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SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS
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(Communicated by C.-K. Li)

Abstract. In this note, we use the convexity of the function @(v) to sharpen the matrix version
of the Heinz means, where ¢(v) is defined as @(v) = [A"XB'~™" +A'""XB"|| on [0,1] for
A,B,X € M,, such that A and B are positive semidefinite, and also give a refinement of the
inequality [Theorem 6, SIAM J. Matrix Anal. Appl. 20 (1998), 466-470] which is due to Zhan.

1. Introduction

Throughout, let M,,, B(H), C. be the set of n x n complex matrices, the set of
all bounded linear operators on a complex separable Hilbert space H and the class of
compact operators, respectively. For a compact operator A € C., let s1(A) > 52(A) >
-++ > 0 be the singular values of A, i.e., the eigenvalues of the positive operator |A| =
(A*A)% , arranged in a decreasing order and repeated according to multiplicity. || ||
denotes a unitarily invariant norm defined on a two-sided ideal K| that is included
in C.., which has the basic property |[UAV|| = ||A| for every A € K| and all unitary
operators U,V € B(H). Especially well known among unitarily invariant norms are

1
the Schatten p-norms defined as [|A][, = (¥ s”(A))7, for p > 1. The Ky-Fan norms
i=1

k
defined as [|A[[x) = X si(A), k = 1,2,---c0, represent another interesting family of
i=1

unitarily invariant norms. Properties of such norms may be found in ([1], [7], [10],
[14], [15]).
As is well known, the Heinz means of two nonnegative real numbers a and b are
defined as | |
Vb -V 7va
Hv (a7b) — %7
2
forO<v<l.
It is easy to see that the following inequalities hold:

a+b
Vab < Hy(a,b) < 5=, (1)
forO<v<l.
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The matrix version of (1) due to Bhatia and Davis [2] is the following inequalities,
2|A2XB?|| < |A"XB'™ + A'"XB"|| < ||AX + XB], 2)

where 0 <v< 1, A, B, X € M, suchthat A and B are positive semidefinite. Usually,
\ 1—v 1—v
M are called the Heinz means of A and B.

For A B, X € M, such that A and B are positive semidefinite, putting
p(v) =||A"XB"V + A" XB"|,

then the function @(v) is a continuous convex function on [0,1], attains its minimum
at v = %, and attains its maximum at v =0 or v = 1. Thus it is decreasing on [0, %}
and increasing on [2, 1]. Moreover, ¢(v) = ¢(1 —v), for 0 <v < 1. One may find the
mentioned properties of the function ¢(v) in ([2], [3], [8], [9]).

In [6], when || - || is operator norm, Corach-Porta-Recht proved the following,

so-called C-P-R inequality,
1SXS~+8571XxS| > 2|1X], 3)

for any invertible self-adjoint operator S and X € K|| .

They proved this inequality by using the integral representation of a self-adjoint
operator with respect to a spectral measure.

An immediate consequence of the C-P-R inequality is the following,

ISXT~ 1+ s71xT| > 2| X, 4)

for invertible self-adjoint operators S, T and X € K||.|. (3) and (4) also hold for other
unitarily invariant norms.

n [16], by introducing two parameters r and ¢, Zhan proved that the following
inequality

(2+1)||[A’XB* "+ A>"XB'|| < 2|A’X +1AXB + XB’| (5)

holds for any unitarily invariant norm || - ||, where A, B, X € M,, such that A and B
are positive semidefinite matrices and (t,r) € (—2,2] x [4,3].

In this note, we use the convexity of the function @(v) = ||[A"XB'~" + A="XB||
on [0, 1] to sharpen the inequalities (2), and then give a refinement of the inequality (5).

2. Main results

The following Lemma [13], plays an important role in our discussion.

LEMMA 1. Let g(x) be a real valued function which is convex on the interval

[a,b]. If p,g=0,and 0 <y < —mln(pq) then
1t 1 rg(a) +qg(b)
C) < —/ 1)dt < =(g(C—y)+g(C+ P A8 6
8(C) 2 ey g(1)dt < 5(8(C—y) +5(C+y)) < ot g (6)
where C = £atdb

ptq -
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It is worth to mention that the inequalities (6) is the Hermite-Hadamard’s inequal-
ities when p=¢g=1,and y= b%“

THEOREM 1. Let A, B and X € M, such that A and B are positive semidefinite.
For every unitarily invariant norm || - ||, then

(a)
|AMXB'H + AVTHXBH|

0 0 ) )
< ||AS XB'"CG 4 AT X B |

N

1 pciy
o /m (J|AYX B~V + A"V X B"||)dv
Yy Cp -y

N

%(HAC‘(‘I)_yXBl_CS)” 4 Al-G oy pal )

