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DERIVABLE MAPS AND GENERALIZED DERIVATIONS

ZHIDONG PAN

(Communicated by M. Omladič)

Abstract. Let A be a unital algebra, M be an A -bimodule, L(A ,M ) be the set of all linear
maps from A to M , and RA be a relation on A . A map δ ∈ L(A ,M ) is called derivable on
RA if δ (AB) = δ (A)B+Aδ (B) for all (A,B)∈RA . One purpose of this paper is to propose the
study of derivable maps on a new, but natural, relation RA . Moreover, we give a characterization
of generalized derivations on Mn(C) , the n× n matrix algebra over the complex numbers;
specifically, a linear map δ on Mn(C) is a generalized derivation iff there exists an M ∈Mn(C)
such that δ (AB) = δ (A)B+ Aδ (B), for all A,B ∈ Mn(C) satisfying AMB = 0; in this case
δ (I) = cM, for some c ∈ C .

1. Introduction

Let A be a unital algebra, M be an A -bimodule, and L(A ,M ) be the set
of all linear maps from A to M . A map δ ∈ L(A ,M ) is called a derivation if
for all A,B ∈ A , δ (AB) = δ (A)B +Aδ (B) . Let RA be a relation on A , i.e. RA

is a nonempty subset of A ×A . We say δ ∈ L(A ,M ) is derivable on RA if
δ (AB) = δ (A)B+Aδ (B) for all (A,B) ∈RA ; for convenience, such a δ will be called
a partial derivation . There have been many papers studying when a partial derivation
is a derivation. Jordan derivations have been extensively studied (see, e.g. [2], [4],
[6], [10], and [12]), these are partial derivations that are derivable on RA = {(A,B) ∈
A ×A : A = B}. Recently, many have considered partial derivations that are derivable
on RA = {(A,B) ∈ A ×A : AB = C} , for some fixed C ∈ A (see, e.g. [1], [3], [5],
[7–11], and 13–15]).

In general, partial derivations are not necessarily derivations. Examples of such
partial derivations include generalized derivations. Recall that a map δ ∈ L(A ,M ) is
called a generalized derivation if for all A,B∈A , δ (AB) = δ (A)B+Aδ (B)−Aδ (I)B ,
where I is the unit of A . For any M ∈ M , we define a right multiplier Mr from
A to M by Mr(A) = AM, ∀ A ∈ A and a left multiplier Ml from A to M by
Ml(A) = MA, ∀ A ∈ A . If δ ∈ L(A ,M ) and M = δ (I) , then one can easily check
that δ is a generalized derivation iff δ −Mr is a derivation iff δ −Ml is a derivation.
That is, generalized derivations can be viewed as a sum of a derivation and a right
(or left) multiplier. If δ ∈ L(A ,M ) is a generalized derivation, let M = δ (I) and
RA (M,0) = {(A,B) ∈ A ×A : AMB = 0}. Clearly, δ is derivable on RA (M,0) .
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Naturally, this raises the following question: For any M ∈ M , if δ ∈ L(A ,M ) is
derivable on RA (M,0) , is δ a generalized derivation? In this paper, we show this is
the case when A = M = Mn(C) , the n×n matrix algebra over the complex numbers.
In this case, for simplicity, we will use Mn for Mn(C) and for any M ∈ Mn let
R(M,0) = {(A,B) ∈ Mn×Mn : AMB = 0}.

2. Characterization of generalized derivations on Mn

The following is our main result.

THEOREM 2.1. If δ ∈ L(Mn,Mn), then δ is a generalized derivation iff there
exists an M ∈ Mn such that δ is derivable on R(M,0); in this case δ (I) = cM, for
some c ∈ C .

We begin with two simple reduction lemmas.

LEMMA 2.2. Suppose A is a unital algebra and M is an A -bimodule. Let Δ ∈
L(A ,M ) , M ∈ M , T ∈ A be invertible in A , and δ (A) = T−1Δ(TAT−1)T, ∀ A ∈
A . Then δ (I) = T−1Δ(I)T , and

(i) Δ is derivable on RA (M,0) iff δ is derivable on RA (T−1MT,0) .
(ii) Δ is a generalized derivation iff δ is a generalized derivation.

Proof. For any A,B ∈ A , let A1 = T−1AT and B1 = T−1BT . A routine calcula-
tion shows (A,B) ∈ RA (M,0) iff (A1,B1) ∈ RA (T−1MT,0) and

δ (A1B1)− δ (A1)B1−A1δ (B1) = T−1[Δ(AB)−Δ(A)B−AΔ(B)]T.

