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Abstract. Let Z0 be a bounded operator in a Banach space X with purely essential spectrum and
K a nuclear operator in X . Using methods of complex analysis we study the set of accumulation
points of the discrete spectrum of the operator Z := Z0 + K . We formulate conditions for Z
to exclude certain points or subsetes of the essential spectrum of Z to be accumulation points
of the discrete spectrum. These results are applied to the operator of multiplication perturbed
by integral operators with continuous kernel and to the discrete Laplacian perturbed by nuclear
Jacobi operators.

1. Introduction and results

In this paper we study the discrete spectrum of a bounded operator Z = Z0 +K on
a complex Banach space X , where Z0 is a bounded operator with purely real essential1

spectrum (for example σ(Z0) = [a,b] where [a,b] is an intervall) and K a nuclear
operator. By Weyl we know that σess(Z) = σess(Z0) (since every nuclear operator is a
compact operator, see e.g. Kato [5] p. 238). Moreover, in this case the spectrum of Z is
the disjoint union of the essential and the discrete2 part, i.e. σ(Z) = σess(Z)∪σdisc(Z)
(see e.g. Gohberg, Goldberg and Kaashoek [3] p.373 and Davies [1] p.122) and the
discrete spectrum can only accumulate at the essential spectrum. The aim of this note
is to find conditions to exclude certain points or subsets of σess(Z) to be accumulation
points of the discrete spectrum.

THEOREM 1.1. Let E ⊆ σess(Z0) be an open set (open in R) with the property
that the operator valued map λ �→ KRZ0(λ ) with λ ∈ ρ(Z0) can be continuously ex-
tended to ρ(Z0)∪E , then E ∩σdisc(Z) = /0 .

If λ0 ∈ σess(Z0) is a single point with the property that there is a continuous ex-
tension of KRZ0(·) namely KRZ0(λ0) , and 1 is not a discrete eigenvalue of KRZ0(λ0) ,
then λ0 is not an accumulation point of σdisc(Z) .

Mathematics subject classification (2010): 26D15, 26A51, 32F99, 41A17.
Keywords and phrases: Eigenvalues, discrete spectrum, nuclear perturbations.

1The essential spectrum of a linear operator Z is defined by σess(Z) := {λ ∈ C : λ −Z is not a Fredholm
operator} , where an operator A is Fredholm if A has closed range and both, the kernel and the cokernel of
A are finite dimensional.

2The discrete spectrum of a linear Operator Z is defined by σdisc(Z) := {λ ∈C : λ is a discrete eigenvalue
of Z} , where an eigenvalue λ ∈ σ(Z) is discrete if it is isolated and its corresponding Riesz projection
1

2πi

∫
Γ(λ −A)−1dλ is of finite rank, where Γ is a cirlce with center λ excluding all other elements of σ(Z) .
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Before proving Theorem 1.1 we want to illustrate in Corollary 1.2 and Corollary
1.3, that the assumptions of Theoreme 1.1 can be fullfilled such that Theorem 1.1 is
applicable in several situations.

We set X = C[α,β ] , the space of continuous functions on an interval [α,β ] ,
Z0 = Mf the operator of multiplication defined by (Mf g)(t) := f (t)g(t) , where f ∈
C[α,β ] is a real-valued injective function, and K is an integral operator with con-
tinuous kernel, i.e. (Kg)(t) :=

∫ β
α k(t,s)g(s)ds with k(·, ·) continuous. In this case

σess(Mf ) = { f (x)|x ∈ [α,β ]} .
The set f (I) ⊆ σess(Mf ) , where

I := {x ∈ [α,β ]|k(t,x) = 0 for all t ∈ [α,β ]},

plays an important role in the next corollary.

COROLLARY 1.2. Let Z := Mf +K be as described above, then the discrete spec-
trum of Z does not accumulate to any point belonging to int f (I) (the inner points of
f (I) according to R).

It is also possible to apply Theorem 1.1 to another interesting class of operators.
We define Z0 := Δ as the discrete Laplacian on l1(Z) given by the infinite matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
1 0 1

1 0 1
1 0 1

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

and σess(Δ) = [−2,2] (see section 2). The nuclear operator K := J is a Jacobi operator
given by the infinite matrix⎛

⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
α−1 β−1 α−1

α0 β0 α0

α1 β1 α1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

with αk = xka , βk = xkb , where (xk) ∈ l1(C) and a,b ∈ C .

COROLLARY 1.3. Let Z := Δ + J . Then the point − b
a is not an accumulation

point of σdisc(Z) .