G xpI-a -y 4 al-Gl oy pa )

N

% IAX + XB]| + % IARX B H £ AL-HXBH||
P+q P+q

N

|AX +XB|| (7

holds for 0 < u < %, where p, g >0, CLl) = ;_f:q and 0 <y < ﬁmin(p,q);
(b)

|AMXB!H + AVTHXBH|

2) (2) (2) (2)

< ||AS XB'" G 4 AT X B |

1 CLZ)H v 1—v 1—v v
—/(2) (IAXB'~ + A'"XB"||)dv
Zy Cp -y

N

N

% (JAG" xBI-G+ 4 Al-GP oy paT )

LAGT xBG -  Al-Gl oy pa )
P
p+q
|AX +XB|| (8)

N

|AHXB'"H 4 ATHXBH|| + % |AX +XB||
ptq

N

2 1— .
holds for % <u <1, where p, g>0, CL ) = ’717”—:;1 and 0 <y < p—#mln(p,q).
Proof. We consider the case u € (0, %} at first.

Applying Lemma 1 to the function @(v) = |[[A"XB'~ +A!="XB"|| on the interval
[0, ], we have

) 1[G Lorct) (1
o) < 5= [ " owdr <5 (o(c —n+o(c+)
y Cy -y

< pe(0)+qp(u)

) 9
g €))
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1 .
where C,S) = [f—f; and 0 <y < #mm(p,q).
Thus

||AC%(11)XBI’C/(1U +a-ax o [

1 CL1)+y v 1—v 1—v v
< 2_y/c<1> (IAXB'™ + A" X B||)dv
Yy

< %(IIAC*('I)*YXB“CS)” + A6 xpal |

LAG xp-G 4 gl g pal )
< P ax + xB| + —% || AFXB!F £ ATHXBH||.  (10)
p+a pta

Noting that the function @(v) = [[A"XB'~"+A!""XB"| is decreasing on [0, 1]
and increasing on [%, 1], then by (10), we get the desired inequalities (7).

Likewise, if u € (%, 1), applying Lemma 1 to the function @(v) = |[A’XB'~V +
A'"VXB"|| on the interval [u, 1], then we obtain the inequalities (8).

The proof is completed. []

REMARK 1. Putting p=¢ =1, and y = 4 when 0 < u < 1, y= 5% when

% < u < 1,itis easy to see that Theorem 1 is just the result of Corollary 2 in [11]. Thus
Corollary 2 in [11] is a special case of Theorem 1.

REMARK 2. Theorem 1 is a refinement of the sencond inequality in (2).

Similarly, applying Lemma 1 to the function ¢@(v) = [|[A"XB'~V +A!""XB"|| on
[u,1—pu] when p €[0,3), and on [1 — 1] when p € (3, 1], respectively, we have
the refinement of the first inequality in (2).

THEOREM 2. Let A, B and X € M,, such that A and B are positive semidefinite.
For every unitarily invariant norm || - ||, then

3) (3) (3) (3)
2|A2XB2| < [|AS% XB'"Gi 4+ A"Cu xBCu |

1
2y

N

a4y 1 1
/ o (JAXB A X B )
Cy'—y

(A rx BG4y 4 g6y g |

N

1
2
L AG xBlG AT oy pa )

|AMXB'H + AT HXBH|| (11)

N

holds for w € [0,1] — {1}, where p, q >0, C,(f) = %(Iq_”) and 0 <y <
[1—2u]

Wmin(%fl)-
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COROLLARY 1. Let A and B be positive semidefinite matrices. For every unitar-
ily invariant norm || - ||, then

(3)
2||AB|| < HAC +igi-ci +ATC 'pi+ci [

(3)
1 G+
> /(;; (HA%J’VB%_V—|—A%_VB%+VH)dv
y

N

c® c®

+y+A2

N

(||A2+C 7sz +sz+C 7yH

+||A7+Cu +szfcu)*y_|-A%*CH3 7yB%+CH3 +y||)

|AZTHBIH | AT HBIH|

N

N

1
SIAa+B)? (12)

holds for p € [0,1] — {3}, where p, q >0, Cl(f) = %(Iq_”) and 0 <y <
[1-24]

g Min(p,q).
Proof. Taking X = AZB? in (11), combining (2) with the following inequality
1 1 1 2
A% (4+B)BH| < Sl (A+ B,

then, we can obtain the inequalities (12).
The proof is completed. [

REMARK 3. Obviously, (12) is a refinement of the following inequality
1 2
[4B] < 51+ B3]l

which is due to Bhatia and Kittaneh [4], where A, B € M,, are positive semidefinite
matrices.

