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ON AN UPPER HEAT KERNEL BOUND FOR SECOND ORDER
ELLIPTIC OPERATORS ON BOUNDED REGIONS IN RV

MICHAEL M. H. PANG

(Communicated by F. Gesztesy)

Abstract. We revisit an upper heat kernel bound for second order uniformly elliptic operators H
defined on bounded regions € in R" . This bound is of the type

2
Ku(t,x5,y) < cymax{i~ (349, 1}eE1rexp{xy

AT } o1 (x)¢1(v)

where Ej and ¢; are, respectively, the ground state eigenvalue and the normalized ground state
eigenfunction of H, A is the upper ellipticity constant of H, a > 0 is a constant related to
a lower bound of ¢; near the boundary d€Q, and ¢; > 0 is a constant which depends on Q,
E\, the ellipticity constants of H, and a lower bound of ¢; near dQ. In particular, this bound
provides a corrected version of a bound originally studied in [2] for large time ¢ > 0.

Let H be a second order uniformly elliptic operator of divergence form defined
on a bounded region Q in RYN. Under certain assumptions on H and Q, Davies and
Pang gave an upper bound for the heat kernel Ky (z,x,y) corresponding to e " in [2,
Theorem 18]. In this paper we revisit this bound in [2], in particular, we provide a
detailed corrected version of this bound for large time # > 0. Our main result is stated
in Theorem 16. It gives a bound of the form

R I
Kit,6) < ermax{i= 3 1o expd T gy (001 y)

where E; and ¢; are, respectively, the ground state eigenvalue and the normalized
ground state eigenfunction of H, A is the upper ellipticity constant of H, a >0 is a
constant related to a lower bound of ¢ near the boundary dQ of Q, and ¢; >0 is a
constant which depends on Q, E7, the ellipticity constants of H, and a lower bound of
¢ near dQ (see below for precise definitions of these constants and assumptions on
them). As a corollary we obtain an upper bound for the quantity

C(t) =inf{¢, () 'Ky (t,x,y)01(y) L x,y € Q}

in Corollary 17. This quantity C(z) is related to the fundamental eigenvalue gap of the
elliptic operator H (see [2, Proposition 1]).
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Let Q be a bounded regionin RN, N > 3. Let H > 0 be the self-adjoint operator
with domain Dom(H) C L*(Q) associated to the quadratic form

/ Z af af 4

Py aij (¥ 8x, 8x g

with form domain Quad(H) = WO1 2(Q), where a; j are measurable and satisfy
0<A<{aijx)} <A<eo (xeQ).

Let {E;}7 | be the eigenvalues of H and let ql), be an eigenfunctionof E;, i=1,2,3,---,
and we can assume that ¢; > 0 and that {¢;}, is an orthonormal basis of L?(Q). We
shall also assume that Q is strongly regular in the sense that there exists ¢; = ¢ (Q) > 1
such that

o /Q|f<x>\2d<x>*2 dx < /Q\fo de  (feC(Q)

where
d(x) =min{|jx—y|:y ¢ Q} (xe Q).
We shall also assume that there exist a > 1 and » > 0 such that
bd(x)* < ¢1(x) (xeQ).
Let % : L*(Q, ¢1(x)>dx) — L*(Q) be the unitary operator defined by

Uf=oif (f € L*(Q,¢1(x)*dx)),

let H=%""H% be the self-adjoint operator with Dom(H ) C L2(, ¢, (x)2dx) unitar-
ily equivalent to H under % , and let Q be the quadratic form associated to H. Then,
by [2, Lemma 6], we have

PROPOSITION 1. We have
/sz(logf)q)f dx < e0(F)+B(E) 171172 (.0, (0120 T 1172 .00 (200 0& Il 2(00 (o200

for all 0< f e LYQ,0;(x)%dx) NL™(Q, ) (x)2dx) N Quad(H) and all 0 < € < oo,
where

Py N
B(e) = cqaloga — (Z + g)(log?t +loge) —logh + cq

for some cq > 1 which depends only on Q.

LEMMA 2. We have

B N
0= [ ( 3 a5 5 )0 ax || Eusioron(o ax

ij=1

forall feCr(Q).
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Proof. Without loss of generality we may assume that ; ; are differentiable. Since
Q is unitarily equivalent to Q under %, we have, for all f € C(Q),

o(f) (1
=07 f)

[, 3 ) ) i

l]l

-/ 3 als [%Hm af] [%fwl ‘)f}

ljl

_/2

l]l

_ a‘Pla(Pl > g1 d , ,
/<ul )f dx +2/ Za” ¢18x,28x1(f)

ljl
191 21
+/ (2 aij(x 8x, 8xj>¢l( )

i,j=1

s ¢—f— ¢—f

{9¢19¢1 ¢ . df 20 f P

,df df
U ox; dx; ox;

But

d¢ 9
/ Z L —(f?) dx )

ljl
( z/¢13¢1>f dx

- [
B N[ 91 S 96199
[ S [ (3o S 22 }f o

i,j= l
i,j=1 i,j=1
:/E¢2f2dx—/ i o 91 I 2 dx
o M a |42 " oxi 8xj
The lemma now follows from (1) and (2). [

