oerators
nd
atrices

Volume 9, Number 1 (2015), 225-232 doi:10.7153/0am-09-13

C-SYMMETRIC OPERATORS AND REFLEXIVITY

KAMILA KLIS-GARLICKA AND MAREK PTAK

(Communicated by H. Radjavi)

Abstract. We study subspaces of all C-symmetric operators. Description of the preanihilator of
all C-symmetric operators is given. It is shown that the subspace of all C-symmetric operators
is transitive and 2 -hyperreflexive.

1. Introduction and preliminaries

Let % be a complex separable Hilbert space with an inner product (-,-). Let C be
an isometric antilinear involution in ¢ . By isometric it is meant that (f, g) = (Cg,Cf)
for all f,g € 2. Since C is an involution, C> =I. A bounded operator T € B(.%)
is called C-symmetric, if CTC = T*. This is equivalent to the symmetry of 7 with
respect to the bilinear form [f,g] = (f,Cg). Let us denote the set of all C-symmetric
operatorsby ¢ ={T € B(¢) :CTC =T*}.

C-symmetric operators and the whole set ¢ was intensively studied in [3]. There
were given many examples of C-symmetric operators such as Jordan blocks, truncated
Toeplitz operators, Hankel operators ect.. The aim of the paper is to study the space
of C-symmetric operators from reflexivity—transitivity point of view, for definitions see
bellow. It is shown that the subspace of all C-symmetric operators is transitive and
2-reflexive or even 2-hyperreflexive. It means that the preanihilator of 4 does not
contain any rank-one operators and rank-two operators are dense in the preanihilator.
Moreover, we describe all rank-two operators in this preanihilator.

The set of all trace class operators on .7 will be denoted by ¢ with the norm
|| -1]1, (this class of operators is often also denoted by %7, see [8], or %, see [2]). The
dual action between Tc and B(J¢) is given by trace, i.e. (A1) =tr(Ar) for A € B(57),
t € 1c. For k € N, F; stands for the set of operators on 7Z of rank at most k. Every
rank-one operator may be written as x®y, for x,y € 5, and (x®y)z = (z,y)x for
z € A . Moreover, (T,x®y) =tr(T(x®y)) = (Tx,y) forany T € B(J¢).

Recall that the reflexive closure of a subspace . C B(J¢) is given by

Ref. ={T € B(2¢) : Tx € [Lx] forall x € '},

where [-] denotes the norm-closure. A subspace . is called reflexive, if . = Ref.
and .~ is called rransitive, if Ref.” = B(.%). Transitivity means that there are no
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rank-one operators in the preanihilator. Reflexivity means, in contrast, that we have ~a
lot” of rank-one operators in the preanihilator. Namely, due to [7] we know that when
7 is a weak* closed subspace of B(.¢), then .7 is reflexive if and only if .7, is
a closed linear span of rank-one operators contained in . L (i.e., 7 =[LLNF)).
A subspace . C B(.#) is called k-reflexive if .7%) = {S®) . § € 7} is reflexive in
B('™), where S®) =S@...@S and # N = # & ... @ A . In [6, Theorem 2.1] it
was proved that a weak* closed subspace . C B(.%¢) is k-reflexive if and only if .7}
is a closed linear span of rank-k operators contained in .| (i.e., % = [ NF]).

Now we recall the definition of stronger property than reflexivity. Suppose that
& C B() is a subspace. By d(A,.”) we denote the standard distance from an
operator A to the subspace .7, i.e., d(A,.) =inf{|A—T|: T € .}. In [1] Arveson
defines an algebra # as hyperreflexive if there is a constant K such that

d(A, %) < x sup{||PTAP| : P € Lat#'} for all A€ B().

As it was shown in [6] the supremum on the right hand side of the inequality above
is equal to sup{|(A,g®@h)|:g@h e W\, |lg®@h|1 <1}. It is known that when .7
is weak* closed, then d(A,.%) = sup{|tr(Af)|: f € <1, ||f]l1 <1}. Now we can
generalize the definition of hyperreflexivity for k-hyperreflexivity not only for algebras
but also for subspaces, see [4],[5]. For an operator A € B() and k € N we consider
the following quantity

o4 (A,.) = sup{[(A,1)|: 1 € SLNF, [t < 1},

where (A,t) = tr(Ar). Recall that d(A,.) > og(A,.7) for every A € B(). The
subspace .7 is called k-hyperreflexive if there is a constant k such that

dA, ) <xog(A,), Ae€B(H). (1)

It was noted in [4] that property of k-hyperreflexivity is stronger than k—reflexivity.