REMARK 1.4. If − b
a /∈ σess(Z) this assertion is trivial, since there is no accumu-

lation point of the discrete spectrum outside the essential spectrum.
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2. Proof of Theorem 1.1, Corollary 1.2 and Corollary 1.3

Before we prove the previous theorem and corollaries we summerize some facts
about nuclear operators and discrete eigenvalues. One essential tool is to define a holo-
morphic function on ρ(Z0) the zeros of which coincide with the discrete eigenvalues
of Z .

LEMMA 2.1. (see Demuth and Hanauska [2] Section 3) Let A(·) be an analytic
nuclear operator-valued function on a domain Ω , then the function det(�−A(·)) is

holomorphic on Ω and |det(�−A(λ ))|� exp

(
1
2‖A(λ )‖2

N

)
.3

For Jacobi operators it would be possible to treat the object in some other l p space.
The advantage of l1 is, that there is an explicit formula of the nuclear norm according
to the matrix-representation of an arbitrary operator. However, there is also an estimate
for the nuclear norm of an integral operator in C[α,β ] with continuous kernel.

LEMMA 2.2. (see Gohberg, Goldberg and Krupnik [4] Chapter V Theorem 2.1
and Theorem 2.2) For any nuclear operator A∈N (l1(Z)) with matrix representation
(ak j) the nuclear norm is given by the formula

‖A‖N = ∑
k∈Z

sup
j∈Z

|ak j|.

Every integral operator K :C[α,β ]→C[α,β ] with continuous kernel k(·, ·) is nuclear
and the nuclear norm can be estimated by

‖K‖N �
∫ β

α
sup

t∈[α ,β ]
|k(t,s)|ds.

Now we define for a bounded operator Z0 and a nuclear operator K on an arbitrary
Banach space X ,

d(λ ) := det(�−KRZ0(λ )), with λ ∈ ρ(Z0).

Since N (X) is a Banach ideal (see [4] p. 92) d is well defined. We know that the
resolvent is analytic in ρ(Z0) and hence with Lemma 2.1 also d is holomorphic on
ρ(Z0) .
If we have a look on the following equation

(λ −Z)RZ0(λ ) = �−KRZ0(λ ), with λ ∈ ρ(Z0),

we see that the righthand side is not invertible iff λ ∈ σdisc(Z0) . And this is equivalent
to �−KRZ0(λ ) is not invertible. In this case 1 is an eigenvalue of �−KRZ0(λ ) .
Comparing this and the definition of det we have

λ ∈ σdisc(Z) ⇔ det(�−KRZ0(λ )) = 0.

3 det(�−K) := ∏λ∈σ(K)(1−λ)exp(λ) for all K ∈ N (X) , where N (X) denotes the Banach ideal of
all nuclear operators.
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Now it is not hard to prove Theorem 1.1.

Proof of Theorem 1.1. Let d be defined as before.
Let λ0 ∈ σess(Z0) and as assumed in Theorem 1.1

‖KRZ0(λ )−KRZ0(λ0)‖N
λ→λ0−→ 0.

Combining the inequality in Lemma 2.1 and [4] Theorem II.4.1 we can derive the
Lipschitz-type inequality

‖d(λ )−d(λ0)‖N � ‖KRZ0(λ )−KRZ0(λ0)‖N

× exp

(
1
2

(‖KRZ0(λ )‖2
N +KRZ0(λ0)‖2

N +1
))

,

and obtain, that d can be extended continuously.
Now, if the set of points in E , for which d is continuously extendable, is an open

set (open according to R) the Theorem of Morera (see e.g. [6]) tells us that even d is
holomorphically extendable to ρ(Z0)∪E . Since the zeros of every non-zero function
do not accumulate in its domain, we know that the zeros of d cannot accumulate in
E . But this is equivalent to the assertion, that the discrete spectrum of Z does not
accumulate to E .

Now, if there is only a single point λ0 ∈ σess(Z0) , with the property that there is
a continuous extension of KRZ0(·) , we obtain that there is also a continuous extension
of d . If 1 /∈ σ(KRZ0(λ0)) , d(λ0) 
= 0. Hence it is not possible for the zeros of d to
accumulate at λ0 and also not for the discrete spectrum of Z . �

Now we come back to Corollary 1.2 and Corollary 1.3.

Proof of Corollary 1.2. We assume int
(
f (I)

) 
= /0 and we take a λ0 ∈ int
(
f (I)

)
.

