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PSEUDOSPECTRUM AND CONDITION SPECTRUM

G. KRISHNA KUMAR AND S. H. LUI

(Communicated by L. Rodman)

Abstract. For 0 < ε < 1 , the ε -condition spectrum of an element A ∈ CN×N , a generalization
of eigenvalues, is denoted by σε (A) , and is defined as ([7]),

σε (A) :=
{

z ∈ C : zI−A is not invertible or ‖zI−A‖‖(zI−A)−1‖ � 1
ε

}
.

Several results on spectrum and ε -pseudospectrum are generalized to ε -condition spectrum.
The ε -condition spectrum is a useful tool in the numerical solution of operator equations. In [3],
the authors have given an analogue of the Spectral Mapping Theorem for condition spectrum.
This paper is a continuation of the papers [5] and [3], generalizing the Spectral Mapping Theo-
rem for eigenvalues. In this paper we are studying size of the components of condition spectrum
of a matrix. The main contribution of this paper consists of asymptotic expansions of quantities
which determine the size of components of condition spectral sets. A relation connecting pseu-
dospectrum and condition spectrum of a matrix is given as set inclusions. Using this relation a
weak version of component wise condition Spectral Mapping Theorem is given. Examples are
given to illustrate the theory developed.

1. Introduction

Let A ∈ CN×N . The set of all eigenvalues or spectrum is denoted by σ(A) and is
defined as

σ(A) = {z ∈ C : zI−A is not invertible}.
Let f be an analytic function on some open set Ω containing σ(A) . By functional
calculus, f (A) is defined as

f (A) =
1

2π i

∫
Γ

f (z)(zI −A)−1dz,

where Γ is any closed contour containing σ(A) . The Spectral Mapping Theorem is a
fundamental result in functional analysis of great importance. Given a matrix A and a
function f which is analytic on an open set containing σ(A) , the theorem asserts that

f (σ(A)) = σ( f (A)).

There are several generalizations of the concept of the spectrum in literature such as
Ransford spectrum [8], pseudospectrum [9], condition spectrum [7], etc. It is natural
to ask whether there are any results similar to the Spectral Mapping Theorem for these
sets.
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DEFINITION 1. Let A ∈ CN×N and 0 < ε < 1. The ε -condition spectrum of A is
denoted by σε (A) and is defined as,

σε(A) =
{

z ∈ C : ‖zI−A‖‖(zI−A)−1‖ � 1
ε

}
,

with the convention that ‖zI−A‖‖(zI−A)−1‖ = ∞ , if zI−A is not invertible.

Note that because of the above convention, σ(A) ⊆ σε (A) for all 0 < ε < 1.
Whenever z /∈ σε(A) , we are guaranteed a stable solution to the linear system (A−
zI)x = b . This fact makes the ε -condition spectrum a useful tool in the numerical
solution of operator equations.

In [5], asymptotic expansions of the sizes of components of pseudospectra are
given using some tools developed in [1]. In [3], the authors gives an analogue of the
Spectral Mapping Theorem for condition spectrum in Banach algebras. We state the
main theorem proved in [3], removing an unnecessary assumption there that f must be
injective.

THEOREM 1. (Condition Spectral Mapping Theorem) Let A be a complex Ba-
nach algebra with unit e . For a ∈ A that is not a scalar multiple of the unit, 0 < ε < 1
sufficiently small, Ω a bounded open subset of C containing σε(a) and f an analytic
function on Ω , define

φ(ε) = sup
λ∈σε(a)

{
1

‖ f (λ )− f (a)‖‖[ f (λ )− f (a)]−1‖
}

.

If f (a) is not a scalar multiple of unit, then φ(ε) is well defined, 0 � φ(ε) � 1 ,
lim
ε→0

φ(ε) = 0 and for ε satisfying φ(ε) < 1 , we have

f (σε (a)) ⊆ σφ(ε)( f (a)).

Furthermore suppose there exists ε0 with 0 < ε0 < 1 such that σε0( f (a)) ⊆ f (Ω) . For
0 < ε � ε0 define

ψ(ε) = sup
μ∈ f−1(σε ( f (a)))∩Ω

{
1

‖μ −a‖‖(μ −a)−1‖
}

.

Then ψ(ε) is well defined, 0 � ψ(ε) � 1 , lim
ε→0

ψ(ε) = 0 and for 0 < ε � ε0 satisfying

ψ(ε) < 1 , we have

σε( f (a)) ⊆ f (σψ(ε)(a)).

When A is a normal matrix, its ε -condition spectrum is union of closed disks
containing eigenvalues. For a non-normal matrix, its ε -condition spectrum may be
much larger than this union.

Let A∈ CN×N with distinct eigenvalues {λ j : j = 1, ...,k} each having some pos-
itive algebraic multiplicity. When ε is small, σε(A) consist of k disjoint components
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each containing an eigenvalue. In the condition Spectral Mapping Theorem, the sizes
of condition spectra are characterized by one pair of functions φ and ψ . Our first
order business is to characterize each component by functions φ j and ψ j , offering a
sharper bound than the one in the condition Spectral Mapping Theorem. The functions
φ j and ψ j are continuous and monotonically non-decreasing and depends only on the
eigenvalue λ j .

The following is the outline of the paper. In Section 2, the general theorem (The-
orem 2) in the form of two set inclusions for each component is stated and proved.
In the theorem, we derive the exact expression for φ j and ψ j mentioned in the above
paragraph. We derive the usual Spectral Mapping Theorem from this general theorem
(Remark 2). We also consider a normal matrix and analytically find the values of φ j

and ψ j and illustrate the theory developed (Example 1). In Section 3, we determine the
size of each component of condition spectrum of f (A) for a diagonalizable matrix A
(Corollary 1) and a more general case (Corollary 2). In section 4, we derive the asymp-
totic expansion of f (A) for a diagonalizable matrix (Theorem 5) and a more general
case (Theorem 6). We give some examples to illustrate the given theory. In section
5, an improved relation connecting pseudospectrum and condition spectrum is proved
(Lemma 1). A weak version of the Spectral Mapping Theorem for each components of
condition spectrum is proved (Theorem 8) using the component-wise relation connect-
ing pseudospectrum and condition spectrum of a matrix (Theorem 7). Some examples
are also given to illustrate the theory.

2. A component-wise condition Spectral Mapping Theorem

The following is a sharper version of the condition Spectral Mapping Theorem
for complex analytic functions discussed in [3]. The proof is similar as that in [3]
for the original theorem and is included here for completeness. The proof is an easy
consequence of the definition of the functions in the statement of the theorem.

As already mentioned in the introduction, when ε is small, σε(A) is a disjoint
union of sets each containing exactly one eigenvalue. Denote the component containing
the eigenvalue λ j by σε (A,λ j) . Throughout this paper, we shall be assuming that the
parameter ε is sufficiently small so that the components of condition spectral sets are
pairwise disjoint. The value of ε may need to be restricted further, this point will be
elaborated upon later. In case f (λ j) = f (λk) for some λ j �= λk , we identify the two
components σε ( f (A), f (λ j)) and σε ( f (A), f (λk)) , for all 0 < ε < 1. Let I be the
identity matrix and I = {αI : α ∈ C} .

THEOREM 2. Let A ∈ CN×N \I , {λ1, . . . ,λk} be distinct eigenvalues of A and
f be an analytic function defined on an open set Ω containing σ(A) . For each j and
0 < ε < 1 sufficiently small, define

φ j(ε) = sup
ξ∈σε (A,λ j)

{
1

‖ f (ξ )I− f (A)‖ ‖( f (ξ )I− f (A))−1‖
}

.

