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PSEUDOSPECTRUM AND CONDITION SPECTRUM

G. KRISHNA KUMAR AND S. H. LUI

Abstract. For 0 < ε < 1 , the ε -condition spectrum of an element A ∈ CN×N , a generalization
of eigenvalues, is denoted by σε (A) , and is defined as ([7]),

σε (A) :=
{

z ∈ C : zI−A is not invertible or ‖zI−A‖‖(zI−A)−1‖ � 1
ε

}
.

Several results on spectrum and ε -pseudospectrum are generalized to ε -condition spectrum.
The ε -condition spectrum is a useful tool in the numerical solution of operator equations. In [3],
the authors have given an analogue of the Spectral Mapping Theorem for condition spectrum.
This paper is a continuation of the papers [5] and [3], generalizing the Spectral Mapping Theo-
rem for eigenvalues. In this paper we are studying size of the components of condition spectrum
of a matrix. The main contribution of this paper consists of asymptotic expansions of quantities
which determine the size of components of condition spectral sets. A relation connecting pseu-
dospectrum and condition spectrum of a matrix is given as set inclusions. Using this relation a
weak version of component wise condition Spectral Mapping Theorem is given. Examples are
given to illustrate the theory developed.
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