Next, we give the refinement of the inequality (5).

THEOREM 3. Let A, B and X € M,, such that A and B are positive matrices

and (t,r) € (—2,2] x (%,3). For every unitarily invariant norm || - |, the following
inequalities hold,
(a) for r € (%7 1]
2)A%X + XB2+tAXBH
(HA2X+XB2+2AXBH) - (4—2t)||AXBH
> —||A2XBZ+A2XB2||+ ||A’XB2 "+ ATTXB|| — (4 —20)||AXB]|
p+

1)

Z(HACH rtixpiGilt +A7‘CH "y gl Eandl



1186 J. WU AND J. ZHAO

(1) (1) (1) (1)
L ||AGe Hrax BG4 A3 -G yX B 3 |) — (4 — 21)||AX B
(1)
2 rCuty
> —/(f; (JA 2XB~" + A3 " XB"*1||)dv — (4 — 21)| AXB||
v Jc

(1) (1) (1) (1)
> 4| AS +tixBICh 4 ACu XBCu t1|| — (4—21)||AXB]|
> 4|ATXB>"+A*TTXB|| — (4 —21)||AXB]|

> (1+2)|A'XB> T+ AYXB|), (13)

1 .
where [.L:r—%, p, g>0, CL(l) = ;—fq and 0 <y < ﬁmm(p,q);
(b)for re1,3)

2||A’X + XB*+tAXB|
2(|A%X + X B>+ 2AXB])) — (4~ 20)||AXB]|
4q
p+aq
Z(HAC*(‘Z)_”%XB%‘CE)” 4 APy ol —vd |
)

WV

WV

4
IAXB? +A2XB3 ||+ Tp |A"X B>+ A* "X B'|| - (4 —21)||AXB]|
p+a

WV

4AGT xR -Gy A3 -G) oy x G| ) — (4— ) |AXB]|

2 CLZ)"'Y 1.3 3 1
= /( (IA2XB3 ™ + A3 "X B 3||)dv — (4 — 21)|AXB]|
-y

yJcp)

WV

2)

2) ( (2) (2)
> 4)|A% TIXBI i 4 A3 G XBCu T3] — (4 21)||AXB]|
> 4|A’XB>"+A*TTXB|| — (4—20)||AXB]|
> (14+2)|A’XB> "+ A>XB |, (14)
where L =r— %, p, q>0, Cﬁ(lz) = pp“—qu and 0 <y < ﬁmin(p,q).

Proof. Putting u = r — %, then g € (0,1). We consider the case u € (0, %] at

first. Using the refinements of the Heinz means (7), we have
1 1 1 1
[A2XB™2 + A 2XB2||
4 Lo 1 L1 q Sl 1_ _1
> ——||A2XB 24+ A 2XB?||+ ——||[AF T2 XB2TH + A2THXBE 2|
pP+q pP+q

> %(HAC*(‘U_%%XB%‘CE)” +A%—Cﬁl)+yXBszl)—y—% |
HAG b xpi—a 4 ad=al oy pal o)

1 Ci(il)ﬂ’ 1 1 1 1
2—/(1) (JA""2XB2""+A27"XB" 2||)dv
y Cy -y

WV

_1

||ACL1)*%XB%*C;(}) At xpa’ 4 I

|A%3XB3 M 4 AZTHXBE 3. (15)

AR\
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Since the following equality holds
AXB'+AT'XB+2X =A2(AZXB I +A"2XB2)B I +A 2 (ATXB"? + A IXB?)B2,

utilizing the generalized version of C-P-R inequality (4) for unitarily invariant norms,
we obtain

IAXB™' +A~'XB+2X|| > 2|A2XB "2 + A" 2XB1||. (16)
On the other hand, due to
AXB' +ATIXB+2X =AXB ' + ATIXB 11X+ (2 - 1)X,
we have
|AXB™' +A7IXB +2X|| < [AXB '+ AT XB 41X || + (2 —1)|| X||. (17)

Again, from the generalized version of C-P-R inequality (4) for unitarily invariant
norms, it is easy to see that if s € R,

|ASXB™ + AT XB*|| = 2| X|.
Noting that t —2 < 0, thus
(t—=2)||A°XB~*+AT°XB’|| <2(t —2)||X],
which is equivalent to
4|AXB +ATXB|| -4 X || +2t||X|| = (t +2)||A°XB~* + AT°XB’||. (18)
Combining (15), (16), (17) with (18), we can deduce