We shall let y: Q — R be a bounded C* function satisfying

s oy vy _
iuZl i )8x, 8xj

on Q. Let o € R and let ® = ¢®Y. We shall let H = H— E; and let O be the quadratic
form associated to H > 0. Then, by Lemma 2, we have

o(f) =/Q (_Z i )3){ g){,) 01 (x)2dx (3)

forall feCr(Q).
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LEMMA 3. We have

(L=w)O(f, /7~ SO(@f, @~ 71 + a2{1+ 4“;:

forallp>20<u<1,and 0< f e Co(Q).
Proof. We have

Zaua <Df>3i( i 1))@() dx “

x {—cb—?acb%f”‘l +o'(p- l)f”‘zg] } 1 (x)* dx

Xj J

dy dy 19y df
_ o? 4 p—127 ZJ
/{” | ”[ 9x; 0 f talp=1f dx; dx;

0 Jdf o
—ofr™ 1af81l/ +(p—1)f"" 28){[8;]}@(@2(1

> /Q —a2 P9y (x)2 d
& dyaf
+°‘(”_2)/QLZI % o %)
_l’_
D>
- /pr(bl(x) dx

N af d
_a|(p—2)‘/§2[2 a”&){, a)i;] fP—1¢l(x)2 dx

ljl
+/
Q

fp‘lq)l ()c)2 dx

af d 1 2
lljaxlax f17 )]¢()dx

N
S agh i 1>] 010 d

i,j=1
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If s > 0, then
S af of "
/g[ - o ax,] fr o) dx 5)
2 N 1/2
== /2 /2 /2 2
L o]
S N a 1
l O )2 /2 2 1 2
gp/g[% igg " > o,V >] o1 ()" dx+ /Q f761(x)* dx
__sp ul 8f 9 5 1 )
sp o«
:4(p )Q(f f[? 1) Hf”Lp Q¢l zdx)'

From (4) and (5) we have

o(@f, @ 'fr 1 (6)

2
>—o Hf“ip(g,qn (x)2dx)

. 1 .
102 { 3 O+ 1 g | O
< _ slalp(p—2) la| (p—2)
:Q(f’fp 1){1_ 4([?—1) }_{(X + sp }”f”Lp (Q,01 (x de)'

Putting
_ 4p—Du
elp(p—2)
in (6) gives

v 1 —1 > —1 2 (p )2
0@f. 0 7)== WO )= |14 =3 1D g
which is the lemma. [
LEMMA 4. Suppose 3 : (0,00) — R is a function satisfying
| P10 )01 (5 dx <e0() + BE) 1101010 )
+ ||f||i2(g,¢l (24 108 11| 202,61 (x)24)

forall € >0 and all 0 < f € Dom(Q) NL"(Q, ¢; (x)%dx) NL™(Q, ¢; (x)?dx). Then we
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have

/Q 7 (log £)1 (x)? dx ®)

2
<e0(@r. o )+ {2800 we) +eo? |14 P R 0

+ ||fHLp Q¢ de log”f”Lf’ Q¢1( )zdx)

foralle>0,p>2,0<u<1land 0< feCr(Q).

Proof. Replacing f by f”/ 2 in (7) we get

P p’ S e
L[ 17 ttog )0 (o dx<<m)8Q(f,f” Y4B I,

Hf”Lp (Q,01(x de log”fHLf’ (Q,01(x )zdx)

So

. 2
77002 7)) dx < QU F7) 4 B I 10,000 ©)
+ HfHZ’(Q,(pl(x)zdx) IOg HfHLP(Q,q)l(x)de) :

By (9) and Lemma 3 we have

. 2
[ 7 (t0g f)on(0? dx < e(1=w)O(r. 17 + B4 117y g0,
+ ||f||Lp (Q,01(x de IOngHLI’ (Q,01(x )zdx)
<eQ(@f, @ 't
2 (p—2)*
+ 28 -wer+ear {i+ LA U 0 s
+ ||f||Lp (Q,01(x de IOngHLI’ (Q,01(x )zdx) U

More notations. If S is a vector space of functions defined on Q, then we will write
S ={fe€S: f(x)>0foralmost all x € Q}.

Let
=Je H’( (Q,01(x)%dx) NL™(Q, 91 (x)°dx)) ,

t>0

and let
2=0"'9,.
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Then % and & are both dense in LP(Q, ¢; (x)?dx), for 1 < p < oo. Also let
K=o 'HD
with
Dom(K) = {f € L*(Q, ¢ (x)*dx) : ®f € Dom(H)}.

Then it is easy to check that —K is the generator of the cq-semigroup

e*k[ — q)flefl‘vltq)
on L2(Q, ¢ (x)2dx). Note that & is invariant under the semigroup ¢ X'. Since ¢~
is holomorphic on L (Q, ¢ (x)?dx) forall 1 < p < e (as e " is a symmetric Markov
semigroup), the same is true for e~X’. In particular 2 lies in the domain of (—Kp)”

for all n=1,2,3,---, where —K, is the generator of ekt on LP(Q, ¢y (x)*dx) for
I <p<oo.

