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C–SYMMETRIC OPERATORS AND REFLEXIVITY
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(Communicated by H. Radjavi)

Abstract. We study subspaces of all C -symmetric operators. Description of the preanihilator of
all C -symmetric operators is given. It is shown that the subspace of all C -symmetric operators
is transitive and 2-hyperreflexive.

1. Introduction and preliminaries

Let H be a complex separable Hilbert space with an inner product 〈·, ·〉 . Let C be
an isometric antilinear involution in H . By isometric it is meant that 〈 f ,g〉= 〈Cg,C f 〉
for all f ,g ∈ H . Since C is an involution, C2 = I . A bounded operator T ∈ B(H )
is called C-symmetric, if CTC = T ∗ . This is equivalent to the symmetry of T with
respect to the bilinear form [ f ,g] = 〈 f ,Cg〉 . Let us denote the set of all C -symmetric
operators by C = {T ∈ B(H ) : CTC = T ∗} .

C -symmetric operators and the whole set C was intensively studied in [3]. There
were given many examples of C -symmetric operators such as Jordan blocks, truncated
Toeplitz operators, Hankel operators ect.. The aim of the paper is to study the space
of C -symmetric operators from reflexivity–transitivity point of view, for definitions see
bellow. It is shown that the subspace of all C -symmetric operators is transitive and
2-reflexive or even 2-hyperreflexive. It means that the preanihilator of C does not
contain any rank-one operators and rank-two operators are dense in the preanihilator.
Moreover, we describe all rank-two operators in this preanihilator.

The set of all trace class operators on H will be denoted by τc with the norm
‖ ·‖1 , (this class of operators is often also denoted by C1 , see [8], or B1 , see [2]). The
dual action between τc and B(H ) is given by trace, i.e. 〈A,t〉= tr(At) for A∈ B(H ) ,
t ∈ τc . For k ∈ N , Fk stands for the set of operators on H of rank at most k . Every
rank-one operator may be written as x⊗ y , for x, y ∈ H , and (x⊗ y)z = 〈z,y〉x for
z ∈ H . Moreover, 〈T,x⊗ y〉 = tr(T (x⊗ y)) = 〈Tx,y〉 for any T ∈ B(H ) .

Recall that the reflexive closure of a subspace S ⊂ B(H ) is given by

RefS = {T ∈ B(H ) : Tx ∈ [S x] for all x ∈ H },
where [·] denotes the norm-closure. A subspace S is called reflexive, if S = RefS
and S is called transitive, if RefS = B(H ) . Transitivity means that there are no
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rank-one operators in the preanihilator. Reflexivity means, in contrast, that we have ”a
lot” of rank-one operators in the preanihilator. Namely, due to [7] we know that when
S is a weak* closed subspace of B(H ) , then S is reflexive if and only if S⊥ is
a closed linear span of rank-one operators contained in S⊥ (i.e., S⊥ = [S⊥ ∩F1]).
A subspace S ⊂ B(H ) is called k-reflexive if S (k) = {S(k) : S ∈ S } is reflexive in
B(H (k)) , where S(k) = S⊕ . . .⊕S and H (k) = H ⊕ . . .⊕H . In [6, Theorem 2.1] it
was proved that a weak* closed subspace S ⊂ B(H ) is k -reflexive if and only if S⊥
is a closed linear span of rank-k operators contained in S⊥ (i.e., S⊥ = [S⊥∩Fk]).

Now we recall the definition of stronger property than reflexivity. Suppose that
S ⊆ B(H ) is a subspace. By d(A,S ) we denote the standard distance from an
operator A to the subspace S , i.e., d(A,S ) = inf{‖A−T‖ : T ∈ S } . In [1] Arveson
defines an algebra W as hyperreflexive if there is a constant κ such that

d(A,W ) � κ sup{‖P⊥AP‖ : P ∈ LatW } for all A ∈ B(H ).