Thus (i) follows.
Similarly, (ii) follows from

δ (A1B1)−δ (A1)B1−A1δ (B1)+A1δ (I)B1 = T−1[Δ(AB)−Δ(A)B−AΔ(B)+AΔ(I)B]T.

�

LEMMA 2.3. If Δ ∈ L(Mn,Mn), n � 2 and Ei j are the matrix units of Mn , then
there exists a δ ∈L(Mn,Mn) such that δ −Δ is an inner derivation and Eiiδ (Ej j)Ej j =
0, for all i �= j .

Proof. Take K = ∑n
i=1 Δ(Eii)Eii and define δK ∈ L(Mn,Mn) by δK(A) = KA−

AK, ∀ A ∈ Mn . Let δ = Δ− δK , then ∀ j ,

δ (Ej j) = Δ(Ej j)− (KEj j −Ej jK) = Δ(Ej j)−Δ(Ej j)Ej j +Ej j

n

∑
i=1

Δ(Eii)Eii.

It follows that for any i �= j ,
Eiiδ (Ej j)Ej j = 0. (2.0)

�
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LEMMA 2.4. If δ ∈ L(Mn,Mn), n � 2 satisfies Equation (2.0) , J ∈Mn is a Jor-
dan matrix, and δ is derivable on R(J,0), then δ (Ekl)= Ekkδ (Ekl)(Ell +El+1l+1), ∀ l <
n and δ (Ekn) = Ekkδ (Ekn)Enn.

Proof. For any k < j or k � j + 2, then Ei jJEkl = 0. Since δ is derivable on
R(J,0) ,

0 = δ (Ei jEkl) = δ (Ei j)Ekl +Ei jδ (Ekl). (2.1)

In particular, δ (Ei j)Ekk +Ei jδ (Ekk) = 0, thus δ (Ei j)Ekk +Ei jδ (Ekk)Ekk = 0. Combin-
ing with (2.0) , we see δ (Ei j)Ekk = 0, which implies

δ (Ei j)Ekl = 0. (2.2)

By (2.1) and (2.2) ,
Ei jδ (Ekl) = 0. (2.3)

We will first prove
δ (Ekl) = Ekkδ (Ekl). (∗)

The conclusion of the lemma follows directly from (2.2) and (∗) . We will prove (∗)
by induction on k .

If k = 1 then by (2.3) ,

δ (E1l) = Iδ (E1l) = (
n

∑
i=1

Eii)δ (E1l) = E11δ (E1l).

Suppose k � 2 and

δ (Ek−1l) = Ek−1k−1δ (Ek−1l). (2.4)

By (2.3) ,
δ (Ekl) = (Ek−1k−1 +Ekk)δ (Ekl). (2.5)

Let J = (ai j) , there are two possible cases.
Case 1. ak−1k = 0
In this case, Ek−1k−1JEkl = 0. Since δ is derivable on R(J,0) ,

0 = δ (Ek−1k−1Ekl) = δ (Ek−1k−1)Ekl +Ek−1k−1δ (Ekl). (2.6)

In particular,
0 = δ (Ek−1k−1)Ekk +Ek−1k−1δ (Ekk). (2.7)

Multiplying Ekk from the right of (2.7) and applying (2.0) gives 0 = δ (Ek−1k−1)Ekk,
which implies δ (Ek−1k−1)Ekl = δ (Ek−1k−1)EkkEkl = 0. Plugging this in (2.6) , we get
Ek−1k−1δ (Ekl) = 0. Putting this in (2.5) gives (∗).

Case 2. ak−1k = 1
If akk = 0 then EkkJEkl = 0. Since δ is derivable on R(J,0) ,

δ (EkkEkl) = δ (Ekk)Ekl +Ekkδ (Ekl).
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Multiplying Ek−1k−1 from the left and applying (2.0) gives

Ek−1k−1δ (EkkEkl) = Ek−1k−1δ (Ekk)Ekl = Ek−1k−1δ (Ekk)EkkEkl = 0,

and putting this in (2.5) gives (∗) .
If akk �= 0, then ak−1k−1 = akk �= 0. Let a = ak−1k−1 then Ek−1k−1J(aEkl −

Ek−1l) = 0. Since δ is derivable on R(J,0) ,

δ [Ek−1k−1(aEkl −Ek−1l)] = δ (Ek−1k−1)(aEkl −Ek−1l)+Ek−1k−1δ (aEkl −Ek−1l).