PROPOSITION 5. Let S be a Hilbert space and let B > 0 be a closed quadratic
form with Dom(B) C J. Then it is well known that the inner product (-,-) defined
by

(f:8)p=(f8)»+B(f8)

on Dom(B) x Dom(B) makes (Dom(B),(-,-)) a Hilbert space. Let {fy},_, be a
sequence in Dom(B) and let f € Dom(B). Suppose that

lfo=Ffllp —0  as n—eo

and that
Sup{<‘f"’fn>B s n= 1’2a3a"'} < oo,
Then fu — [ weakly in (Dom(B),(:,-)) as n— oo, ie., for all g € Dom(B) we have

<fn7g>B—)<f7g>B as n— oo,

REMARKS. Proposition 5 can be proved using the spectral theorem.
LEMMA 6. Let p>2. If f € Quad(H), then ®~7f € Quad(H).

Proof. Since C(Q) is a form core of Q, it suffices to show that there exists ¢ > 1
such that

A< (|l f || < el A (f €C(Q)), (10)

where

AR = 1512 gy + OF) (€ Quad(H)).
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Let f € C(Q). Then

O(@7rf)= (@ f) (d> PE)| o1 (x)? dx (11)

Q

© 5\\
S N/ —

M= i-Mz

2@
7 ox;
—p—1 rZSL J
aij —pd (Xq) f+q) e

il

1,

d d
—p¢‘P‘1a®a—;’ff+<I> ? f)] 91(x)* d

~
Il
—_

X

N
o 2e—2p a2 2 ‘/fallf o2y dy df
21"”< O o * o o,

af dy o, 0f 8f
2p 2p 27
> af&x, ox; 9x; dx; 91(x)
We deal with each term in the last line in (11). First we have
N oy Iy
< 2820 2 £2
o\/Qszzlawpcb e IO (12)
N oy d
_ 24y—2p Yoy
/pq) o l;‘ll’axlax fd)()

< C(P; a, W) Hf||L2(Q7¢1 (x)2dx)

for some ¢(p, o, ) > 1. Next we have

dy od
/(Za,, > g fgz/ f>¢1(x)2dx (13)
i,j=1 !
oy d
<p‘06‘/ tjaw / 72P‘f‘¢l(x)2dx
i,j=1

df d
<plol | {U 1 l,afaf} O |f] 91 (x)? dx

N af d
<C(P7O‘»‘I/)/Q{Z lf8f8f} |f|¢1(x)2dx

ij=1

1 & df of 12
<oy [ X a G os o d

i,j=1

(i’

c(p, . W)OUN) P 1f 112 (000 20

I\JI'—‘
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1
< 7¢(p. @ W) { 0N + 1112 0 0,200 |
1 2
=3¢ c(p, o, w) llFIII--
Lastly
N af df o2 2
A L,Zl o | & o0 dx (14)
N of of
gc(p7aall/)‘/g|j’jz,l 118 8xj]¢l() dx
=c(p,o, ¥)O(f).
So, by (11), (12), (13), (14),
O(®7f) <elp, o, ) ||| Il < oo, (15)
therefore
@711 < c(p, o, w) |I£111> (16)

for some ¢(p, o, ) > 1. Replacing o by —a we have, by (15),

v

O(f) = 0@ (@7 f)) < c(p,—t, w) || @£

and thus , 5
I < e(p, e y) |7 £l an
for some ¢(p, —o, y) > 1. (10) now follows from (16) and (17). O

PROPOSITION 7. Let 7 be a Hilbert space and let f, f, € 7 forn=1,2,3,---.
Suppose that

Then
tim [, — flLp =0
if and only if

T (£l = 1£1] -

COROLLARY 8. Let ¢ be a Hilbert space and let A > 0 be a self-adjoint oper-
ator with Dom(A) C J#. Let g,g, € Quad(A), n=1,2,3,---. Suppose that

lim g — gl =0 (1)

and that
g as n—oo in Quad(A),
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Le.,
1/2 1/2 N ) 12, 41/2
(8nsf e+ (A2 A2 ) — (g, f) o+ (A2, A1)

as n— oo for all f € Quad(A). Suppose also that

timsup | < ]| (19)
where

A2 = W1+ (A 2AAY2F)  (f € Quad(a)).
Then

lllgn—glll — 0 as n— oo,

Proof. By the spectral theorem we represent A as multiplication by a positive
function a : M — [0,0), where (M,m) is a measure space, and

Dom(A) = {f € L*(M) : af € *(M)}.
Take a subsequence {gy,};, of {g.},_, such that
}Lr{logni (x) =g(x) (ae. xeM).
Then, by Fatou’s lemma, (18) and (19) ,

/agzdm <liminf ag,%’_dm
M M

j—o0
<limsup / agidm
[—o0 M

—1i <A1/2 n.,Al/z n.>
l?ii:lp 8&n; 8ni) .,

< (a2 A1/2>
< 8, g%

= / ag®dm.
M

Thus
lim ag%idmz/ ag®dm,
i—e M
e 12 12 12 41)2
fim (A" g4 g, ) |, = (AV7g.AN%g)
thus

lim [l I = [lls]l]-

oo

So for any subsequence {gy,}; | of {g.},_;, there exists a subsequence {gn,- ,.} - of
iJj=

{gn;};; such that

tim [ ||| = el -
J—roo J
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Hence
Tim ([ = 1]

Since g, — g as n — oo in Quad(A), Proposition 7 implies that

lim g, — gl =0. O

More notations. We let

7> = (Quad(H) NL"(Q, ¢ (x)%dx) N L™ (Q, ¢ (x)?dx)) , .