If f is a non-constant function then φ j(ε) is well defined, 0 � φ j(ε) � 1 , lim
ε→0

φ j(ε) = 0
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and for ε satisfying φ j(ε) < 1 , we have

f (σε (A,λ j)) ⊆ σφ j(ε)( f (A), f (λ j)).

Furthermore, suppose that there exist ε0 with 0 < ε0 < 1 such that σε0( f (A)) ⊆ f (Ω) .
For 0 < ε � ε0 , define

ψ j(ε) = sup
μ∈ f−1(σε ( f (A), f (λ j)))∩Ω

{
1

‖μI−A‖ ‖(μI−A)−1‖
}

.

Then ψ j(ε) is well defined, lim
ε→0

ψ j(ε) = 0 and for ε satisfying ψ j(ε) < 1 , we have

σε( f (A), f (λ j)) ⊆ f (σψ j(ε)(A,λ j)).

Proof. First we show that for each j , φ j(ε) is well defined. Define g : C → R by,

g(z) =
1

‖ f (z)I − f (A)‖‖( f (z)I− f (A))−1‖ .

Then g is continuous [3]. Next for 0 < ε < 1, σε (A,λ j) is a compact subset of C and
φ j(ε) = sup{g(z) : z ∈ σε (A,λ j)} . Hence φ j(ε) is well defined, that is, finite. It is
easy to observe that φ j is a monotonically non-decreasing function and φ j(ε) goes to
zero as ε goes to zero. Now let ε be sufficiently small so that 0 < φ j(ε) < 1 and let
z ∈ σε (A,λ j) . Then g(z) � φ j(ε) . Hence

‖ f (z)I− f (A)‖‖( f (z)I− f (A))−1‖ =
1

g(z)
� 1

φ j(ε)
.

This means that f (z) ∈ σφ j(ε)( f (A), f (λ j)) . Thus

f (σε (A,λ j)) ⊆ σφ j(ε)( f (A), f (λ j)).

Next assume that there exists ε0 with 0 < ε0 < 1 such that σε0( f (A)) ⊆ f (Ω) . We
show that for each j and 0 < ε � ε0 , ψ j(ε) is well defined. Define h : C → R by,

h(μ) =
1

‖μI−A‖‖(μI−A)−1‖ .

Then h is continuous [3]. Since h(μ) � 1 for all μ ∈ C , ψ j(ε) is well defined and
0 � ψ j(ε) � 1. It is also observed that ψ j is a monotonically non-decreasing function
and ψ j(ε) goes to zero as ε goes to zero. Now let ε be sufficiently small so that
0 < ψ j(ε) < 1. Let z ∈ σε( f (A), f (λ j)) ⊆ σε0( f (A), f (λ j)) ⊆ f (Ω) . Consider μ ∈ Ω
such that z = f (μ) . Then μ ∈ f−1(σε( f (A), f (λ j))) , hence h(μ) � ψ j(ε) , that is,

‖μI−A‖‖(μI−A)−1‖ =
1

h(μ)
� 1

ψ j(ε)
.

Thus μ ∈ σψ j(ε)(A,λ j) . Hence z = f (μ) ∈ f (σψ j(ε)(A,λ j)) . This proves

σε ( f (A), f (λ j)) ⊆ f (σψ j(ε)(A,λ j)). �
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REMARK 1. Combining the two inclusions, we get

f (σε (A,λ j)) ⊆ σφ j(ε)( f (A), f (λ j)) ⊆ f (σψ j(φ j(ε))(A,λ j)),

and

σε ( f (A), f (λ j)) ⊆ f (σψ j(ε)(A,λ j)) ⊆ σφ j(ψ j(ε))( f (A), f (λ j)).

NOTE 1. In [3], it is shown by an example that the assumption f (A) is not a scalar
multiple of the identity cannot be dropped in Theorem 2.

REMARK 2. Since for every A∈CN×N \I , lim
ε→0

φ j(ε) = 0 = lim
ε→0

ψ j(ε) , we have

{λ j} =
⋂

0<ε<1

σε(A,λ j).

Thus the usual Spectral Mapping Theorem can be deduced from Theorem 2.

REMARK 3. Let A ∈ CN×N \I and f (z) = α + β z where α,β are complex
numbers with β �= 0. Then

φ j(ε) = sup
z∈σε (A,λ j)

1
‖β zI−βA‖‖(β zI−βA)−1‖

= sup
λ∈σε(A,λ j)

1
‖zI−A‖‖(zI−A)−1‖

= ε.

In a similar way we have ψ j(ε) = ε . Thus σε(αI + βA,α + β λ j) = α + β σε(A,λ j) .

In the following we consider a 2× 2 normal matrix and give estimates for the
functions φ j and ψ j .

EXAMPLE 1. Let A =
[
1 0
0 −1

]
. The matrix is normal and everything can be

worked out analytically. The eigenvalues are λ1 = 1, λ2 = −1. Take f (z) = z2 + 2z .
First consider λ1 = 1:

φ1(ε) = sup
ξ∈σε (A,1)

‖ f (ξ )I− f (A)‖−1 ‖( f (ξ )I− f (A))−1‖−1

= sup
ξ∈σε (A,1)

∥∥∥∥
[

ξ 2 +2ξ −3 0
0 ξ 2 +2ξ +1

]∥∥∥∥
−1
∥∥∥∥∥
[

ξ 2 +2ξ −3 0
0 ξ 2 +2ξ +1

]−1
∥∥∥∥∥
−1

= sup
ξ∈D

(
1+ε2

1−ε2 , 2ε
1−ε2

) |ξ
2 +2ξ −3|

|ξ 2 +2ξ +1| = ε(2− ε),
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where D(z,r) is the disk of radius r and center at z . Hence σε(A,1)2 + 2σε(A,1) ⊆
σφ1(ε)(A2 +2A,3) . Also

ψ1(ε) = sup
μ2+2μ∈σε (A2+2A,3)

‖μI−A‖−1 ‖(μI−A)−1‖−1

= sup
μ∈σε (A2+2A,3)

∥∥∥∥
[√

1+ μ −2 0
0

√
1+ μ

]∥∥∥∥
−1
∥∥∥∥∥
[√

1+ μ −2 0
0

√
1+ μ

]−1
∥∥∥∥∥
−1

= sup
μ∈D

(
3+ε2

1−ε2 , 4ε
1−ε2

) |
√

1+ μ −2|
|√1+ μ| = 1−√

1− ε.

Hence σε(A2 + 2A,3) ⊆ σψ1(ε)(A,1)2 + 2σψ1(ε)(A,1) . Next, consider the eigenvalue
λ2 = −1.

φ2(ε) = sup
ξ∈σε (A,−1)

‖ f (ξ )I− f (A)‖−1 ‖( f (ξ )I− f (A))−1‖−1

= sup
ξ∈σε (A,−1)

∥∥∥∥
[

ξ 2 +2ξ −3 0
0 ξ 2 +2ξ +1

]∥∥∥∥
−1
∥∥∥∥∥
[

ξ 2 +2ξ −3 0
0 ξ 2 +2ξ +1

]−1
∥∥∥∥∥
−1

= sup

ξ∈D

(
−(1+ε2)

1−ε2 , 2ε
1−ε2

) |ξ 2 +2ξ +1|
|ξ 2 +2ξ −3| =

ε2

1−2ε
.