Combining with (2.4) , we get

0 = δ (Ek−1k−1)(aEkl −Ek−1l)+aEk−1k−1δ (Ekl). (2.8)

In particular,
0 = δ (Ek−1k−1)(aEkk −Ek−1k)+aEk−1k−1δ (Ekk).

Multiplying Ekk from the right and applying (2.0) gives 0 = δ (Ek−1k−1)(aEkk−Ek−1k).
Thus δ (Ek−1k−1)(aEkl − Ek−1l) = δ (Ek−1k−1)(aEkk − Ek−1k)Ekl = 0. This, together
with (2.8) , gives Ek−1k−1δ (Ekl) = 0. Now, (∗) follows from (2.5) . �

LEMMA 2.5. If δ ∈ L(Mn,Mn), n � 2 satisfies (2.0) , J ∈ Mn is a Jordan ma-
trix, and δ is derivable on R(J,0), then δ (Ei j)Ej+1 j+1 = Ei jδ (Ej j)Ej+1 j+1, ∀ j < n.

Proof. Let J = (ai j) and fix a j < n .
If a j j+1 = 0 then Ei jJE j+1 j+1 = 0. Since δ is derivable on R(J,0) ,

0 = δ (Ei jE j+1 j+1) = δ (Ei j)Ej+1 j+1 +Ei jδ (Ej+1 j+1).

Applying Lemma 2.4, we get δ (Ei j)Ej+1 j+1 = 0, in particular, δ (Ej j)Ej+1 j+1 = 0 =
δ (Ei j)Ej+1 j+1 .

If a j j+1 = 1 then Ei jJ(a j jE j+1 j −Ej j) = 0. Since δ is derivable on R(J,0) , we
have δ [Ei j(a j jE j+1 j −Ej j)] = δ (Ei j)(a j jE j+1 j −Ej j)+Ei jδ (a j jE j+1 j −Ej j) . Apply-
ing Lemma 2.4, we get −δ (Ei j) = δ (Ei j)(a j jE j+1 j −Ej j)−Ei jδ (Ej j) . Multiplying
Ej+1 j+1 from the right yields the conclusion. �

LEMMA 2.6. If δ ∈ L(Mn,Mn), n � 2 satisfies (2.0) , J ∈ Mn is a Jordan ma-
trix, and δ is derivable on R(J,0), then for each i , δ (Eii) = ciEiiJ, for some ci ∈ C .

Proof. Any matrix T = (ti j) can be viewed as a linear operator on Cn with stan-
dard column vectors {e1, · · · ,en} as basis, that is, for any column vector x∈Cn , we can
define Tx = (ti j)x . The range and kernel of T will be denoted by ran(T ) and ker(T ) ,
respectively. Fix any i , then ran(EiiJ) ⊆ Cei . By Lemma 2.4, δ (Eii) = Eiiδ (Eii) , so
ran(δ (Eii))⊆Cei . Thus, EiiJ and δ (Eii) are operators of rank at most one, with range
contained in the same one-dimensional vector space.

If EiiJ = 0, then EiiJEk1 = 0, for all k = 1, · · · ,n. Since δ is derivable on R(J,0) ,

δ (EiiEk1) = δ (Eii)Ek1 +Eiiδ (Ek1) = δ (Eii)Ek1 +EiiEkkδ (Ek1).
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Thus 0 = δ (Eii)Ek1 and δ (Eii) = 0. In this case, δ (Eii) = cEiiJ, for any c ∈ C .
To complete the proof, we only need to show ker(EiiJ) ⊆ ker(δ (Eii)) , when

EiiJ �= 0.
Suppose J = (ai j) and EiiJ �= 0.
If i = n, then EnnJ = annEnn �= 0 implies ker(EnnJ)=span{e1,e2, · · · ,en−1} . By

Lemma 2.4, δ (Enn) = δ (Enn)Enn. Thus ker(EnnJ) ⊆ ker(δ (Enn))
If i < n , then EiiJ = aiiEii +aii+1Eii+1. It follows that ek ∈ ker(EiiJ), ∀ k < i or

k � i+2 and aii+1ei −aiiei+1 ∈ ker(EiiJ) .
Since EiiJ �= 0, ker(EiiJ)= span {e1, · · · ,ei−1,aii+1ei−aiiei+1,ei+2, · · · ,en} . Note

that EiiJ(aii+1Ei1−aiiEi+11) = 0, and δ is derivable on R(J,0) ,

δ [Eii(aii+1Ei1−aiiEi+11)] = δ (Eii)(aii+1Ei1−aiiEi+11)+Eiiδ (aii+1Ei1−aiiEi+11).