Note that 2, C 9.

LEMMA 9. Let 3 :(0,00) — R be a function such that

[ (@71) og(@ ' g)01 (2)? ax 0)
<eQ(s, @ g ")

2 (p—2)° -
+ {;[5((1 —W)e) o’ [1 + m] } @~ 'g] Z”(Q7¢l (x)2dx)

LP(Q,0; (x)2dx) log||®@~'g|

+ [l

LP(Q,¢1(x)2dx)
foralle>0,p>2,0<pu<land0<ge C2(Q). Then the inequality (20) also holds
forall g € 9.

Proof. Let g € 9. Since g € L'(Q,¢;(x)2dx) N L=(Q, ¢; (x)?dx) and ®!
bounded, ®~'g € L'(Q, ¢; (x)>dx) N L=(Q, ¢; (x)>dx). Hence @~ lg € LI(Q, ¢; (x)?dx)
for all 1 < g < e=. Since x — xlogx is a bounded function on any bounded interval,

we have
/Q <(D—1g>1’10g (q)—1g> 01 (x)% dx < oo, (r>2)

and thus the left side of (20) makes sense.

Since g € L™, say ||g|l.. <k, and p > 2, there exists a function F : [0,00) — R
such that

Fx)=x""1  (0<x<2k+1),

that F has bounded derivative on [0, ), and that

So by the Beurling-Deny criteria (see [ 1, Theorem 1.3.3.]), there exists ¢ > 1 such that

O(g"") <cO(g) <.
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Clearly g"~" € L'(Q, 91 (x)?dx), we deduce that g € 9 implies that g~ € 95, hence,
by Lemma 6, ® ?gP~! € Quad(H), and thus ® ?gP~! € &,. Next, given any g € 9,
suppose

I8l < k. (2D
Then there exists a sequence {h,},_, in C°(Q) such that
1 = gl = (F1 20— ), F"/ (o — ) )

1 = 8l 120,61 (x)2a)

—0 as n-— oo,

L2(,¢1 (x)?dx)

For each n=1,2,3,--- there exists a function F, : (—oo,00) — [0,00) such that F, is
C*=, that

0<F(x) <2k (xeR),
0<F(x)<1 (xeR),
F(0)=0,
F(x)<x (x>0),

and that if we put
gn:Fn(hn)a (n:172737"')7

then g, satisfies the following:

0< g, €C(Q),

0<gn <2k (n=1,2,3,--+), o)
”gn - gHLZ(Q(pl (x)2dx) — 0 as 11— oo, o
and
N dh, dh, )
e /F aij5—=— | 91(x)" dx
(lj 1 " ox; axj>
< dohy, dhy, ,
< Lz
\/Q (i,jzzlald 3)6,‘ 3)6,) ¢1 (X) dx
= O(hy).

Thus we have
limsup |||g.[[| < [l -

n—soo
Hence, by Proposition 5,
gn — g weakly in Quad(H)as n— oo.

So, by Corollary 8,
llgn—gll — 0  as n—co. (24)
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Let F : [0,00) — R be the function described earlier in the proof of this lemma. Then
the same argument used for gl"‘1 before shows that there exists ¢/ > 1 such that

Q(ggil) gCQV(gT’l) glev(g) (n:172737)

Since multiplication by ®~7 is a bounded operator on Quad(H), by the proof of
Lemma 6, there exists ¢’ > 1 such that

[[@7gs | <" (n=1,2,3,--). (25)
By (21), (22), (23), we have

||g§_l_gp_luLz(Q,@(x)de) —0 as n—eo
hence
@ Pgh™! —@PgP! |20 2ay —0 a8 n——ee.
So Proposition 5 implies that
O Pl dPgP ! weakly in Quad(H) as n — oo. (26)

Thus we have, by (24), (25), (26),
|O(gn, @ P80 ") — O(g, @ Pgl )|
<|0(gn—g. @ Pl )|+ |0(3, @ Pgh ") — O(g, @ Pg" )| @7

—0 as n— oo,
By (21), (22), (23), we have

llgn — gHLI’(Q7¢1(x)2dx) —0 as n— oo,

and hence
H‘I)_lg,,—q)_lgHU(Qm(x)zdx)—>0 as n— oo, (28)

Taking a subsequence of {g,}_, if necessary, we can, by (23), assume that
g(x) = lim g,(x) (ae. x € Q).
n—-so0
So by Fatou’s lemma we have
P
[ (71¢) 1og. (@' 9)g1 (0? dx (29)
Q
L -1 \? ~1 2
<liminf (d) gn> log, (@' g,)¢1(x)” dx.
n—eo O

Since p > 2, x— xP%logx is a bounded function on any bounded interval of (0, o).
By

/ (qug)plog,(q)—lg)(pl ()2 dx — / (m—lgn)plog,@—lgnml )2dx (30)
Q Q
:/Q(q)—lg)2 (@ 'g)" *log_ (@ 'g) — (@ 'gu)P *log_ (D 'g)] ¢1(x)* dx

+ [ 107 g7 = (@710 (@7 ) 2o (7 g0)u (07 d.
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(23) and the dominated convergence theorem, we see that

(@ g log (@ g)or(x)? dx &
:Jﬂ}}c Q(q)_lgn)p log_ (@' ga) 1 (x)* dx.