2|AXB™" + AT'XB+1X|
2|AXB~' + ATIXB 42X || — (4 —21)| X
4|A3XB™3 +AIXB?|| - (4—21)|X||

VoV

WV

4
P _|A2xB~% +A"IXBY||
+q

4
w9 ARm X BER AT THXBHE | — (4— 20)|IX]|
ptq

(1)

(HAC(U_y_%XB%_C +y+A%_C(1)+yXBC(U_y_%||

\\/

+||AC o dyphoa oy 3Gy i ) — (4—20)||X]|

WV

2 Ci(tl) +y 1 1 1 1
- /(1) (A 3XBE Y+ AT VX B3 )dv — (4 — 21)||X |
y Cy -y

(1) (1) (1)
aac 3 xpr -G 4 a3-a xBA Y — (4 —2) x|

WV
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> 4|ARTIXBE R f ATTHXBE || — (4 20)|1X |
> (142)||AM IXBIH 4 ATRXBH-T ). (19)

Replacing X by AXB and i by r— % in (19), respectively, we have (13). Finally, (14)
is obtained analogously.
The proof is completed. [

REMARK 4. By continuity, the condition positive in Theorem 3 can be replaced
by positive semidefinite.

Taking r =1 in (13), we can get the following corollary.

COROLLARY 2. Let A, B and X € M,, such that A and B are positive semidefi-

2||A%2X + XB? +1AXB|
> 2(||A%X + XB* 4+ 2AXB|)) — (4 — 21)|AXB)||

4 8
> —P |AixBY + AXBY ||+ —L | AXB]|| — (4 —21)||AXB]|
P+q P+q

> 2(W4d®_y+5XB%‘CML“C+A%—CW+1XBC“LW+%H
H|AC i x p3=CY -y | A3-COyy g0 d ) _ (4 21) | AXB|
2 (94 1 3 3 1

> = [ UAAXEE AT XE v - (4~ 20)|AXB|
yJc®—y

> 4HAC(4)+%XB%7CW +A%,C(4)XBC(4)+% ” _ (4_21‘)“AXB”

> 2(t+2)[|AXB]|, 0,

where =2 <1t <2, p, ¢>0, C% = W and 0 <y < 2(p+q) min(p,q).

REMARK 5. Taking ¢t =0 in (20), it is just a refinement of the famous Arithmetic-
Geometric mean inequality

2(|AXB|| < [|[A’X + XB?|,
for A, B, X € M,, such that A and B are positive semidefinite.

It is worth to point out that techniques from [5] are used to sharpen the inequality

3.

REMARK 6. Putting p=¢ =1, and y = 4 when 0 < u < 1, y =15 when

2 < u < 1, respectively, then Theorem 3 is just the result of Theorem 2.1 in [5]. Thus
Theorem 2.1 in [5] is a special case of Theorem 3.

In [8], Hiai and Kosaki (Corollary 2.3) proved

AX+XBH

IA2XBY| < ||/ A'XB'"d1|| < H Q1)
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for A, B, X € M, such that A, B are positive semidefinite matrices and every unitarily
invariant norm || -||.
In [2], the following inequality (p. 164, Exercise 5.4.8)

1 1
§||AVXBI’V+A1’VXBV|| < H/ A'XB'dr|, (22)
0

holds for % <v< % and every unitarily invariant norm || - ||, where A, B, X € M,, such
that A, B are positive semidefinite matrices.
It follows from (2), (21), and (22)

AX +XB

> , (23)

1 1
1A3XB?| < SIAXB A XB| < ||/ A'XBdr| < H
0

where%évgf—‘.

THEOREM 4. Let A and B be positive semidefinite matrices. Then for every uni-

A+B
IAB|| < HAZ*VBTV—FAZ VBz+VH<||/ A < || (5= ha ) |
< ZHA2+BZ—1—2AB||, (24)

holds for % v <

ENION)

Proof. Putting X = AZB? in (23), we have
1
HABH<_HA2+V32 vy AT VB%+VH<||/ AFTBI |, (25)
0

n [17], Zou and He got (Theorem 2.1, its equivalent form)

A+B
I attan < | (457)] @)
for every unitarily invariant norm || - || and positive semidefinite matrices A and B.
On the other hand, in [12], for every unitarily invariant norm || - ||, Matharu and
Aujla obtained
|(A+B)(A+B)*|| < |[AA™ + BB* +2AB"||, (27)

where A, BeM,,.
Thus, the desired inequalities (24) follows from (25), (26) and (27).
The proof is completed. [

REMARK 7. (24) is a refinement of the following inequality
4||AB| < ||[A*+ B>+ 2AB||,

which is due to (5) when X = I (the identity matrix), r =1, and ¢ =2
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