Combining the above equation with Lemma 2.4, we get 0 = δ (Eii)(aii+1Ei1−aiiEi+11) .
Thus δ (Eii)(aii+1ei−aiiei+1)= δ (Eii)(aii+1Ei1−aiiEi+11)e1 = 0, i.e. aii+1ei−aiiei+1 ∈
ker(δ (Eii)) . By Lemma 2.4, δ (Eii) = δ (Eii)(Eii + Ei+1i+1) , thus ek ∈ ker(δ (Eii)),
∀ k < i or k � i+2, and ker(EiiJ) ⊆ ker(δ (Eii)) . �

LEMMA 2.7. If δ ∈ L(Mn,Mn), n � 2 satisfies (2.0) , J ∈ Mn is a Jordan ma-
trix, and δ is derivable on R(J,0), then there exists a c ∈ C such that δ (Eii) = cEiiJ,
for all i = 1, · · · ,n; as a consequence δ (I) = cJ .

Proof. For any i �= k , by Lemma 2.6, there exist ci,ck ∈ C such that δ (Eii) =
ciEiiJ and δ (Ekk) = ckEkkJ . If EiiJ = 0 we can choose ci to be any number, in par-
ticular, take ci = ck . Similarly, if EkkJ = 0, we can take ck = ci . Let J = (ai j) . Fix
any i and k , without loss of generality, we assume i < k , EiiJ �= 0 and EkkJ �= 0. Thus
aii and aii+1 are not both zero, and akk and akk+1 are not both zero. For any j with
Ej jJ �= 0, define j∗ = j if a j j �= 0; otherwise j∗ = j+1. Thus a j j∗ �= 0, in particular,
aii∗ �= 0. and akk∗ �= 0; moreover, if k = n then EnnJ = annEnn �= 0 implies n∗ = n.

Claim: aki∗ = 0; indeed, since i < k , it follows i∗ � k . If i∗ < k then aki∗ = 0
since J is a Jordan matrix. By the definition of i∗ , i∗ = k precisely when aii = 0 and
i∗ = i + 1 = k . In this case, since EiiJ �= 0 and J is a Jordan matrix, aii+1 = 1 and
aki∗ = ai+1i+1 = aii = 0.

By the claim,
EikJEi∗k∗ = aki∗Eik∗ = 0. (2.9)

We will proceed by considering two separate cases: aik∗ = 0 and aik∗ �= 0
Case 1. aik∗ = 0.
In this case,

EiiJEk∗k∗ = aik∗Eik∗ = 0. (2.10)

It follows from Eqs. (2.9) and (2.10) ,

(akk∗Eii +aii∗Eik)J(Ei∗k∗ −Ek∗k∗) = akk∗EiiJEi∗k∗ −aii∗EikJEk∗k∗ = 0. (2.11)

Since δ is derivable on R(J,0) , by (2.9) , (2.10) , and (2.11) we have

δ (EikEi∗k∗) = δ (Eik)Ei∗k∗ +Eikδ (Ei∗k∗),



1196 ZHIDONG PAN

δ (EiiEk∗k∗) = δ (Eii)Ek∗k∗ +Eiiδ (Ek∗k∗),

and

δ [(akk∗Eii +aii∗Eik)(Ei∗k∗ −Ek∗k∗)] = δ (akk∗Eii +aii∗Eik)(Ei∗k∗ −Ek∗k∗)
+(akk∗Eii +aii∗Eik)δ (Ei∗k∗ −Ek∗k∗).

The last three equations give us

akk∗δ (EiiEi∗k∗)−aii∗δ (EikEk∗k∗) = akk∗δ (Eii)Ei∗k∗ −aii∗δ (Eik)Ek∗k∗

+akk∗Eiiδ (Ei∗k∗)−aii∗Eikδ (Ek∗k∗).

