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DERIVABLE MAPS AND GENERALIZED DERIVATIONS

ZHIDONG PAN

Abstract. Let A be a unital algebra, M be an A -bimodule, L(A ,M ) be the set of all linear
maps from A to M , and RA be a relation on A . A map δ ∈ L(A ,M ) is called derivable on
RA if δ (AB) = δ (A)B+Aδ (B) for all (A,B)∈RA . One purpose of this paper is to propose the
study of derivable maps on a new, but natural, relation RA . Moreover, we give a characterization
of generalized derivations on Mn(C) , the n× n matrix algebra over the complex numbers;
specifically, a linear map δ on Mn(C) is a generalized derivation iff there exists an M ∈Mn(C)
such that δ (AB) = δ (A)B+ Aδ (B), for all A,B ∈ Mn(C) satisfying AMB = 0; in this case
δ (I) = cM, for some c ∈ C .
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