Hence σε(A,−1)2 +2σε(A,−1) ⊆ σφ1(ε)(A2 +2A,−1) . Also

ψ2(ε) = sup
μ2+2μ∈σε (A2+2A,−1)

‖μI−A‖−1 ‖(μI−A)−1‖−1

= sup
μ∈σε (A2+2A,−1)

∥∥∥∥
[√

1+ μ −2 0
0

√
1+ μ

]∥∥∥∥
−1
∥∥∥∥∥
[√

1+ μ −2 0
0

√
1+ μ

]−1
∥∥∥∥∥
−1

= sup

μ∈D

(
−(1+3ε2)

1−ε2 , 4ε
1−ε2

) |√1+ μ|
|√1+ μ −2| =

√
ε .

3. The size of condition spectral component of f (A)

In this section we estimate the size of each component of the condition spectrum
of A and f (A) , where f is analytic. The N ×N identity matrix is denoted by I . For
m < N , the m×m identity matrix is denoted by Im . For any set S , the boundary of the
set is denoted by ∂S . We start our discussion about the size of the condition spectrum
components of a diagonalizable matrix near an eigenvalue.

THEOREM 3. Let A∈CN×N and {λ1, ...,λk} be the distinct eigenvalues of A. Let
λ ∈σ(A) be of algebraic multiplicity m � 1 . Let A be diagonalizable and A = QDQ−1



PSEUDOSPECTRUM AND CONDITION SPECTRUM 127

where

D =
[

λ Im
D2

]
and λ /∈ σ(D2) . For 0 < ε < 1 and z ∈ ∂σε(A,λ ) ,

|z−λ |= ε ‖P‖
∥∥∥∥Q

[
0

λ IN−m −D2

]
Q−1

∥∥∥∥+O(ε2),

where P is the projection onto the eigenspace ker(A−λ I) along the range of A−λ I :

P = Q

[
Im

0

]
Q−1.

Proof. Let z ∈ ∂σε (A,λ ) . Observe that

‖zI−A‖ = ‖zI−λ I + λ I−A‖
= ‖λ I−A‖+O(|z−λ |)
=
∥∥∥∥Q

[
0

λ IN−m −D2

]
Q−1

∥∥∥∥+O(|z−λ |).

From Theorem 3.1 of [5],

‖(zI−A)−1‖ =
∥∥∥∥Q

[
(z−λ )−1Im

(zIN−m −D2)−1

]
Q−1

∥∥∥∥
=

‖P‖
|z−λ | +O(1).

Since z ∈ ∂σε(A,λ ) ,

1
ε

= ‖zI−A‖‖(zI−A)−1‖

=
‖P‖

∥∥∥∥Q
[
0

λ IN−m−D2

]
Q−1

∥∥∥∥
|z−λ | +O(1).

This implies that

|z−λ |= ε ‖P‖
∥∥∥∥Q

[
0

λ IN−m −D2

]
Q−1

∥∥∥∥+O(ε2). �

COROLLARY 1. Let A ∈ CN×N and λ1, . . . ,λk be the distinct eigenvalues of A.
Suppose A is diagonalizable and A = QDQ−1 for some diagonal D. Assume f is
analytic on some open set containing σ(A) . Let λ be any eigenvalue of A and m̃ be
the multiplicity of f (λ ) as an eigenvalue of f (A) . Define

P̃ = Q

[
λ Im̃

0

]
Q−1,



128 G. KRISHNA KUMAR AND S. H. LUI

assuming that all eigenvalues μ so that f (μ) = f (λ ) are placed in the first diagonal
entries of D. Let 0 < s < 1 . Then for any ζ ∈ ∂σs( f (A), f (λ )) ,

|ζ − f (λ )| = s‖P̃‖
∥∥∥∥Q

[
0

f (λ )IN−m̃ − f (D2)

]
Q−1

∥∥∥∥+O(s2).

Proof. Note that

f (D) =
[

f (λ ) Im̃
f (D2)

]

where D2 is diagonal so that f (μ) is distinct from f (λ ) for any diagonal entry μ of
D2 . The result now follows from a direct application of Theorem 3. �

In Corollary 1, suppose λ is an eigenvalue of multiplicity m . If A has an eigen-
value μ distinct from λ so that f (μ) = f (λ ) , then m̃ > m . Otherwise m̃ = m .

Next we consider a matrix A belonging to a more general class and study the
size of the components of condition spectrum of A and of f (A) , where f is analytic.
The index of an eigenvalue is the size of the largest Jordan block associated with the
eigenvalue.

THEOREM 4. Let A ∈ CN×N and λ1, · · · ,λk be the distinct eigenvalues of A. Let
λ ∈ {λ1, · · · ,λk} of index m > 1 and suppose there is exactly one Jordan block associ-
ated with λ . Let A = QJQ−1 , where

J =

⎡
⎢⎢⎢⎢⎢⎣

λ 1
. . .

. . .
λ 1

λ
J2

⎤
⎥⎥⎥⎥⎥⎦ (1)

be a Jordan block of A with first block m×m and λ /∈σ(J2) . For 0 < ε < 1 sufficiently
small and any z ∈ ∂σε (A,λ ) ,

|z−λ |= ε1/m ‖Nm−1
1 ‖1/m

∥∥∥∥N1 +Q

[
0

λ IN−m − J2

]
Q−1

∥∥∥∥
1/m

+O(ε2/m),

where

N1 = Q

⎡
⎢⎢⎢⎢⎢⎣

0 1
. . .

. . .
0 1

0
0

⎤
⎥⎥⎥⎥⎥⎦Q−1. (2)
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Proof. Let z ∈ ∂σε (A,λ ) . Observe that

‖zI−A‖ = ‖zI−λ I + λ I−A‖
= ‖λ I−A‖+O(|z−λ |)
=
∥∥∥∥N1 +Q

[
0

λ IN−m− J2

]
Q−1

∥∥∥∥+O(|z−λ |).

From Theorem 3.3 of [5],

‖(zI−A)−1‖ = |z−λ |−m‖Nm−1
1 ‖+O(|z−λ |1−m).

Since z ∈ ∂σε(A,λ ) ,

1
ε

= ‖zI−A‖‖(zI−A)−1‖

= |z−λ |−m‖Nm−1
1 ‖

∥∥∥∥N1 +Q

[
0

λ IN−m− J2

]
Q−1

∥∥∥∥+O(|z−λ |1−m).

This implies that

|z−λ |m = ε ‖Nm−1
1 ‖

∥∥∥∥N1 +Q

[
0

λ IN−m − J2

]
Q−1

∥∥∥∥+O(ε |z−λ |),

and the result now follows. �

In the above theorem, we assume for ease of exposition that there is only one
Jordan block of size m for the eigenvalue λ . The result also holds if there are k > 1
such Jordan blocks. In this case first diagonal block in (2) must be replicated k times.

COROLLARY 2. Assume the hypotheses of the above theorem. Let f be ana-
lytic on some open set containing σ(A) so that f ′(λ ) �= 0 . Suppose f (λ ) �= f (μ)
for every eigenvalue μ of A distinct from λ . For 0 < s < 1 sufficiently small and
ζ ∈ ∂σs( f (A), f (λ )) ,

|ζ − f (λ)| = | f ′(λ)|1− 1
m ‖Nm−1

1 ‖1/m

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ) · · · − f (m−1)(λ)
(m−1)!

. . .
. . .