For more properties of C-symmetric operators we refer the reader to [3]. Recall
only that the set of all C-symmetric operators ¢ ={T € B():CTC=T*} C B(J¢)
is a subspace, which is closed in norm, weak and strong operator topology. In the same
manner it can be proved that ¢ is also weak* closed.

2. Transitivity
Let start with the following:

THEOREM 2.1. Let J€ be a complex separable Hilbert space with an antilinear
involution C. Let € be the set of C-symmetric operators. The subspace € is transitive.

Proof. Let {e,} be an orthonormal basis of .7 such that Ce, = e, (see [3,
Lemma 1]). Let us consider a rank-one operator x®y € ¢, . By [3, Lemma 2] the
operator u ® Cu € ¢ forall u € 7. Hence ¢;®e; € ¢, i € N. Thus

0=(ei®e;,x®y) = ((ei ®ei)x,y) = (x,e;){ei,y).
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Hence x L ¢; or y L ¢; forall i € N. Let kK € N be the smallest number such that
(x,ex) # 0 and [ € N be the smallest number such that (y,e;) # 0. Clearly k # [ and
(x,e1) =0, (y,ex) =0.

Consider vector ae; + Beg for o, B # 0, then, by antilinearity of C, we have
C(oe; + Ber) =e; + Bex. Hence (oe; + Ber) @ (0le; + Bey) € € forany o, #0.
Thus

0= ((aer + Bex) @ (Tey + Per),x@y)
= (x,0e; + Ber) (oer + Ber,y) = Blx,ex)aler,y).
Since o, # 0 and (x,e;) # 0, (e;,y) # 0 we get the contradiction. Hence x =0 or
y=0. O
3. Rank-two operators in the preanihilator of ¢

In the previous section it was shown that there is no rank-one operator in the pre-
anihilator of the space of all C-symmetric operators. In what follows we describe all
rank-two operators in this preanihilator. Namely

THEOREM 3.1. Let 7 be a complex separable Hilbert space with an antilinear
involution C. Let € be the set of all C-symmetric operators. Then

BRNE, = {h@g—Cg@Ch: h,g € %}
To proof the theorem above we will need some lemmas for real Hilbert spaces.

LEMMA 3.2. Let 3 be a real Hilbert space and let h,h',g,g' € S have norm
1. Assume that

(Ah®g—h®g)=0 forall A=A*¢cB(X), )
then h@g=h®g orh@g=gcHN.
As a special case of the previous lemma we will prove the following:

LEMMA 3.3. Let S be a real Hilbert space and let h,g € 7. If (A,h®g) =0
forall A=A* € B(J), then h@ g =0.

Proof. Assume that g,h # 0. Note that for selfadjoint operator 4 ® h we have
0=(hehhog)=|h|*(hg).
Thus h L g. Consider a selfadjoint operator g ® h+ h ® g and observe also that
0=(g®@h+h©gheg)=|h|*lg|*+ (hg)h.g) = IIl*|s|

Thus we get the contradiction. [
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Proof of Lemma 3.2. Let Hy = span{h,g} and H, = Hy . Denote I = Py, I,
g\ =Pu,g'. Then 0= (K, ® g} + g| ®h|,h®g). Since the operator 1| @ g} + g} @ h}
is selfadjoint, by (2) we have

0= (M ®g+g1®h)hag)
= (W, g)(hy. &)+ (W 1) (gh.8) = (hy.gl)* + IIh |1 lgh 11

Hence i} =0 or g} =0.
Assume that 7} =0, i.e. h' € Hy, and decompose g = Bh+ go, where gy L h.
Observe that {(go® go,h® g) =0. Since gy ® go is selfadjoint thus by (2)

0= (g0®g0,h ®g') = (I',80)(g0.8")

and W' L goorg Lgo. If W' L goand h' € Hy thus i/ = oth. Hence for all selfadjoit
A € B() we have (Ah,g) = (Aoth,g'). Thus (Ah,g — og’) = 0. By Lemma 3.3,
g=og andwe get h@g=h®g .

Assume now that g’ | go and decompose g’ = ah+ g1, where g; L Hy. Note
that

(g1®g0+g0®@g1,h®g) = (h,g0)(g1,8) + (h,81)(g1,8) = 0.

Since g1 ® go+ go ® g1 is selfadjoint thus

0=(g1®g+g®g,h®g)
= (' ,g0)(g1.8") + (W ,81)(80.&") = (I, g0)l|g1]]*.