By Lemma 2.4, δ (EiiEi∗k∗) = Eiiδ (Ei∗k∗) . Thus

−aii∗δ (EikEk∗k∗) = akk∗δ (Eii)Ei∗k∗ −aii∗δ (Eik)Ek∗k∗ −aii∗Eikδ (Ek∗k∗). (2.12)

If k∗ = k , by Eq. (2.12) ,

−aii∗δ (Eik) = akkδ (Eii)Ei∗k −aii∗δ (Eik)Ekk −aii∗Eikδ (Ekk).

Multiplying Ekk from the right of this equation gives

0 = akkδ (Eii)Ei∗k −aii∗Eikδ (Ekk)Ekk.

By Lemma 2.6,

0 = akkδ (Eii)Ei∗k −aii∗Eikδ (Ekk)Ekk = akkciEiiJEi∗k −aii∗EikckEkkJEkk

= akkciaii∗Eik −aii∗ckakkEik.

Since aii∗ �= 0 and akk = akk∗ �= 0, we get ci = ck.
If k∗ = k+1, by Lemma 2.4 and Eq. (2.12) ,

0 = akk+1δ (Eii)Ei∗k+1 −aii∗δ (Eik)Ek+1k+1.

Combining this with Lemmas 2.5 and 2.6, we have

0 = akk+1δ (Eii)Ei∗k+1−aii∗δ (Eik)Ek+1k+1 = akk+1δ (Eii)Ei∗k+1−aii∗Eikδ (Ekk)Ek+1k+1

= akk+1ciEiiJEi∗k+1−aii∗EikckEkkJEk+1k+1 = akk+1ciaii∗Eik+1−aii∗ckakk+1Eik+1.

Since aii∗ �= 0 and akk+1 = akk∗ �= 0, we have ci = ck.
Case 2. aik∗ �= 0.
This case can only happen when k∗ = k = i+1, thus akk �= 0 and aii+1 = aik = 1.
It follows that (akkEii −Eik)JEkk = 0. Since δ is derivable on R(J,0) ,

δ [(akkEii−Eik)Ekk] = δ (akkEii−Eik)Ekk +(akkEii −Eik)δ (Ekk).

By Lemma 2.4,

δ (−Eik) = δ (akkEii)Ekk − δ (Eik)Ekk −Eikδ (Ekk).
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Multiplying Ekk from the right, we get 0 = akkδ (Eii)Ekk −Eikδ (Ekk)Ekk . By Lemma
2.6,

0 = akkδ (Eii)Ekk −Eikδ (Ekk)Ekk = akkciEiiJEkk −EikckEkkJEkk

= akkciaikEik − ckakkEik = akkciEik − ckakkEik.

Therefore, ci = ck . �

Proof of Theorem 2.1. The statement is clearly true when n = 1, so we assume
n � 2. With one direction being clear, we only need to prove that if δ ∈ L(Mn,Mn)
is derivable on R(M,0) , for some M ∈ Mn , then δ is a generalized derivation with
δ (I) = cM, for some c ∈ C . By Lemmas 2.2 and 2.3, we can assume δ satisfies Eq.
(2.0) and δ is derivable on R(J,0) , where J is a Jordan matrix of M . Let S = δ (I) and
define Sr ∈ L(Mn,Mn) by Sr(A) = AS, ∀ A ∈ Mn. Let τ = δ −Sr . Then τ is deriv-
able on R(J,0) and, by Lemma 2.7, τ(Ej j) = 0, ∀ j = 1,2, ...,n ; in particular, τ sat-
isfies Eq. (2.0) . For any j < n, by Lemma 2.5, τ(Ei j)Ej+1 j+1 = Ei jτ(Ej j)Ej+1 j+1 =
0. Thus, by Lemma 2.4, τ(Ei j) = τ(Ei j)(Ej j + Ej+1 j+1) = τ(Ei j)Ej j, ∀ j < n and
τ(Ein) = τ(Ein)Enn . It follows that for any i, j, l ,

τ(Ei jEll) = τ(Ei j)Ell . (2.13)

We will show τ is a derivation by showing for any i, j,k, l,

τ(Ei jEkl) = τ(Ei j)Ekl +Ei jτ(Ekl). (2.14)

Eq. (2.13) implies Eq. (2.14) holds for k = l .
If j �= k then by Lemma 2.4 Ei jτ(Ekl) = 0. By Eq. (2.13) , τ(Ei j)Ekl =

τ(Ei j)Ej jEkl = 0. Thus Eq. (2.14) holds for j �= k . In particular, if k �= l , then

τ(EilEkl) = τ(Eil)Ekl +Eilτ(Ekl). (2.15)

It remains to show Eq. (2.14) holds for j = k and k �= l . Let J = (ai j) .
If akl �= 0, then EikJ(aklEkl −akkEll) = 0. Since τ is derivable on R(J,0) ,

τ[Eik(aklEkl −akkEll)] = τ(Eik)(aklEkl −akkEll)+Eikτ(aklEkl −akkEll).