Finally (29) and (31) give

/Q (@' g) log(@ ' g)¢y (x)? dx (32)

<limsup [ (@ 'g,)"log(® 'g,)¢1(x)* dx.

n—soo Q
Since (20) holds for g,, n=1,2,3,..., as 0 < g, € C°(Q), the lemma now follows
from (32), (27), and (28). O

THEOREM 10. Let £(p) > 0 be a continuous function defined for p > 2 and let
0<u<l1. Let B:(0,00) — R be a function satisfying the hypothesis in Lemma 9.

Put
o 2
I(p) = %ﬁ((l —welp) +e(p)o? [1 + 4“’72)]

(p—1Du (p>2)

If
° =T
t:/ 8(p)dp’ M:/ (p)dp
2 p 2 p
are both finite, then

Hefl?t

<
L2(Q,01 (x)dx)— L= (Q,¢1 (x)?dx)

Proof. Define the function S : [2,00) — [0,) by

s = [*ar (p>2)

T

Then S(2) =0, S is strictly increasing, and

so) =22 (p22),

Let P:[0,t) — [2,0) be the inverse function of S. Then P(0) =2 and

P(o) = (0<o<t).
We also define the function Nj : [2,00) — [0, M) by

M = [[Mar (p22)

T
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and we let
N(o) =N (P(0)) (0< o <)
Then N(0) =0 and

Let f € D and put
fo=eXf (0<o<t).

Then
d N(c
7o {loe [e Wollzror 0000 >
_%{ —N(o)+ 10g||f6HLP (@01 (x )de)}
_I(P(o)

= S(P(G)) (G)ilg(P(G)) llongO'HLP?-c) (Q,0; (x )2dx)

1
PO Wl o e o (58D e

Consider the last term on the right side of (33):

d P(o)
do (Hf olliro) 00, (x)de)) (34
> P(o+h) P(c
1 -1 —K(o+h) Ko
—timit [ (5o T (5o )"
> P(c+h) P(o+h)
T -1 —K(o+h)
(e } '
. \P(c+h
+h_1/{ e—KGf (o ) K(Ff (Pl

—hm/P G+h)( R(oth) f(y) s o Ko (x)> (o+h)~1
xh™ [ K(o+h) —Kof](pl()
+ /Q (e K9 f)log(e KO ) (e KO p)Plo+h)-1
<! [P0 +h) — P(0)) 91 (x)? dx

where we have used } }
e—K(O‘+h)f(x) - e—KGf(x)

to denote a number between e K(0+1) ¢ (x) and e Koy (x), and k = k(h,x) satisfies

0 < [k < [A].
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Now we have
/ P O'+h "+h)f( ) — e_k"f(x)y)((ﬂrh)i1
< h™ |: —K(G+h f K(Ff:| (Pl( )

_ —K(o+h) ., Ko
pon){ [ (e F0 M) — e Fo st
X <h71 [eik("”’)f— eik"f} —|—I?eik6f> 01 (x)? dx
B / (e—k(o+h)f(x) ‘—>€_kcf(x)>P(G+h)’

Q

Note that

)P(G+h)—1

e KO £y =Ko L1(Q, 1 (x)2dx) N L7(Q, 91 (x)?dx)

and there exists M > 1, depending on o, such that

for all |n| < M~!. So we have

<M

)P(oJrh)fl
L2(Q,01 (x)2dx)

(e—k(o'-i-h)f_'_e—ko'f

)P(0'+h)—1

| (e F ) — Ko p)
X (hfl {eik("”’)f— eik"f} —|—Iv(efk6f> o1 (x)? dx’
</ (e—K(6+h f+ —K6f> (o+h)=
Q
% ‘(h—l {e—i{(ﬂh)f_e—i(cf] +K'e_k6f> ) o1 (x)2 dx

< ‘ (e Ko ko) Plo+h-1

L2(Q.¢1 (x)2dx)
% Hh—l [e—k(o+h)f —Kof] +Ke‘K"f

L2(Q,01 (x)%dx)
—0 as h—0.