...
0 − f ′(λ)

0
f (λ)IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

1/m

s1/m +O(s2/m),

where N1 is defined in (2).

Proof. Since ζ ∈ ∂σs( f (A), f (λ )) ,

1
s

= ‖ζ I− f (A)‖‖(ζ I− f (A))−1‖ = ‖Q(ζ I− f (J))Q−1‖‖Q(ζ I− f (J))−1Q−1‖.
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Let J1 be the first diagonal block of (1). Recall that

f (J1) = f (λ )Im + f ′(λ )N1 + . . .+
f (m−1)(λ )
(m−1)!

Nm−1
1 =

⎡
⎢⎢⎢⎢⎣

f (λ ) f ′(λ ) · · · f (m−1)(λ )
(m−1)!

. . .
. . .

...
f (λ ) f ′(λ )

f (λ )

⎤
⎥⎥⎥⎥⎦ .

Thus we have,

‖ζ I− f (A)‖ = ‖ζ I− f (λ )I + f (λ )I− f (A)‖
= ‖ f (λ )I− f (A)‖+O(|ζ − f (λ )|)

=

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

...
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
+O(|ζ − f (λ )|).

From Corollary 3.4 of [5],

‖(ζ I− f (A))−1‖ = | f ′(λ )|m−1‖Nm−1
1 ‖ |ζ − f (λ )|−m +O(|ζ − f (λ )|1−m).

Thus

1
s

= | f ′(λ )|m−1‖Nm−1
1 ‖

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

.

.

.
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
|ζ − f (λ )|−m +O(|ζ − f (λ )|1−m),

from which the desired result follows. �
We next indicate briefly what happens in case of the hypotheses in the above fail.

For instance, assume f (λ ) = f (μ) for some eigenvalue μ with largest index m̃ >
m . Suppose f ′(μ) �= 0. Then the dominant behavior comes from the Jordan block
corresponding to μ of dimension m̃ . In this case, we obtain for ζ ∈ ∂σs( f (A), f (λ )) ,

|ζ − f (λ)| = | f ′(λ)|1− 1
m̃ ‖Ñm̃−1‖1/m̃

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ) · · · − f (m̃−1)(λ)
(m̃−1)!

. . .
. . .

...
0 − f ′(λ)

0
f (λ)IN−m̃ − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

1/m̃

s1/m̃ +O(s2/m̃),

where Ñ is the nilpotent matrix associated with the Jordan block of μ of size m̃ and
f (λ ) /∈ σ( f (J2)) .

Next we assume that the hypotheses of Theorem 4 holds, except that f ′(λ ) = 0
and f ′′(λ ) �= 0. First assume that the index of λ is odd: 2k + 1. The dominant term
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of (ζ Im − f (J1))−1 occurs in the top right corner and is 2−k f ′′(λ )kδ−k−1 +O(|δ |−k)
where δ = ζ − f (λ ) , see [5]. This leads to, for ζ ∈ ∂σs( f (A), f (λ )) ,

|ζ − f (λ )| = s1/(k+1)
( | f ′′(λ )|

2

)k/(k+1)

‖Nm−1
1 ‖1/(k+1)α1/(k+1) +O(s2/(k+1)),

where α :=

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

...
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
.

If the index of λ is even: m = 2k , then the dominant term of (ζ I − f (A))−1 is
O(|δ |−k) and it occurs at the (1,m−1),(2,m) and (1,m) entries of the matrix if m � 4.
If m = 2, then the dominant term occurs at the (1,2) entry ([5]).

4. Asymptotic expansions

In this section, we give asymptotic expansions for the functions φ j and ψ j in
Theorem 2. We first discuss the case of a diagonalizable matrix.

THEOREM 5. Let A ∈ CN×N \I and λ1, ...,λk be the distinct eigenvalues of A.
Suppose the algebraic multiplicity of λ1 is m � 1 and A = QDQ−1 where D is diago-
nal:

D =
[

λ1Im
D2

]

and D2 is diagonal with λ1 /∈ σ(D2) . Let D3 be diagonal whose diagonal entries are
the diagonal entries μ of D so that f (λ1) �= f (μ) . Let f be an analytic function in
some open set containing σ(A) . For small 0 < ε < 1 ,

φ1(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
| f ′(λ1)|‖P‖

∥∥∥∥∥∥Q
⎡
⎣0

λ1IN−m −D2

⎤
⎦Q−1

∥∥∥∥∥∥
‖P̃‖

∥∥∥∥∥∥Q
⎡
⎣0

f (λ1)IN−m̃ − f (D3)

⎤
⎦Q−1

∥∥∥∥∥∥
+O(ε2), f ′(λ1) �= 0;

ε2 | f ′′(λ1)|
2 ‖P‖2

∥∥∥∥∥∥Q
⎡
⎣0

λ1IN−m −D2

⎤
⎦ Q−1

∥∥∥∥∥∥
2

‖P̃‖
∥∥∥∥∥∥Q
⎡
⎣0

f (λ1)IN−m̃ − f (D3)

⎤
⎦Q−1

∥∥∥∥∥∥
+O(ε3), f ′(λ1) = 0, f ′′(λ1) �= 0;

where P and P̃ are as defined in Theorem 3 and Corollary 1, respectively, and m̃ is
the algebraic multiplicity of f (λ1) as an eigenvalue of f (A) . For 0 < s < 1 sufficiently
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small,

ψ1(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s‖P̃‖
∥∥∥∥∥∥Q
⎡
⎣0

f (λ1)IN−m̃ − f (D3)

⎤
⎦Q−1

∥∥∥∥∥∥
| f ′(λ1)| ‖P‖

∥∥∥∥∥∥Q
⎡
⎣0

λ1IN−m −D2

⎤
⎦Q−1

∥∥∥∥∥∥
+O(s2), f ′(λ1) �= 0;

s1/2‖P̃‖1/2

∥∥∥∥∥∥Q
⎡
⎣0

f (λ1)IN−m̃ − f (D3)

⎤
⎦Q−1

∥∥∥∥∥∥
1/2

√
| f ′′(λ1)|

2 ‖P‖
∥∥∥∥∥∥Q
⎡
⎣0

λ1IN−m −D2

⎤
⎦Q−1

∥∥∥∥∥∥
+O(s), f ′(λ1) = 0, f ′′(λ1) �= 0.

Proof. By definition,

φ1(ε) = sup
z∈σε (A,λ1)

1
‖ f (z)I − f (A)‖ ‖( f (z)I − f (A))−1‖

= sup
z∈σε (A,λ1)

1
‖Q( f (z)I − f (D))Q−1‖ ‖Q( f (z)I− f (D))−1Q−1‖ .

Define η = f (z)− f (λ1) for z ∈ ∂σε(A,λ1) . Note that

f (z)I − f (D) =
[

ηIm̃
f (λ1)IN−m̃ − f (D3)

]
+
[
0

ηIN−m̃

]
.

Hence

‖Q( f (z)I− f (D))Q−1‖ ‖Q( f (z)I− f (D))−1Q−1‖ =
‖P̃‖

∥∥∥∥Q
[
0

f (λ1)IN−m̃ − f (D3)

]
Q−1

∥∥∥∥
|η | +O(1).

If f ′(λ1) �= 0, then

η = f ′(λ1)(z−λ1)+O(|z−λ1|2) = ε f ′(λ1)‖P‖
∥∥∥∥Q

[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥+O(ε2),

by Theorem 3. Hence,

φ1(ε) =
ε| f ′(λ1)| ‖P‖

∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
‖P̃‖

∥∥∥∥Q
[
0

f (λ1)IN−m̃ − f (D3)

]
Q−1

∥∥∥∥
+O(ε2).