Hence i’ | gg or g =0 thus /' = oth or g’ = ah. The case h' = ah was considered
above. If g’ = ah, then for selfadjoint A we have (Ah,g) = (AW, ah) = (Ah, oh’) and
as before g = ah/ andwe get h@ g =g Q.
Since for selfadjoint A we have (Ah',g") = (h',Ag') = (Ag',l) thus (2) is equiv-
alent to
(Ahwg—g @h)=0 forall A=A*¢cB().

The case g} = 0 is symmetric. [

Proof of Theorem 3.1. In [3, Lemma 1] it was proved that each h € JZ can be
uniquely decomposed to & = hg +ih;, where Chg = hg, Chy = hy and ||h||* = ||hg||> +
||A7]|?. In other words, /# = Hg + iH;, where Hg,H; are real Hilbert spaces.

To show the inclusion “ D" note that for T € € we have

(T,h®g—Cg®Chy= (Th,g)— (TCg,Ch)
= (Th,g) — (C*h,CTCg) = (h,T*g) — (h,CTCg) = 0.
For the converse inclusion “C” let us take the operator h® g —h' ® g’ of rank

at most 2. Consider the decomposition h = hg +ih;, g = gr +igr, W' = h +ih},
N .
g =8rtig-
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‘;I,/ )Z( with respect to the decomposition
<}f:[f]e-‘ril‘ll, where W: HR —>HR, Z: H[ —>H[, X: H[ —>HR, Y: HR —>H1. It
can be easily obtained that 7 is C-symmetric if and only if W = W*, Z = Z* and
Y = —X*, where the adjoints are taken with respect to the real Hilbert spaces.

If the operator h@ g —h' @ g’ € €| then, in particular, (W,hg @ ggr — hp @ gk) =0
for all selfadjoint operators W on the real Hilbert space Hg. Thus by Lemma 3.2 we
get

An operator T can be decomposed to

hR@gr=hr@gh or hr@gr=gh@hk. (3)

Similarly (Z,h; ® g —hj @ g;) = 0 for all selfadjoint operators Z in the real Hilbert
space Hy. Thus we get

hi@gr=h@g or h@g =g ®h. )
Since h® g—h ®g' € €| thus it annihilates all operators with the decomposition

[_())(* )é according to the decomposition .7 = Hg + iH;, where X : H; — Hpg is an
arbitrary operator. Thus
0= <Xh17gR> - <X*hR7g1> - <Xh}7g;3> + <X*h;€7g}>
= <Xh17gR> - <XglahR> - <Xh;7g;?> + <Xg;7h;€>

Using (3) and (4) we will consider the following cases:

(@) hp=oagr, gr=<hg, hy=PBg. &= %hh
(b)  hp=ohr, gp=gsr, hy=Bh. g =g
(c) hy=oahg, ggr=1gr, hy=PBg &= %hl,
(d)  hp=o0gr, grp=ghr, hy=Phi, g =g

where a0 £ 0, f #0.
Let us start with the crucial one (a). For any X : Hy — Hg we have

0= (Xhy,gr) — (Xg1,hr) — (XBg1. hr) + (X hr, o)
= (1+§)(Xh,gr) — (14 £) (X g1, )

or equivalently

(X(o+B)hs, oegr) = (X (0 + B)g1, Bhr).- (5)
If B = —a, then the equality (5) is fulfilled for any X € B(H;,Hg). Thus by (a) we
have

h@g—h g = (hg+ihr) @ (gr+igr) — (0gr — ioigr) @ (ghr — ighr)

or equivalently
hog—h®eg=h®g—CgxCh. (6)
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If a+ B #0,then gr=hy, gr = ghR by (5), since X is an arbitrary operator. Hence,
using (a) we get

h®g—h®g = (hg+ih) @ (gr+igr) — (0gr +iBgr) ® (éhR_Hl%hl)

= (hg + ih1) © (Bhg + ihy) — (Bhg+iBhr) © (Lhg + ighr) =0.

Hence in this case we have inclusion “C”. Considering other cases from (b) to (d)
and using similar calculations we obtain either equality (6) or O operator. [

Let now consider some examples of C-symmetries given in [3] in the context of
Theorem 3.1.

EXAMPLE 3.4. A natural example of a C-symmetry in [?(N) is given by

C(20,21,22,---) = (20,2122, - - )-
In this case

¢ NH={h©g—goh:hgcl(N)}.