Next note that
(e K@D f(x) e e K f(2)) — e KO f()|
<|e Ko —ekopw|  (xeq),

Writing
m(f,0.h.2) = (KO flx) — K f(2)) = K ()

e KoL) (x)? d }

(35)

(36)

(37)

(38)

(39)

(40)
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we have
(e 5 ) e Ko p) T (4D
= (s +mis. o)
N e*k"f(x)y(ﬁh)_l
%o ) P(o+h)—
+(Plo+h) = 1) (e Kof(x) + jm(f,0,h,x)) (f.0.5.%)

for some 0 < j < 1 depending on f,0,h and x. Let W : Q — R be defined by

W(x) = HejKGf L(Q.01 (x)%dx) (eimﬂvx )=
e RIf(x) O<e®f(x)<1).

P(o+1)—1

Then W € L*(Q, ¢ (x)?dx) and

(For)" ™ eww e m<. (42)

So
/W ‘Ke ch) 2dx < oo

and hence the dominated convergence theorem implies that
o P(o+h)—1 B
(e K"f(x)) (ke K )y (0 43)
(o) -1 ., .
— / K"f (Ke 9 f)¢1(x)* dx as h—0.

Also, by (39), for |h| <1

/ (P(c+h) 1) (7K £(x) + jm( f,G,h,x))P(Hh)J (44)
Q

m(f,o,h.x)(Ke KO f)y (x)> d

<(P(c+h)—1) (H Ko p

L=(Q,91 (x)2dx)

P(c+1)-2
)< 1} + 1)

¢ ()c)2 dx

2 H 0'+l)
" Sup{ I = @upriora
/ ) 0'+h IV{O'f) ‘Kve—f{cf
as h—0.




48 MICHAEL M. H. PANG

By (41), (43), (44), we have

/Q (K@M f(x) s ek f(x))”‘”h)*1 (Ke Ko p)p1 (02 dx  (45)

o P(o)-1
—>/Q(e—’“’f) Ke Ko p)p (x)2dx as h—0.
Thus, by (35), (38), (45), we have

/ p 0'+h 6+h)f( P e‘k"f(x)>P(G+h)7l
N |: —K(G+h f —K(Ff:| (Pl( ) dx
—>—P(G)/Q (eik6f>P _l(kefkof)(bl(x)z dx ash—0.

Next note that W € L' (Q, ¢ (x)2dx). Also since e KO f € L=(Q, ¢, (x)%dx), we have

(46)

(e K9 f)log(e KO f) € L™(Q, ¢ (x)2dx).
Thus, by dominated convergence and (42),
9 . y P(c+k)—1
e poge®op) (e For)
Q
x i [P(o +h) — P(6)] ¢ (x)* dx

=) [ ()" togte K1) on(a)?

_ _Plo) - ;
_s(P<o>)/g< Kf) log(e K7 )01 (12 dx as h—0.

So, by (33), (34), (35), (38), (45), (46), (47) and Lemma 9, we have
d
do {log[ N foll po) gy )de>” w

CPO) o e
e(P(0)) —P(o) lg(P(G)) 1logHfG||Lp(0-)(Q7¢l(x)2dx)

+P(G) leO'”LP 0) (Q,0,( )2dx)

x {—P(o) (Rfo 15 ™) e | 127 (t0g fo)r(x)? dx}
= (PO o Ay g | oo (08 )0

~e(P0) (Rfo 157" ) oy~ TP o5

(47)

)(Q,0; (x)%dx)

P(o)
— /ol pe) (.01 (12dx) 108 /o ll7o) (.01 (2a) }
<0.
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Thus for all 0 < o <t we have

HfGHLP )(Q,01 (x)2dx) < ||fHL2(Q.,¢1(x)2dx)'

‘We next show that

H —th ch

=lim|le
L=(Q.¢1(x)dx) ot

(9,01 (x)2dx)
To do this we first show that there exists M > 0 such that

HeiKGlf—efKGZf <M|o;—

LP(,91 (x)2dx)

forall p >2 and 01,05 € [1/2,1]. Since f € 9,

f: q)flefl-vlsg

49

(49)

(50)

(51)

(52)

for some s > 0 and 0 < g € L' (Q, ¢ (x)?dx) L™ (Q, ¢ (x)?dx). Since 2 C Dom(—K,)
C LP(Q,¢1(x)%dx) for 1 < p < o, where —K, is the generator of ¢ X% in

LP(Q, ¢ (x)*dx), we have
Kf= (I)_lljlq)d)_le_gsg = q)_le_gs/zl-vle_gs/zg.
By Proposition 1 and [1, Corollary 2.2.8.], there exists M| > 0 such that

<M.

Heflfl.\'/2
L2(Q,91 (x)dx)— L (Q.91 (x)dx)

So, by (53) and (54),

Ml gefﬁx/2g

KA =000 g2 < 197 | 1=

Hence for p > 2

KA |12 000,200 :/Q Kf|" 91(x)? dx

- Kf|? ¢ (x)? dx
</{XEQ¢kf|>l}+/{xe(2:kf<1}>} o)

L2(Q.6; (x)2dx)

(53)

(54)

(55)

(56)

Y r > 12
g ||q) 1||LN Mp HS/zg LZ(Q@I (X)de) + ||KfHL2(Qv¢1 (x)zdx)
and so
(2,01 (x)?dx)
— Y —Hs 2/
gzl/pmax |:||q) 1||LN(Q)M1HH6 H/2 LZ(Q(I) H f||L2pQ¢l