Now assume that f ′(λ1) = 0 and f ′′(λ1) �= 0. Then

η =
f ′′(λ1)(z−λ1)2

2
+O(|z−λ1|3).

The expansion for φ1(ε) follows easily from Theorem 3.
Next we find the asymptotic expansion for ψ1 assuming f ′(λ1) �= 0. Let ζ1 =

f (λ1) and ζ = f (z) for z ∈ ∂σr(A,λ1) for some small 0 < r < 1. The inverse function
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theorem states that the inverse of f is well defined near ζ1 . We define f−1(ζ ) as the
unique element near λ1 . Let δ = f−1(ζ )− f−1(ζ1) . By definition,

ψ1(s) = sup
z∈ f−1(σs( f (A),ζ1))

1
‖zI−A‖ ‖(zI−A)−1‖

= sup
ζ∈σs( f (A),ζ1)

1
‖Q( f−1(ζ )I−D)Q−1‖ ‖Q( f−1(ζ )I−D)−1Q−1‖

= sup
ζ∈σs( f (A),ζ1)

∥∥∥∥Q
(

f−1(ζ )I−
[

λ1Im
D2

])
Q−1

∥∥∥∥
−1
∥∥∥∥∥Q
(

f−1(ζ )I−
[

λ1Im
D2

])−1

Q−1

∥∥∥∥∥
−1

= sup
ζ∈σs( f (A),ζ1)

∥∥∥∥Q
([

δ Im
λ1IN−m −D2 +δ IN−m

])
Q−1

∥∥∥∥
−1

×
∥∥∥∥Q
([

δ−1Im
(λ1IN−m −D2 +δ IN−m)−1

])
Q−1

∥∥∥∥
−1

= sup
ζ∈σs( f (A),ζ1)

|δ |
‖P‖

∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
+O(|δ |2)

= sup
ζ∈σs( f (A),ζ1)

|ζ −ζ1|
| f ′(λ1)|‖P‖

∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
+O(|ζ −ζ1|2)

=
s‖P̃‖

∥∥∥∥Q
[
0

f (λ1)IN−m̃ − f (D3)

]
Q−1

∥∥∥∥
| f ′(λ1)|‖P‖

∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
+O(s2).

In the above we use the fact that δ =
ζ − ζ1

f ′(λ1)
+O(|ζ − ζ1|2) and Corollary 1. Now

assume that f ′(λ1) = 0 and f ′′(λ1) �= 0. Note that

ζ − ζ1 = f (z)− f (λ1) =
f ′′(λ1)(z−λ1)2

2
+O(|z−λ1|3).

Given ζ in a small neighborhood of f (λ1) , there are elements z± = f−1(ζ ) in a small
neighborhood of λ1 . They satisfy

|z±−λ1| = |ζ − ζ1|1/2√| f ′′(λ1)|/2
+O(|ζ − ζ1|).

Consequently,

ψ1(s) = sup
ζ∈σs( f (A),ζ1 )

max
z±∈ f−1(ζ )

1
‖z±I−A‖ ‖(z±I−A)−1‖

= sup
ζ∈σs( f (A),ζ1 )

max
z±∈ f−1(ζ )

1∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1 +(z±−λ1)I

∥∥∥∥
× 1∥∥∥∥∥Q

[
(z±−λ1)Im

λ1IN−m −D2 +(z±−λ1)I

]−1

Q−1

∥∥∥∥∥
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= sup
ζ∈σs( f (A),ζ1 )

max
z±∈ f−1(ζ )

1∥∥∥∥Q
[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
· |z±−λ1|

‖P‖ +O(|z±−λ1|2)

= sup
ζ∈σs( f (A),ζ1 )

|ζ −ζ1|1/2√
| f ′′(λ1)|

2 ‖P‖
∥∥∥∥Q

[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
+O(|ζ −ζ1|)

=
s1/2‖P̃‖1/2

∥∥∥∥Q
[
0

f (λ1)IN−m̃ − f (D3)

]
Q−1

∥∥∥∥
1/2

√
| f ′′(λ1)|

2 ‖P‖
∥∥∥∥Q

[
0

λ1IN−m −D2

]
Q−1

∥∥∥∥
+O(s),

using Corollary 1. �

REMARK 4. An immediate consequence of the above theorem is that

φ1(ψ1(s)) =

{
s+O(s2), f ′(λ1) �= 0;

s+O(s3/2), f ′(λ1) = 0, f ′′(λ1) �= 0;

and
ψ1(φ1(ε)) = ε +O(ε2),

as long as f ′(λ1) and f ′′(λ1) are not both zero.

EXAMPLE 2. Consider the Example 1 again, where λ1 = 1,λ2 = −1 and f (z) =
z2 +2z . We have f ′(λ1) �= 0 and

φ1(ε) = 2ε − ε2 and ψ1(ε) = 1−√
1− ε =

ε
2

+
ε2

8
+ · · · .

Thus the results agree with Theorem 5. Note f ′(λ2) = 0, f ′′(λ2) �= 0 and

φ2(ε) = ε2 +2ε3 + · · · and ψ2(ε) = ε1/2.

Thus the results agree with Theorem 5.

THEOREM 6. Let λ be an eigenvalue of the matrix A ∈ CN×N of index m � 2
and A = QJQ−1 , where J is a Jordan form defined in (1). Let f be a function analytic
in some open set containing σ(A) and satisfying f ′(λ ) �= 0 . Suppose f (λ ) �= f (μ) for
any other eigenvalue μ distinct from λ . For small 0 < ε < 1 ,

φ1(ε) =

∥∥∥∥N1 +Q

[
0

λ IN−m − J2

]
Q−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

...
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

| f ′(λ )|ε +O(ε1+ 1
m ),
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where N1 has been defined in (2). For small 0 < s < 1 ,

ψ1(s) =

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

...
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥N1 +Q

[
0

λ IN−m− J2

]
Q−1

∥∥∥∥
s

| f ′(λ )| +O(s1+ 1
m ).

Proof. Let δ = f (z)− f (λ ) = f ′(λ )(z−λ )+O(|z−λ |2) for z ∈ ∂σε(A,λ ) . By
definition

φ1(ε) = sup
z∈σε (A,λ)

1
‖ f (z)I− f (A)‖ ‖( f (z)I− f (A))−1‖

= sup
z∈σε (A,λ)

1
‖Q( f (z)I− f (J))Q−1‖ ‖Q( f (z)I− f (J))−1Q−1‖

= sup
z∈σε (A,λ)

|δ |m

| f ′(λ)|m−1‖Nm−1
1 ‖

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ) · · · − f (m−1)(λ)
(m−1)!

. . .
. . .

...
0 − f ′(λ)

0
f (λ)IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

+O(|δ |m+1)

= sup
z∈σε (A,λ)

| f ′(λ)(z−λ)|m

| f ′(λ)|m−1‖Nm−1
1 ‖

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ) · · · − f (m−1)(λ)
(m−1)!

. . .
. . .

...
0 − f ′(λ)

0
f (λ)IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

+O(|z−λ |m+1)

=

∥∥∥∥N1 +Q

[
0

λ IN−m − J2

]
Q−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ) · · · − f (m−1)(λ)
(m−1)!

. . .
. . .