As it was shown in [6] the supremum on the right hand side of the inequality above
is equal to sup{|〈A,g⊗ h〉| : g⊗ h ∈ W⊥, ‖g⊗ h‖1 � 1} . It is known that when S
is weak* closed, then d(A,S ) = sup{|tr(A f )| : f ∈ S⊥, ‖ f‖1 � 1} . Now we can
generalize the definition of hyperreflexivity for k -hyperreflexivity not only for algebras
but also for subspaces, see [4],[5]. For an operator A ∈ B(H ) and k ∈ N we consider
the following quantity

αk(A,S ) = sup{|〈A,t〉| : t ∈ S⊥∩Fk,‖t‖1 � 1},
where 〈A, t〉 = tr(At) . Recall that d(A,S ) � αk(A,S ) for every A ∈ B(H ) . The
subspace S is called k -hyperreflexive if there is a constant κ such that

d(A,S ) � κ αk(A,S ), A ∈ B(H ). (1)

It was noted in [4] that property of k -hyperreflexivity is stronger than k–reflexivity.
For more properties of C -symmetric operators we refer the reader to [3]. Recall

only that the set of all C -symmetric operators C = {T ∈ B(H ) :CTC = T ∗} ⊂ B(H )
is a subspace, which is closed in norm, weak and strong operator topology. In the same
manner it can be proved that C is also weak* closed.

2. Transitivity

Let start with the following:

THEOREM 2.1. Let H be a complex separable Hilbert space with an antilinear
involution C. Let C be the set of C-symmetric operators. The subspace C is transitive.

Proof. Let {en} be an orthonormal basis of H such that Cen = en (see [3,
Lemma 1]). Let us consider a rank-one operator x⊗ y ∈ C⊥ . By [3, Lemma 2] the
operator u⊗Cu ∈ C for all u ∈ H . Hence ei⊗ ei ∈ C , i ∈ N . Thus

0 = 〈ei ⊗ ei,x⊗ y〉 = 〈(ei ⊗ ei)x,y〉 = 〈x,ei〉〈ei,y〉.
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Hence x ⊥ ei or y ⊥ ei for all i ∈ N . Let k ∈ N be the smallest number such that
〈x,ek〉 
= 0 and l ∈ N be the smallest number such that 〈y,el〉 
= 0. Clearly k 
= l and
〈x,el〉 = 0, 〈y,ek〉 = 0.

Consider vector αel + βek for α,β 
= 0, then, by antilinearity of C , we have
C(αel + βek) = αel + βek . Hence (αel + βek)⊗ (αel + βek) ∈ C for any α,β 
= 0.
Thus

0 = 〈(αel + βek)⊗ (αel + βek),x⊗ y〉
= 〈x,αel + βek〉〈αel + βek,y〉 = β 〈x,ek〉α〈el ,y〉.

Since α,β 
= 0 and 〈x,ek〉 
= 0, 〈el ,y〉 
= 0 we get the contradiction. Hence x = 0 or
y = 0. �

3. Rank-two operators in the preanihilator of C

In the previous section it was shown that there is no rank-one operator in the pre-
anihilator of the space of all C -symmetric operators. In what follows we describe all
rank-two operators in this preanihilator. Namely

THEOREM 3.1. Let H be a complex separable Hilbert space with an antilinear
involution C. Let C be the set of all C-symmetric operators. Then

F2∩C⊥ = {h⊗g−Cg⊗Ch : h,g ∈ H }.
To proof the theorem above we will need some lemmas for real Hilbert spaces.

LEMMA 3.2. Let H be a real Hilbert space and let h,h′,g,g′ ∈ H have norm
1 . Assume that

〈A,h⊗g−h′⊗g′〉 = 0 for all A = A∗ ∈ B(H ), (2)

then h⊗g = h′ ⊗g′ or h⊗g = g′ ⊗h′ .

As a special case of the previous lemma we will prove the following:

LEMMA 3.3. Let H be a real Hilbert space and let h,g ∈ H . If 〈A,h⊗g〉= 0
for all A = A∗ ∈ B(H ) , then h⊗g = 0 .