Applying Eq. (2.13) to this equation, we have τ(EikEkl) = τ(Eik)Ekl +Eikτ(Ekl) .
Similarly, if alk �= 0, then (alkEik − akkEil)JEkl = 0. Since τ is derivable on

R(J,0) ,

δ [(alkEik −akkEil)Ekl ] = δ (alkEik −akkEil)Ekl +(alkEik −akkEil)δ (Ekl).

Combining this with Eq. (2.15) , we get τ(EikEkl) = τ(Eik)Ekl +Eikτ(Ekl) .
Suppose akl = alk = 0. If all �= 0, then note (allEik − akkEil)J(Ekl + Ell) = 0.

Since τ is derivable on R(J,0) ,

τ[(allEik−akkEil)(Ekl+Ell)] = τ(allEik−akkEil)(Ekl+Ell)+(allEik−akkEil)τ(Ekl+Ell).

Combining this with Eqs. (2.13) and (2.15) gives τ(EikEkl) = τ(Eik)Ekl +Eikτ(Ekl) .
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Finally, if all = 0 then for any positive integers s,t � n , EslJElt = 0. Since τ is
derivable on R(J,0) ,

τ(EslElt) = τ(Esl)Elt +Eslτ(Elt). (2.16)

By Eqs. (2.13) and (2.16) ,

τ(EikEkl) = τ(Eil)Ell = τ(Eil)ElkEkl = [τ(EilElk)−Eilτ(Elk)]Ekl

= τ(Eik)Ekl −Eilτ(Elk)Ekl = τ(Eik)Ekl −EikEklτ(Elk)Ekl

= τ(Eik)Ekl −Eik[τ(EklElk)− τ(Ekl)Elk]Ekl = τ(Eik)Ekl −Eik[0− τ(Ekl)Ell ]
= τ(Eik)Ekl +Eikτ(Ekl).

The equation δ (I) = cJ for some c ∈ C is proved in Lemma 2.7. �

COROLLARY 2.8. A linear map δ ∈ L(Mn,Mn) is a generalized derivation iff
δ (AB) = δ (A)B+Aδ (B), for all A,B ∈ Mn satisfying Aδ (I)B = 0.

2.1. Remarks

For an algebra A and an A -bimodule M , we call a relation RA ⊆ A ×A
a derivational set of L(A ,M ) if whenever δ ∈ L(A ,M ) is derivable on RA it
implies δ is a derivation. For A = M = Mn and any 0 �= M ∈ Mn , Theorem 2.1
implies R(M,0) is a maximal non-derivational set of L(Mn,Mn) as illustrated in the
following corollary.

COROLLARY 2.9. Given any 0 �= M ∈ Mn , every relation R on Mn such that
R(M,0) � R is a derivational set of L(Mn,Mn).

Proof. If δ ∈ L(Mn,Mn) is derivable on R then it is derivable on R(M,0) . By
Theorem 2.1, δ is a generalized derivation such that δ (I) = cM , for some c ∈ C. Thus
δ (AB) = δ (A)B+Aδ (B)−cAMB for all (A,B) ∈Mn×Mn . In particular, δ (A1B1) =
δ (A1)B1 + A1δ (B1)− cA1MB1 for any (A1,B1) ∈ R and (A1,B1) /∈ R(M,0) . On
the other hand, since δ is derivable on R , δ (A1B1) = δ (A1)B1 + A1δ (B1) . Thus
cA1MB1 = 0. Since (A1,B1) /∈ R(M,0) , c = 0. �

For a Banach algebra A and M ∈A , let RA (M,0) = {(A,B)∈A ×A : AMB =
0}.

2.2. Question

For what Banach algebra A does it hold that δ ∈ L(A ,A ) is a generalized
derivation iff δ is derivable on RA (M,0) for some M ∈ A ?

In particular, we do not know if the above holds when A is a C∗ -algebra, a von
Neumann algebra, a CSL -algebra, a nest algebra, even B(H) , the algebra of all bounded
linear operators on a Hilbert space H .
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