...
0 − f ′(λ)

0
f (λ)IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

| f ′(λ)|ε +O(ε1+ 1
m ),

by Theorem 4.

Next, we find an asymptotic expansion for ψ1(s) . Let δ = f−1(ζ )− f−1(ζ1)
where ζ ∈ ∂σs( f (A),ζ1) and ζ1 = f (λ ) . Again, f−1(ζ ) is unique in a small neigh-
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borhood of λ . Now

ψ1(s) = sup
z∈ f−1(σs( f (A),ζ1))

1
‖zI−A‖ ‖(zI−A)−1‖

= sup
ζ∈σs( f (A),ζ1)

1
‖Q( f−1(ζ )I− J)Q−1‖ ‖Q( f−1(ζ )I− J)−1Q−1‖

= sup
ζ∈σs( f (A),ζ1)

|δ |m

| f ′(λ )|m‖Nm−1
1 ‖

∥∥∥∥N1 +Q

[
0

λ IN−m− J2

]
Q−1

∥∥∥∥
+O(|δ |m+1)

= sup
ζ∈σs( f (A),ζ1)

|ζ − ζ1|m

| f ′(λ )|m‖Nm−1
1 ‖

∥∥∥∥N1 +Q

[
0

λ IN−m− J2

]
Q−1

∥∥∥∥
+O(|ζ − ζ1|m+1)

=

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

0 − f ′(λ ) · · · − f (m−1)(λ )
(m−1)!

. . .
. . .

...
0 − f ′(λ )

0
f (λ )IN−m − f (J2)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥N1 +Q

[
0

λ IN−m − J2

]
Q−1

∥∥∥∥
s

| f ′(λ )| +O(s1+ 1
m ),

using Corollary 2. �

An immediate corollary of the above theorem is that

ψ1(φ1(ε)) = ε +O(ε1+ 1
m ) and φ1(ψ1(s)) = s+O(s1+ 1

m ).

Again for the ease of exposition, we assumed that there is only one Jordan block corre-
sponding to λ of size m . The result also holds in the general case of k � 1 such Jordan
blocks. Using the fact discussed immediately following Corollary 2, a similar analysis
also works for the other cases where f (λ ) = f (μ) for λ �= μ or when f ′(λ ) = 0.

EXAMPLE 3. Let A =
[
0 1
0 0

]
. The eigenvalue λ1 = 0 has index m = 2. Take

f (z) = z2 + z . Observe that f ′(0) = 1 and f (A) = A . It is easy to check that

σε(A,0) = σε ( f (A), f (0)) =

{
z ∈ C : |z| �

√
ε(1+2ε)
1− ε

}
.
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Now

φ1(ε) = sup
z∈σε (A,0)

‖ f (z)I− f (A)‖−1 ‖( f (z)I− f (A))−1‖−1

= sup
|z|�

√
ε(1+2ε)
1−ε

2|z2 + z|2
1+2|z2 + z|+√1+4|z2 + z|2

= sup
|z|�

√
ε(1+2ε)
1−ε

2|z2 + z|2
1+2|z2 + z|+1+2|z2 + z|2 + · · ·

= sup
|z|�

√
ε(1+2ε)
1−ε

|z|2|z+1|2 + · · ·

= ε +O(ε3/2).

In the calculation of ψ1 below, let z = f−1(ζ ) = (−1 +
√

1+4ζ)/2 ≈ ζ − ζ 2 for a
small ζ .

ψ1(s) = sup
z∈ f−1(σs( f (A),ζ1))

‖zI−A‖−1 ‖(zI−A)−1‖−1

= sup
ζ∈σs(A,0))

‖(ζ − ζ 2)I−A‖−1 ‖((ζ − ζ 2)I−A)−1‖−1 +O(|ζ |3)

= sup
|ζ |�

√
s(1+2s)
1−s

2|ζ − ζ 2|2
1+2|ζ − ζ 2|2 +

√
1+4|ζ − ζ 2|2 +O(|ζ |3)

= sup
|ζ |�

√
s(1+2s)
1−s

2|ζ − ζ 2|2
1+2|ζ − ζ 2|2 +1+2|ζ − ζ 2|2 + · · · +O(|ζ |3)

= s+O(s3/2).

This example illustrates the correctness of Theorem 6.

5. Component-wise Weak Spectral Mapping Theorem

In [2], a relation connecting pseudospectrum and condition spectrum of an ele-
ment in a complex unital Banach algebra is given as set inclusions. In this section
we give an improved estimate on the relation between pseudospectrum and condition
spectrum in the matrix algebra (Lemma 1). For a sufficiently small ε , a relation be-
tween each component of pseudospectra and condition spectra near an eigenvalue of a
matrix is also given (Theorem 7). The functions φ j and ψ j defined in the Theorem 1
are continuous and monotonically non-decreasing but it appears to be difficult to find
the values of these functions explicitly. In this section, we replace these functions φ j ,
ψ j with the functions γ j, δ j , respectively, that are relatively easier to estimate. Using
these functions, an analogue of the Spectral Mapping Theorem for the components of
condition spectrum is given (Theorem 8). We also give some examples to illustrate the
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theory. For A ∈ CN×N , the minimum singular value of A is denoted by smin(A) . For
ε � 0 the ε -pseudospectrum of A ∈ CN×N is denoted by Λε (A) and is defined as

Λε(A) = {z ∈ C : ‖(zI−A)−1‖ � ε−1} = {z ∈ C : smin(zI−A) � ε}.

The component of Λε(A) near the eigenvalue λ j is denoted by Λε(A,λ j) .

LEMMA 1. Let A ∈ CN×N and {λ1,λ2, . . . ,λk} denote the distinct eigenvalues of

A. Define ρ := max
j

‖λ jI −A‖ and α(A) = sup
z∈σε (A)

min j |z−λ j|
smin(zI−A)

. Then for 0 < ε <

1/α(A) ,
Λ ε ρ

2
(A) ⊆ σε (A) ⊆ Λ ε ρ

1−ε α(A)
(A).

Proof. By definition, for 0 < ε < 1, σε (A) :=
{

z ∈ C : ‖zI−A‖‖(zI−A)−1‖ � 1
ε

}
.

Thus,

σε(A) = {z ∈ C : smin(zI−A) � ε ‖zI−A‖}
⊆
{

z ∈ C : smin(zI−A) � ε (min
j
|z−λ j|+‖λ jI−A‖)

}

⊆
{

z ∈ C : smin(zI−A) � ε (min
j
|z−λ j|+max

j
‖λ jI−A‖)

}
.

Note that α(A) � 1 and

σε(A) ⊆ {z ∈ C : smin(zI−A) � ε (ρ + α(A)smin(zI−A))}
=
{

z ∈ C : smin(zI−A) � ε ρ
1−α(A)ε

}
.

Thus for 0 < ε < 1/α(A) ,
σε(A) ⊆ Λ ε ρ

1−ε α(A)
(A).

Let z ∈ Λ ερ
2

(A) . For all j = 1,2, ...,k ,

‖λ jI−A‖� |λ j − z|+‖zI−A‖.

Therefore
‖zI−A‖� max

j
‖λ j −A‖− |λ j− z|

or
max

j
‖λ jI−A‖ � ‖zI−A‖+ |z−λ j| � 2 ‖zI−A‖.

Thus
‖zI−A‖ � ρ

2
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and

‖(zI−A)−1‖ ‖zI−A‖ � 2
ερ

· ρ
2

=
1
ε
.