EXAMPLE 3.5. Consider the classical Hardy space H? and take a nonconstant
inner function u. Denote by H, = H> ©uH?. For f € H, and h € H? the formula

Cf=uzf
defines a C-symmetry on H, . Then

€ NF={h®g—uzgQuzh:h,g € H,}.

EXAMPLE 3.6. Let p be a bounded, positive continuous weight on the interval
[—1,1], symmetric with respect to the midpoint of the interval: p(r) = p(—t) for ¢ €
[0,1]. Then

Cf(t) = f(=1)
defines a C-symmetry on L?([—1, 1], pdt). In this case

€LNE = (h()©g() —g(—(NOR-(): hge A(~1,1],pdr)}.
EXAMPLE 3.7. Consider the isometric antilinear operator

Cl(z1,22) = (Z2,21)

on C2. Then

CLNFy ={(h1,h) @ (g1,82) — (32.81) ® (2, 11) : (h1,h2),(81,82) € C*}.
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4. 2-reflexivity and 2-hyperreflexivity

As the straightforward consequence of the previous section we have

THEOREM 4.1. Let J¢ be a complex separable Hilbert space with an antilinear
involution C. The subspace € C B(3) of all C-symmetric operators is 2-reflexive.

Proof. If T ¢ €, then (T,h®g—Cg®Ch) = (h,(T* —CTC)g) # 0 for some
h,g € ¢ . This means that the rank-two operator 1 ® g — Cg ® Ch separates T from
%, hence €| NF; is linearly dense in ¢, . [J

In fact we will prove stronger result for the space of C-symmetric operators than
Theorem 4.1.

THEOREM 4.2. Let 77 be a complex separable Hilbert space with an antilinear
involution C. The subspace € of all C-symmetric operators is 2-hyperreflexive with
constant 1.

Proof. Let A € B(7). Note that by Theorem 3.1 we have

o (A,€) = sup{|tr(A(L(h®@ g — Cg@ Ch)))|: || A (h@ g — Cew Ch) | < 1}
= Lsup{|(Ah,g) — (ACg,Ch)|: |3 (h® g — Cg®Ch)||1 < 1}

= Lsup{|(h,A"g) — (h,CACg)|: ||} (h® g — Cg@Ch)|1 < 1}
(h, (A"

= 3 sup{| —CAC)g)|: | 5(h®g—Cg@Ch)|[i < 1}
> Jsup{|(h, (A" = CAC)g)| - [In]| < 1, [|g]| < 1}
= 3llA4* —cAC].
Note that
C(A+CA*C)C = CAC+ C?A*C? = CAC +A*
and

(CACx,y) = (Cy,C?ACx) = (Cy,ACx)
= (A*Cy,Cx) = (C*x,CA*Cy = (x,CA*Cy).

Since (A+CA*C)" = A* + CAC, then A+ CA*C € %, which implies that
d(A,%) < |JA- LA+ CA"O)]| = L]lA - CA’C] < a(4,6).

Hence ¢ is 2-hyperreflexive with constant 1. [



232

K. KLIS-GARLICKA AND M. PTAK

REFERENCES

[1] W. T. ARVESON, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233.
[2] J. B. CONWAY, A course in operator theory, AMS, Graduate studies in mathematics; v. 21.
[3] S. R. GARCIA, M. PUTINAR, Complex symmetric operators and applications, Trans. Amer. Math.

Soc. 358, 3 (2005), 1285-1315.

[4] K. KLIS, M. PTAK, k-hyperreflexive subspaces, Houston J. Math. 32, 1 (2006), 299-313.

[5] J. KRAUS, D. LARSON, Some applications of a technique for constructing reflexive operator algebras,
J. Operator Theory 13 (1985), 227-236.

[6] J. KRAUS, D. R. LARSON, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986),

340-356.

[71 W. E. LONGSTAFF, On the operation Alg Lat in finite dimensions, Lin. Alg. Appl. 27 (1979), 27-29.
[8] J. R. RINGROSE, Compact non—self-adjoint operators, Van Nostrand—Reinhold, New York, 1971.

(Received March 24, 2014)

Operators and Matrices
www.ele-math.com
oam@ele-math.com

Kamila Klis-Garlicka

Institute of Mathematics
University of Agriculture
Balicka 253¢

30-198 Krakow, Poland
e-mail: rmklis@cyfronet.pl

Marek Ptak

Institute of Mathematics
University of Agriculture
Balicka 253¢

30-198 Krakow, Poland
and

Institute of Mathematics
Pedagogical University
ul. Podchorgzych 2
30-084 Krakow, Poland
e-mail: rmptak@cyfronet.pl