Proof. Assume that g,h 
= 0. Note that for selfadjoint operator h⊗h we have

0 = 〈h⊗h,h⊗g〉= ‖h‖2〈h,g〉.
Thus h ⊥ g . Consider a selfadjoint operator g⊗h+h⊗g and observe also that

0 = 〈g⊗h+h⊗g,h⊗g〉= ‖h‖2‖g‖2 + 〈h,g〉〈h,g〉= ‖h‖2‖g‖2.

Thus we get the contradiction. �
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Proof of Lemma 3.2. Let H0 = span{h,g} and H1 = H⊥
0 . Denote h′1 = PH1h

′ ,
g′1 = PH1g

′ . Then 0 = 〈h′1⊗g′1 +g′1⊗h′1,h⊗g〉 . Since the operator h′1⊗g′1 +g′1⊗h′1
is selfadjoint, by (2) we have

0 = 〈(h′1⊗g′1 +g′1⊗h′1),h
′ ⊗g′〉

= 〈h′,g′1〉〈h′1,g′〉+ 〈h′,h′1〉〈g′1,g′〉 = 〈h′1,g′1〉2 +‖h′1‖2‖g′1‖2.

Hence h′1 = 0 or g′1 = 0.
Assume that h′1 = 0, i.e. h′ ∈ H0 , and decompose g = βh + g0 , where g0 ⊥ h .

Observe that 〈g0⊗g0,h⊗g〉= 0. Since g0⊗g0 is selfadjoint thus by (2)

0 = 〈g0⊗g0,h
′ ⊗g′〉 = 〈h′,g0〉〈g0,g

′〉

and h′ ⊥ g0 or g′ ⊥ g0 . If h′ ⊥ g0 and h′ ∈ H0 thus h′ = αh . Hence for all selfadjoit
A ∈ B(H ) we have 〈Ah,g〉 = 〈Aαh,g′〉 . Thus 〈Ah,g−αg′〉 = 0. By Lemma 3.3,
g = αg′ and we get h⊗g = h′ ⊗g′ .

Assume now that g′ ⊥ g0 and decompose g′ = αh + g1 , where g1 ⊥ H0 . Note
that

〈g1⊗g0 +g0⊗g1,h⊗g〉= 〈h,g0〉〈g1,g〉+ 〈h,g1〉〈g1,g〉 = 0.

Since g1⊗g0 +g0⊗g1 is selfadjoint thus

0 = 〈g1⊗g0 +g0⊗g1,h
′ ⊗g′〉

= 〈h′,g0〉〈g1,g
′〉+ 〈h′,g1〉〈g0,g

′〉 = 〈h′,g0〉‖g1‖2.

Hence h′ ⊥ g0 or g1 = 0 thus h′ = αh or g′ = αh . The case h′ = αh was considered
above. If g′ = αh , then for selfadjoint A we have 〈Ah,g〉= 〈Ah′,αh〉 = 〈Ah,αh′〉 and
as before g = αh′ and we get h⊗g = g′ ⊗h′ .

Since for selfadjoint A we have 〈Ah′,g′〉 = 〈h′,Ag′〉 = 〈Ag′,h′〉 thus (2) is equiv-
alent to

〈A,h⊗g−g′⊗h′〉 = 0 for all A = A∗ ∈ B(H ).

The case g′1 = 0 is symmetric. �

Proof of Theorem 3.1. In [3, Lemma 1] it was proved that each h ∈ H can be
uniquely decomposed to h = hR + ihI , where ChR = hR , ChI = hI and ‖h‖2 = ‖hR‖2 +
‖hI‖2 . In other words, H = HR + iHI , where HR,HI are real Hilbert spaces.

To show the inclusion “⊃” note that for T ∈ C we have

〈T,h⊗g−Cg⊗Ch〉= 〈Th,g〉− 〈TCg,Ch〉
= 〈Th,g〉− 〈C2h,CTCg〉 = 〈h,T ∗g〉− 〈h,CTCg〉 = 0.

