕ (g j)Vϕξ j,πϕ

(
α (gi)

−1
)∗

Vϕξi

〉
=

n
∑

i, j=1

〈(
λ Δϕ (ψ2)−Δϕ (ψ1)

)
πϕ (g j)Vϕξ j,Jϕ πϕ (α (gi))JϕVϕξi

〉
=

n
∑

i, j=1

〈(
λ Δϕ (ψ2)−Δϕ (ψ1)

)
πϕ (g j)Vϕξ j,πϕ (gi)Vϕξi

〉
=

〈(
λ Δϕ (ψ2)−Δϕ (ψ1)

) n
∑
j=1

πϕ (g j)Vϕξ j,
n
∑
i=1

πϕ (gi)Vϕξi

〉
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for all g1, ...,gn ∈G , for all ξ1, ...,ξn ∈H , and taking into account that
[
πϕ (G)VϕH

]
= Hϕ , we conclude that λ Δϕ (ψ2)−Δϕ (ψ1) � 0. Therefore the map ψ 
→ Δϕ (ψ)
preserves the pre-order relation. �

COROLLARY 3.7. The map ψ 
→ Δϕ (ψ) is an affine bijective map from {ψ ∈
α −CP(G,H );ψ � ϕ} onto {T ∈ πϕ (G)′ ⊆ L(Hϕ );TJϕ = JϕT,0 � T � idHϕ}
which preserves the order relation.

Let G be a discrete group. If π is a bounded J -unitary representation of G on
(H ,J ) , then the map π̃ : F (G) → L(H ) given by

π̃
(

n
∑
i=1

λiδgi

)
=

n
∑
i=1

λiπ (gi)

extends to a bounded J - representation of C∗(G) . Moreover, the map π 
→ π̃ is a
bijective correspondence between the collection of bounded unitary representations on
Krein spaces and the collection of bounded representations of C∗(G) on Krein spaces.

Let G be a discrete group and ϕ ∈ α −CP(G,H ) . Then α extends to a linear
hermitian involution α̃ on C∗(G), α̃ ( f ) = f ◦α for all f ∈ F (G) . If ϕ is bounded,

then the map Φ : F (G) → L(H ) given by Φ
(

n
∑

k=1
λkδgk

)
=

n
∑

k=1
λkϕ (gk) extends to

a linear hermitian bounded α̃ -completely positive ϕ̃ : C∗(G) → L(H ) (see [2, Theo-
rem 2.5]). We denote by α −bCP(G,H ) the collection of all bounded α -completely
positive maps from G to L(H ).

REMARK 3.8. Let ϕ ∈ α − bCP(G,H ) . If (πϕ ,(Hϕ ,Jϕ),Vϕ) is the minimal
Stinespring construction associated to ϕ , then it is easy to check that (π̃ϕ ,(Hϕ ,Jϕ ),Vϕ)
is unitarily equivalent to the minimal Stinespring construction associated to ϕ̃ ([4, The-
orems 4.4 and 4.6]).

THEOREM 3.9. Let G be a discrete group. Then the map ϕ 
→ ϕ̃ is an affine
bijective map from α −bCP(G,H ) to α −bCP(C∗(G),H ) which preserves the order
(pre-order) relation. Moreover, if ψ �u ϕ then Δϕ (ψ) = Δϕ̃ (ψ̃) .

Proof. It is clear that the map ϕ 
→ ϕ̃ from α−bCP(G,H ) to α−bCP(C∗(G),H )
is well defined and injective. Let φ ∈ α − bCP(C∗(G),H ) . Then the map ϕ : G →
L(H ) given ϕ (g) = φ (δg) is a bounded α -completely positive. Moreover, ϕ̃ = φ ,
and so the map ϕ 
→ ϕ̃ is surjective.

Clearly, ϕ̃1 + ϕ2 = ϕ̃1 + ϕ̃2 and λ̃ ϕ = λ ϕ̃ for all ϕ1,ϕ2,ϕ ∈ α − bCP(G,H )
and for all positive numbers λ . Let ϕ ,ψ ∈ α − bCP(G,H ) with ψ � ϕ and(
πϕ ,

(
Hϕ ,Jϕ

)
,Vϕ

)
the minimal Stinespring construction associated to ϕ . Then ψ̃ ( f )

= V ∗
ϕ Δϕ (ψ) π̃ϕ ( f )Vϕ for all f ∈ C∗(G) . Since the minimal Stinespring construction

associated to ϕ̃ is unitarily equivalent to (π̃ϕ ,(Hϕ ,Jϕ),Vϕ ) , and taking into account
that Δϕ (ψ) ∈ π̃ϕ (G)′ ⊆ L(Hϕ ), Δϕ (ψ)Jϕ = Jϕ Δϕ (ψ) and 0 � Δϕ (ψ) � idHϕ ,
we conclude that ψ̃ � ϕ̃ and Δϕ (ψ) = Δϕ̃ (ψ̃) . �
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RE F ER EN C ES
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