Therefore
σε (A) ⊇ Λ ε ρ

2
(A). �

The following theorem gives a relation connecting each component of pseudospec-
trum and condition spectrum of a matrix near an eigenvalue. Let D(z,r) denote the
closed disk in the complex plane with center z and radius r .

Fix λ j ∈ σ(A) . We know that there are positive ε j and r j = r j(ε j) so that for all
0 < ε � ε j, σε(A,λ j) ⊆ D(λ j,r j) and D(λ j,r j) has a trivial intersection with all other
components of the condition spectrum: D(λ j,r j)∩σε(A,λq) = ϕ , for all q �= j .

THEOREM 7. Let A∈CN×N and λ j ∈σ(A) . Define α j(A) = sup
z∈σε (A,λ j)

|z−λ j|
smin(zI−A)

.

Then for 0 < ε < 1/min{α j(A),ε j} ,

Λ ε ‖λ j I−A‖
2

(A,λ j) ⊆ σε(A,λ j) ⊆ Λ ε ‖λ j I−A‖
1−ε α j (A)

(A,λ j).

Proof. Let r j be as defined in the paragraph before the statement of this theorem.
Then

σε(A,λ j) = {z ∈ D(λ j,r j) : smin(zI−A) � ε ‖zI−A‖}
⊆ {z ∈ D(λ j,r j) : smin(zI−A) � ε (|z−λ j|+‖λ jI−A‖)}.

Note that α j(A) � 1 and

σε(A,λ j) ⊆ {z ∈ D(λ j,r j) : smin(zI−A) � ε (‖λ jI−A‖+ α j(A)smin(zI−A))}
=
{

z ∈ D(λ j,r j) : smin(zI−A) � ε ‖λ jI−A‖
1− ε α j(A)

}
.

Thus for 0 < ε <
1

min(α j(A),ε j)
,

σε (A,λ j) ⊆ Λ ε ‖λ j I−A‖
1−ε α j (A)

(A,λ j).

Let z ∈ Λ ε ‖λ j I−A‖
2

(A,λ j) . Then

‖λ jI−A‖ � ‖zI−A‖+ |z−λ j| � 2 ‖zI−A‖,

and so

‖zI−A‖ � ‖λ jI−A‖
2

.
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Consequently,

‖zI−A‖ ‖(zI−A)−1‖ � ‖λ jI−A‖
2

· 2
ε ‖λ jI−A‖ =

1
ε
,

and it follows that
σε(A,λ j) ⊇ Λ ε ‖λ j I−A‖

2

(A,λ j). �

Using the relation proved between components of pseudospectrum and condition
spectrum of a matrix near an eigenvalue, we give the following theorem, which is a
weak version of Theorem 1. It is weak compared to Theorem 2 because in this theo-
rem we assume that f is injective and also analytic in a bigger neighborhood. More
importantly, the functions describing the sizes of the condition spectra are larger than
the corresponding ones in Theorem 2. We follow the approach in [4].

THEOREM 8. (Weak Condition Spectral Mapping Theorem.) Let A ∈ CN×N and
λ j ∈ σ(A) . Let ρ ,α(A),α j(A) be as defined in Lemma 1 and Theorem 7. Let 0 < ε < 1
be sufficiently small and Ω be an open subset of C containing σ ε ρ

1−ε α(A)
(A) . Let f be

an injective analytic function defined on Ω . Assume further A, f (A) are not scalar
multiple of the identity. Define

γ j(ε) := sup

{
‖ f (A+P)− f (A)‖ : ‖P‖ � ε ‖λ jI−A‖

1− ε α j(A)

}
,

δ j(ε) := sup

{
‖Q‖ : ‖ f (A+Q)− f (A)‖� ε ‖ f (λ j)I− f (A)‖

1− ε α j( f (A))

}
,

where α j( f (A)) = sup
z∈σε ( f (A), f (λ j))

|z− f (λ j)|
smin(zI− f (A))

. Then lim
ε→0

γ j(ε) = 0 = lim
ε→0

δ j(ε) and

the following two assertions hold:

1. Let 0 < ε < 1/min{α j(A),ε j} be such that
2 γ j(ε)

‖ f (λ j)I− f (A)‖ < 1 . Then

f (σε (A,λ j)) ⊆ σ 2 γ j (ε)
‖ f (λ j )I− f (A)‖

( f (A), f (λ j)) ;

2. Let 0 < ε < 1/min{α j(A),ε j} be such that
2 δ j(ε)
‖λ j I−A‖ < 1 . Then

σε ( f (A), f (λ j)) ⊆ f

(
σ 2 δ j(ε)

‖λ j I−A‖
(A,λ j)

)
.

Proof. Since the map A �→ f (A) is continuous, we obtain lim
ε→0

γ j(ε) = 0. Since f

is injective on Ω the inverse of f exist on Ω . Let g : f (Ω) → Ω be the inverse of f .
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Since the map B �→ g(B) is continuous, we obtain lim
ε→0

δ j(ε) = 0. Let ε > 0 be such

that
2 γ j(ε)

‖ f (λ j)I− f (A)‖ < 1 and z ∈ σε (A,λ j) . Recall that for any r > 0,

Λr(A) =
⋃
{σ(A+E), ‖E‖ � r}.

By Theorem 7, there exist B∈CN×N with ‖B‖� ε ‖λ jI−A‖
1− ε α j(A)

such that z∈σ(A+

B) . Then by the Spectral Mapping Theorem, f (z) ∈ σ( f (A + B)) = σ( f (A) +C) ,
where C = f (A+B)− f (A) , which satisfies ‖C‖ � γ j(ε) . By Theorem 7,

f (z) ∈ Λγ j(ε)( f (A), f (λ j)) ⊆ σ 2 γ j (ε)
‖ f (λ j )I− f (A)‖

( f (A), f (λ j)).

This proves 1.
Let z ∈ σε ( f (A), f (λ j)) . Then by Theorem 7, z ∈ σ( f (A) + D) for some D ∈

CN×N with ‖D‖ � ε ‖ f (λ j)I− f (A))‖
1− ε α j( f (A))

. By the Inverse Mapping Theorem ([6]), there

exist a unique P ∈ CN×N and ε1 > 0 such that ‖P‖ � ε1 and f (A+P) = f (A)+D .
Thus by the Spectral Mapping Theorem there exists μ ∈ σ(A+P) such that

f (μ) = z ∈ σ( f (A+P)) = σ( f (A)+D).

Claim: μ ∈ σ 2δ j(ε)
‖λ j I−A‖

(A,λ j) . Observe that

‖D‖ = ‖ f (A+P)− f (A)‖� ε ‖ f (λ j)I− f (A)‖
1− ε α j( f (A))

.

We can take

ε1 = δ j(ε) = sup

{
‖Q‖ : ‖ f (A+Q)− f (A)‖� ε ‖ f (λ j)I− f (A)‖

1− ε α j( f (A))

}
.