For the converse inclusion “⊂” let us take the operator h⊗ g− h′ ⊗ g′ of rank
at most 2. Consider the decomposition h = hR + ihI , g = gR + igI , h′ = h′R + ih′I ,
g′ = g′R + ig′I .
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An operator T can be decomposed to

[
W X
Y Z

]
with respect to the decomposition

H = HR + iHI , where W : HR → HR , Z : HI → HI , X : HI → HR , Y : HR → HI . It
can be easily obtained that T is C -symmetric if and only if W = W ∗ , Z = Z∗ and
Y = −X∗ , where the adjoints are taken with respect to the real Hilbert spaces.

If the operator h⊗g−h′ ⊗g′ ∈ C⊥ then, in particular, 〈W,hR⊗gR−h′R⊗g′R〉 = 0
for all selfadjoint operators W on the real Hilbert space HR . Thus by Lemma 3.2 we
get

hR ⊗gR = h′R ⊗g′R or hR ⊗gR = g′R ⊗h′R. (3)

Similarly 〈Z,hI ⊗ gI − h′I ⊗ g′I〉 = 0 for all selfadjoint operators Z in the real Hilbert
space HI . Thus we get

hI ⊗gI = h′I ⊗g′I or hI ⊗gI = g′I ⊗h′I. (4)

Since h⊗g−h′ ⊗g′ ∈ C⊥ thus it annihilates all operators with the decomposition[
0 X

−X∗ 0

]
according to the decomposition H = HR + iHI , where X : HI → HR is an

arbitrary operator. Thus

0 = 〈XhI,gR〉− 〈X∗hR,gI〉− 〈Xh′I,g
′
R〉+ 〈X∗h′R,g′I〉

= 〈XhI,gR〉− 〈XgI,hR〉− 〈Xh′I,g
′
R〉+ 〈Xg′I,h

′
R〉.

Using (3) and (4) we will consider the following cases:

(a) h′R = αgR, g′R = 1
α hR, h′I = βgI, g′I = 1

β hI ,

(b) h′R = αhR, g′R = 1
α gR, h′I = βhI, g′I = 1

β gI ,

(c) h′R = αhR, g′R = 1
α gR, h′I = βgI, g′I = 1

β hI ,

(d) h′R = αgR, g′R = 1
α hR, h′I = βhI, g′I = 1

β gI ,

where α 
= 0, β 
= 0.
Let us start with the crucial one (a). For any X : HI → HR we have

0 = 〈XhI,gR〉− 〈XgI,hR〉− 〈XβgI,
1
α hR〉+ 〈X 1

β hI,αgR〉
= (1+ α

β )〈XhI,gR〉− (1+ β
α )〈XgI,hR〉

or equivalently
〈X(α + β )hI,αgR〉 = 〈X(α + β )gI,βhR〉. (5)

If β = −α , then the equality (5) is fulfilled for any X ∈ B(HI ,HR) . Thus by (a) we
have

h⊗g−h′⊗g′ = (hR + ihI)⊗ (gR + igI)− (αgR− iαgI)⊗ ( 1
α hR − i 1

α hI)

or equivalently
h⊗g−h′⊗g′ = h⊗g−Cg⊗Ch. (6)
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If α + β 
= 0, then gI = hI , gR = β
α hR by (5), since X is an arbitrary operator. Hence,

using (a) we get

h⊗g−h′⊗g′ = (hR + ihI)⊗ (gR + igI)− (αgR + iβgI)⊗ ( 1
α hR + i 1

β hI)

= (hR + ihI)⊗ ( β
α hR + ihI)− (βhR + iβhI)⊗ ( 1

α hR + i 1
β hI) = 0.

Hence in this case we have inclusion “⊂”. Considering other cases from (b) to (d)
and using similar calculations we obtain either equality (6) or 0 operator. �

Let now consider some examples of C -symmetries given in [3] in the context of
Theorem 3.1.