<M,
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for some M, > 0 independent of p. Therefore
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7120'1 71?0’2
e —e 57
H ! f LP(Q,0 (x)2dx) (57)
d o
<sup{Hd— Gd) e [t/z,zl} 010
° L2 (@01 (x)2dx)
—Ko g
= : 2 — .
—sop{ e KR ¢ OE B2 01 0o
Since e~ is a symmetric Markov semigroup on L2(Q, ¢ (x)%dx),
—Ko D!
e < wion || Pl 58
H LP (9,01 (x)2dx)—LP (D01 (x)2dx) |l HL ) [1@l-@ (58)
Thus (56), (57), (58) imply that
K 71( 1
[ =], g ey <17 iy [ @l Malo el 59)
forall p >2 and 01,07 € [t/2,t]. So (51) holds with
~1
M = (| @] o g | Pll =0 Mo
Since f € 2, we have
e KO f e LM(Q,61(x)’d) N L7 (Q,01(0)dx)  (0>0),
soforall c >0
_Ko . —Ko
—1 H ’ . 60
He f L= (Q,¢1 (x)2dx) PE’I'L ¢ f LP(Q, ¢ (x)2dx) (60)
Hence, by (51) and (60), for all o € [t/2,1)
He—Kt _ He—i(cf
L(Q,01 (x)2dx) LP(©)(Q,; (x)2dx)
< He—I?t H —th
L(Q,0; (x)%dx) ) (.01 (x)2dx)
—Kt
+ He ! LP(©)(Q, ¢ (x)2dx) H ) (Q, 01 (x)2dx)
< Hefl?t o Heflv(t
f L(Q,01 (x)2dx) / LP(©)(Q,; (x)2dx)
—Kt —Ko
+ He = / LP(®) (Q,¢1 (x)2dx)
< —Kr o H —Kt Mlo —
| @nere 16 T lrer@pwpay| THMIC !
—0 as ot
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and (50) is proved. Thus by (49)

L:%IT? e Koy ©1)

foes

LP(O)(Q, 01 (x)2dx)

imeN(©)
< 1(17%1@ 171l 22(@.01 (v2a)
= eM ||fHL2(Q7¢1 (x)2dx) *
If 0 < f € L*(Q, ¢ (x)?dx), then there exists a sequence {u,}>_, in & such that

limu, =®f  in L*(Q,¢(x)*dx).

n—oo

Then {® 'u,} | isa sequence in 2 such that

=1
fi=® 'u,— f in L*(Q,¢(x)%dx) as n— oo,
So, by what we have proved in (61),

oo

M
_ S nllz2 .0y 2 -

Hence, using a subsequence of {f;},_, is necessary, we have

s

L <M Fll 20 (o) -

Finally, for a general f € L?(Q, ¢ (x)?dx) we have, by the positivity of e Kt

<e | fl.

‘e—th

So

Hefth

| <[l
geM || |f| HLZ(Q,d)l (x)2dx)

:eM ||fHL2 (Q,01 (x)2dx)

which completes the proof of the theorem. [

THEOREM 11. We have, for all t > 0,

o . (Nygay, gL 2
He Kt gcgecguloga(lt) (4+2)b 1, 3Eit+20%

L2(Q,01 (x)2dx)— L (Q,0 (x)?dx)

for some cq > 1 which depends only on .
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Proof. In Theorem 10 put y = %

e(p)=8tp%  (2<p<w)

e(p)

(so that [,” ——=dp =1t) and, by Proposition 1, Lemmas 4 and 9, we can put

C—l)(logk +loge) +E € —logh + cg

N
B(e) = cqaloga — (Z+ 3

for some cg, > 1 which depends only on Q. Then
= [ Lo B et +elio?

)

N a

={ 2p?|chaloga— [ —+=
/2 D [cgaoga <4+2(

1
+ —Els(p)—logb+ch} +p le(p)a® [1 +

(p—2)°
S
log 2 +log(3¢(p)

(p—2)?°
2(p—1)

2 }dp

0 N
:/ 2p2 [chaloga - (Z + g) (logA +log(4tr) —2logp)
2

4Et /} 2, 3 [ (P—z)z}
+ —— —logh+cq| +8atp™” |1+ dp.
P . 2(p—1)

For p > 2 we have

Therefore, from (62), we have
N
M <cgaloga — (Z + g) log(4A1)
N 1 , 2
+ §+a (log2+1)+§E1t—logb+cQ+2at
/ N 1
Lchaloga — Z 2 log(At) + 3E1t —logh + ch+ 20t

for some ¢y > 1 which depends only on Q. [

(62)

THEOREM 12. Let Ky (t,x,y) be the heat kernel of e 11 Then there exists cq >

1, depending only on Q, such that

2
Kg(l,x,y) < CQeCQMOgu(z,I)(g/Jra)bzeéElteXp{— <[W(x) —y(y) ) }

Sforall x,y € Q and all t > 0.
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Proof. Replacing o« by —a in Theorem 11 and taking adjoint, we have

He—f(r < Checbalogu(xt)f(%Jr%)bfle%EltJﬂazz (t>0).
LY(Q,01 (x)2dx)—L2 Q.01 (x)2dx)
Hence,
Hefl?t < cgecgalogu(kt)f(%+u)b72e%Elt+2a2t (t>0).
LI(Q,01 (x)2dx)—L> Q.01 (x)dx)
Since

e*k[ — q)flefﬁ[q)’
we have, for all 1 > 0,
Ky (1,2,y) <O(0)@(y) | cthecalose (hp)~ (3 +a) =2 sFur+20 (63)
:cgecgaloga(z’t)—(%-&-a)b—Ze%Elt
x exp{ o[y (x) — w(y)] +20%} .