Now by Theorem 7, μ ∈ Λδ j(ε)(A,λ j) ⊆ σ 2δ j(ε)
‖λ j I−A‖

(A,λ j) . This proves the claim. Hence

z = f (μ) ∈ f

(
σ 2δ j(ε)

‖λ j I−A‖
(A,λ j)

)
. This proves 2. �

REMARK 5. Suppose the injective function f has a bounded Fréchet derivative in
a neighborhood of σε(A) and the inverse f−1 also has a bounded Fréchet derivative in
a neighborhood containing σε ( f (A)) . Let (Df )A and (Df−1) f (A) denote the Fréchet
derivative of f at A and Fréchet derivative of f−1 at f (A) , respectively. Define

Lj(ε) := sup

{
‖(Df )P‖ : P ∈ C

N×N , ‖P−A‖ � ε ‖λ jI−A‖
1− ε α j(A)

}
,

Lj(ε)
′
:= sup

{
‖(Df−1)P‖ : P ∈ C

N×N , ‖P− f (A)‖ � ε ‖ f (λ j)I− f (A)‖
1− ε α j( f (A))

}
.
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Then γ j(ε),δ j(ε) can be estimated as

γ j(ε) � ε ‖λ jI−A‖Lj(ε)
1− ε α j(A)

and δ j(ε) � ε ‖ f (λ j)I− f (A)‖Lj(ε)
′

1− ε α j( f (A))
.

In the following, we consider a general 3× 3 diagonal matrix A with positive
entries and analytically find the values γ j(A),δ j(A) in the weak condition Spectral
Mapping Theorem for the function f (z) = z3 .

EXAMPLE 4. Consider a 3× 3 diagonal matrix with distinct eigenvalues λ1 >
λ2 > λ3 > 0 and f (z) = z2 . We have

A =

⎡
⎣λ1

λ2

λ3

⎤
⎦ and f (A) = A2 =

⎡
⎣λ 2

1
λ 2

2
λ 2

3

⎤
⎦ .

We have ‖A‖ = λ1 and ‖ f (A)‖ = ‖A2‖ = λ 2
1 . For z ∈ C ,

‖zI−A‖ = max{|z−λ1|, |z−λ2|, |z−λ3|},
‖zI− f (A)‖ = ‖zI−A2‖ = max{|z−λ 2

1 |, |z−λ 2
2 |, |z−λ 2

3 |}.

For z ∈ σε(A,λ1) with ε small, we have smin(zI−A) = |z−λ1| and smin(zI− f (A)) =
smin(zI−A2) = |z−λ 2

1 | . This implies,

α1(A) = sup
z∈σε (A,λ1)

|z−λ1|
smin(zI−A)

= 1,

α1(A2) = sup
z∈σε (A2,λ 2

1 )

|z−λ 2
1 |

smin(zI−A2)
= 1.

Thus

γ1(ε) = sup

{
‖(A+P)2−A2‖ : ‖P‖ � ε ‖λ1I−A‖

1− ε α1(A)

}

= sup

{
‖AP+PA+P2‖ : ‖P‖ � ε ‖λ1I−A‖

1− ε

}

�
{

2‖A‖‖P‖+‖P2‖ : ‖P‖ � ε ‖λ1I−A‖
1− ε

}

=
2ε λ1 ‖λ1I−A‖

1− ε
+

(ε‖λ1I−A‖)2

(1− ε)2 ,

where ‖λ1I−A‖ = max{|λ1−λ2|, |λ1 −λ3|} . Hence by the Weak Condition Spectral
Mapping Theorem, for sufficiently small ε ,

(σε(A,λ1))
2 ⊆ σ 2γ1(ε)

‖ f (λ1)I− f (A)‖
(A2,λ 2

1 ),
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where ‖ f (λ1)I− f (A)‖ = ‖λ 2
1 −A2‖ = max{|λ 2

1 −λ 2
2 |, |λ 2

1 −λ 2
3 |} . Also,

δ1(ε) = sup

{
‖Q‖ : ‖(A+Q)2−A2‖ � ε ‖λ 2

1 I−A2‖
1− ε α1(A2)

}

= sup

{
‖Q‖ : ‖AQ+QA+Q2‖ � ε ‖λ 2

1 I−A2‖
1− ε

}

≈ sup

{
‖Q‖ : 2λ1‖Q‖−‖Q‖2 � ε ‖λ 2

1 I−A2‖
1− ε

}

≈ λ1−
√

λ 2
1 − ε ‖λ 2

1 −A2‖
1− ε

.

Hence by the Weak Condition Spectral Mapping Theorem we have,

σε(A2,λ 2
1 ) ⊆

(
σ 2δ1(ε)

‖λ1 I−A‖
(A,λ1)

)2

,

where ‖λ1I − A‖,‖λ 2
1 I − A2‖ are defined above. In a similar way we can estimate

the values of γ j(ε),δ j(ε) for j = 2,3 and a weak version of component-wise Spectral
Mapping Theorem near the eigenvalues λ2,λ3 can be derived.

Next we consider a general 2×2 upper triangular matrix A and estimate the values
γ j(A),δ j(A) in the Weak Condition Spectral Mapping Theorem for the function f (z) =
z2 .

EXAMPLE 5. Let A =
[
a c
0 b

]
such that a,b > 0. The eigenvalues are λ1 = a,λ2 =

b . Take f (z) = z2 . First consider λ1 = a . We have f (A) = A2 =
[
a2 (a+b)c
0 b2

]
. We

have

‖A‖ =
|a|2 + |b|2 + |c|2 +

√
(|a|2 + |b|2 + |c|2)2−4|a|2|b|2

2

‖aI−A‖ =
√
|a−b|2 + |c|2

‖a2I−A2‖ =
√
|a2− (a+b)c|2 + |a2−b2|2

For z ∈ C close to a ,

smin(zI−A) =
|z−a|2 + |z−b|2 + |c|2 −

√
(|z−a|2 + |z−b|2 + |c|2)2−4|z−a|2|z−b|2

2

smin(zI−A2) =
|z−a2|2+|z−b2|2+|(a+b)c|2−

√
(|z−a2|2+|z−b2|2+|(a+b)c|2)2−4|z−a2|2|z−b2|2

2
.
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By definition,

α1(A) = sup
z∈σε (A,a)

|z−a|
smin(zI−A)

,

α1(A2) = sup
z∈σε (A2,a2)

|z−a2|
smin(zI−A2)

.

Thus

γ1(ε) = sup

{
‖(A+P)2−A2‖ : ‖P‖ � ε ‖aI−A‖

1− ε α1(A)

}

= sup

{
‖AP+PA+P2‖ : ‖P‖ � ε ‖aI−A‖

1− ε α1(A)

}

� sup

{
2‖A‖‖P‖+‖P‖2 : ‖P‖ � ε ‖aI−A‖

1− ε α1(A)

}
.

Thus by the Weak Condition Spectral Mapping Theorem, for a sufficiently small ε ,

(σε(A,λ1))2 ⊆ σ 2γ1(ε)
‖a2I−A2‖

(A2,λ 2
1 ).

Also,

δ1(ε) = sup

{
‖Q‖ : ‖(A+Q)2−A2‖ � ε ‖a2I−A2‖

1− ε α1(A2)

}

= sup

{
‖Q‖ : ‖AQ+QA+Q2‖ � ε ‖a2I−A2‖

1− ε α1(A2)

}

≈ sup

{
‖Q‖ : 2‖A‖‖Q‖−‖Q‖2 � ε ‖a2I−A2‖

1− ε α1(A2)

}

≈ ‖A‖−
√
‖A‖2− ε ‖a2I−A2‖

1− εα1(A2)

Thus by the Weak Condition Spectral Mapping Theorem, for a sufficiently small ε ,

σε(A2,a2) ⊆
(

σ 2δ1(ε)
‖aI−A‖

(A,a)
)2

.

In a similar way we can analytically find the values of γ2(ε),δ2(ε) . Thus a weak
version of the component-wise Spectral Mapping Theorem near the eigenvalue λ2 = b
can be derived.
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