EXAMPLE 3.4. A natural example of a C -symmetry in l2(N) is given by

C(z0,z1,z2, . . .) = (z0,z1,z2, . . .).

In this case
C⊥ ∩F2 = {h⊗g−g⊗h : h,g ∈ l2(N)}.

EXAMPLE 3.5. Consider the classical Hardy space H2 and take a nonconstant
inner function u . Denote by Hu = H2�uH2 . For f ∈ Hu and h ∈ H2 the formula

C f = uz f

defines a C -symmetry on Hu . Then

C⊥∩F2 = {h⊗g−uzg⊗uzh : h,g ∈ Hu}.

EXAMPLE 3.6. Let ρ be a bounded, positive continuous weight on the interval
[−1,1] , symmetric with respect to the midpoint of the interval: ρ(t) = ρ(−t) for t ∈
[0,1] . Then

C f (t) = f (−t)

defines a C -symmetry on L2([−1,1],ρdt) . In this case

C⊥∩F2 = {h(·)⊗g(·)−g(−(·))⊗h(−(·)) : h,g ∈ L2([−1,1],ρdt)}.

EXAMPLE 3.7. Consider the isometric antilinear operator

C(z1,z2) = (z2,z1)

on C2 . Then

C⊥∩F2 = {(h1,h2)⊗ (g1,g2)− (g2,g1)⊗ (h2,h1) : (h1,h2),(g1,g2) ∈ C
2}.
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4. 2 -reflexivity and 2 -hyperreflexivity

As the straightforward consequence of the previous section we have

THEOREM 4.1. Let H be a complex separable Hilbert space with an antilinear
involution C. The subspace C ⊂ B(H ) of all C-symmetric operators is 2 -reflexive.

Proof. If T /∈ C , then 〈T,h⊗ g−Cg⊗Ch〉 = 〈h,(T ∗ −CTC)g〉 
= 0 for some
h,g ∈ H . This means that the rank-two operator h⊗ g−Cg⊗Ch separates T from
C , hence C⊥ ∩F2 is linearly dense in C⊥ . �

In fact we will prove stronger result for the space of C -symmetric operators than
Theorem 4.1.

THEOREM 4.2. Let H be a complex separable Hilbert space with an antilinear
involution C. The subspace C of all C-symmetric operators is 2 -hyperreflexive with
constant 1 .

Proof. Let A ∈ B(H ) . Note that by Theorem 3.1 we have

α2(A,C ) = sup{|tr(A( 1
2 (h⊗g−Cg⊗Ch)))| : ‖ 1

2(h⊗g−Cg⊗Ch)‖1 � 1}
= 1

2 sup{|〈Ah,g〉− 〈ACg,Ch〉| : ‖ 1
2(h⊗g−Cg⊗Ch)‖1 � 1}

= 1
2 sup{|〈h,A∗g〉− 〈h,CACg〉| : ‖ 1

2 (h⊗g−Cg⊗Ch)‖1 � 1}
= 1

2 sup{|〈h,(A∗ −CAC)g〉| : ‖ 1
2(h⊗g−Cg⊗Ch)‖1 � 1}

� 1
2 sup{‖〈h,(A∗−CAC)g〉| : ‖h‖ � 1, ‖g‖ � 1}

= 1
2‖A∗−CAC‖.

Note that

C(A+CA∗C)C = CAC+C2A∗C2 =CAC+A∗

and

〈CACx,y〉 = 〈Cy,C2ACx〉 = 〈Cy,ACx〉
= 〈A∗Cy,Cx〉 = 〈C2x,CA∗Cy = 〈x,CA∗Cy〉.

Since (A+CA∗C)∗ = A∗ +CAC , then A+CA∗C ∈ C , which implies that

d(A,C ) � ‖A− 1
2(A+CA∗C)‖ = 1

2‖A−CA∗C‖ � α2(A,C ).

Hence C is 2-hyperreflexive with constant 1. �
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