So we choose o € R which minimizes

o[y (x) — w(y)]+20,
i.e. we choose

v(y) —vx)
4¢ ’

Thus (63) gives

B 2
Ky (t,x,y) < CQECQGIOga(AI)_(%-i_a)b_ze%Eltexp{_ <W> }

forall x,ye Q andall r >0. O
COROLLARY 13. Let d(x,y) be the metric on Q defined by

d(x,y) = sup{ lw(x) —w(y)| : visabounded C” function on Q satisfying

N dyoy
2 al,a—lea—xj S 1 on Q}

ij=1
Then, for all x,y € Q and all t > 0, we have

2
Kﬁ(f»xvy) < CQéCQalOga(AI)_(%J’_a)b_ze%ElteXp{—d(xg;y) }

where cq > 1 is as in Theorem 12.
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COROLLARY 14. We have, for all x,y € Q and all t > 0,

2
Ky (t,x,) < cqee@@loe?(a) = (3 Ha)p2 _Eltexp{_|x8Ai‘)| }

where cq > 1 is as in Theorem 12.

Proof. Let d(x,y) be the metric in Corollary 13. Then, by our assumption on
{a;;}, we have

d(x,y) = sup{ |lw(x) —w(y)| : wisabounded (64)

C* function on Q satisfying

N dy dy _
leA”&xz 5 lonQ}

:sup{ |lw(x) —w(y)| : wisabounded

C* function on Q satisfying
IVy]? <A™! on Q}
= [x—yA"7.

The result now follows from (64) and Corollary 13. [

LEMMA 15. Let Ky(t,x,y) be the heat kernel of e 1", Then, for all x,y € Q and
all t > 0, we have

Kin(1,x,5) < cqea*® (A1)~ (2+9p 2 38 exp { “8—"" } 01(x)01(7)

where cq is as in Theorem 12.

Proof. Let Kj(t,x,y) be the heat kernel of et Recall that H = H — Ey. So
Corollary 14 implies that, for all x,y € Q and all r > 0,

2
Kﬁ(t,x7y) < CQeCQalo‘ga(ll)_(%+a)b_2e_%Elt exp {_ |x8A)t}| } . (65)

The lemma now follows from (65) since

K (t,x,y) = ¢1(x) ' Ku (t,%,9)1(y) "

forall x,ye Qandall t >0. [
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THEOREM 16. Let Ky (t,x,y) be the heat kernel of e 1", Then

N I
Ki(t.x.9) < comax{t- 79, 1}e ' exp { —hor } 01 ()01 ()

Jorall x,y € Q and all t > 0, where, with cq > 1 as in Theorem 12,
Cl :Cl(Qaa7b7x7A7El)

o coalogay —(Y+a).—2 E
_max{CQeQ gap —(7+a)p=2F1

: 2
(Cgecgaloguk7(%+a)2%+ab72)2 exp {El n dlar;/(\Q) } ’ 1}

> 1.

Proof. By Lemma 15 we have

2
Kin(1,x,5) < cqea*® (A1) +“>b2exp{%}¢l (W)01)  (66)
for all x,y € Q and all # > 0. In particular, we have
0 < Kn(1/2,x,y) < cqe @3~ (34025 4p 20, ()9, ()
forall x,y € Q. If # > 1, then, since |x —y| < diam(Q), we have
Ku(t,x,y) //KH 1/2.5,u)Ker(t — 1,u,v)Ker(1/2,v,y) dudy (67)
< [ [ ex01(061 Ko = Luv)eadn ()1 ) dudv
=30 @0r0) [ [ Kult=1Luv)or(w)é (v) dudy
=c3e F107D 0, (x)91 (y)

. 2 _
:c%exp {El 4 dlalg#}e_&te)(p{%}@( )91(y)

where we have written
¢ = cqetaaloea) —(F+apy+ap=2, (68)
The theorem now follows follows (66), (67) and (68). [

REMARKS. (i) Theorem 16 can also be proved by combining Lemma 15 with [1,
Corollary 4.2.5].

(i) If one wants to express ¢ in Theorem 16 in terms of constants depending only
on Q,a,b,A,A, one can easily replace E; in terms of constants depending only on A
and the inradius of €.
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COROLLARY 17. Fort >0 let

Ct)= inf{dn (x)flKH(t,x,y)(Z)l (y)f1 DX,y E Q}.

Then

~ 2
C(t) < cymax{r—(2%9) 1} Bl exp {—%} (t>0)

where ¢; > 1 is as in Theorem 16.
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