We have to show, that there is a continuous extension of KRMf (·) from ρ(Mf ) to λ0 .
Obviously, since in this case the function (t,x) �→ k(t,x)( f (x)−λ0)−1 is a continuous
function, there is a nuclear extension of KRMf (·) from ρ(Mf ) to the point λ0 (lets call
it KRMf (λ0)). Now we have to show that this extension is also continuous. For this let
λ ∈ ρ(Mf ) :

‖KRMf (λ )−KRMf (λ0)‖N

�
∫ β

α
sup

t∈[α ,β ]
|k(t,x)( f (x)−λ )−1 − k(t,x)( f (x)−λ0)−1|dx

=
∫ β

α
sup

t∈[α ,β ]
|k(t,x)(( f (x)−λ )−1− ( f (x)−λ0)−1)|dx

=
∫ β

α
|( f (x)−λ )−1− ( f (x)−λ0)−1|χ[α ,β ]\I sup

t∈[α ,β ]
|k(t,x)|dx

� sup
ξ∈[α ,β ]\I

|( f (ξ )−λ )−1− ( f (ξ )−λ0)−1|
∫ β

α
sup

t∈[α ,β ]
|k(t,x)|dx

λ→λ0−→ 0.
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The function χM defines the characteristic function on the set M , i.e. χ(x)M = 1 if
x ∈ M and else χM(x) = 0.
Hence, the map KRM f (·) is continuously extendable to int

(
f (I)

)
. �

Proof of Corollary 1.3. The resolvent set of Δ is ρ(Δ)= C\ [−2,2] . The resolvent
(with λ ∈ ρ(Δ)) is given by the matrix (see [2] Section 4)

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

. . . d−1(λ ) d0(λ ) d1(λ ) d2(λ ) . . .

. . . d−2(λ ) d−1(λ ) d0(λ ) d1(λ ) . . .

. . . d−3(λ ) d−2(λ ) d−1(λ ) d0(λ ) . . .
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

with dk = 1√
λ 2−4

(
λ±

√
λ 2−4
2

)|k|
, where the sign of the square-root has to be taken,

such that

∣∣∣∣
(

λ±
√

λ 2−4
2

)∣∣∣∣ � 1. We can compute the matrix representation of JRΔ(λ ) :

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

. . . α−1d−1(λ )+ β−1d−2(λ )+ α−1d−3(λ ) α−1d0(λ )+ β−1d−1(λ )+ α−1d−2(λ ) . . .

. . . α0d−2(λ )+ β0d−3(λ )+ α0d−4(λ ) α0d−1(λ )+ β0d−2(λ )+ α0d−3(λ ) . . .

. . . α1d−3(λ )+ β1d−4(λ )+ α0d−5(λ ) α1d−2(λ )+ β1d−3(λ )+ α0d−4(λ ) . . .
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is obvious that this matrix also defines a nuclear operator for λ ∈ (−2,2) . Now we

have to show that JRΔ(λ )
λ→− a

b−→ JRΔ(− a
b) . To do this it would be helpful to compute

the single entries ek j(λ ) of the matrix representaion for j− k 
= 0 (we assume | j− k−
1| > | j− k| > | j− k+1| , the other case can be treated in the same way):

ek, j(λ ) := αkd j−k+1(λ )+ βkd j−k(λ )+ αkd j−k−1(λ )

=
1√

λ 2 −4

(
λ ±√

λ 2−4
2

)| j−k−1|

×
(

αk

(
λ ±√

λ 2 −4
2

)2

+ βk
λ ±√

λ 2−4
2

+ αk

)

=
1√

λ 2 −4

(
λ ±√

λ 2−4
2

)| j−k−1|+1

(αkλ + βk)

=
1√

λ 2 −4

(
λ ±√

λ 2−4
2

)| j−k−1|+1

xk(aλ +b)
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So we know that for | j−k| 
= 0 the value − b
a is a zero of ek, j . Using the nuclear norm

formula of Lemma 2.2 we obtain∥∥∥∥JRΔ(λ )− JRΔ

(
− b

a

)∥∥∥∥
N

= ∑
k∈Z

sup
j∈Z

∣∣∣∣ek, j(λ )− ek, j

(
− b

a

)∣∣∣∣
= ∑

k∈Z

sup

{∣∣∣∣∣ 1√
λ 2−4

(
λ ±√

λ 2−4
2

)| j−k−1|+1

xk(aλ +b)

∣∣∣∣∣
}

j∈Z\{k}, j<k

∪
{∣∣∣∣∣ 1√

λ 2 −4

(
λ ±√

λ 2−4
2

)| j−k+1|+1

xk(aλ +b)

∣∣∣∣∣
}

j∈Z\{k}, j>k

∪
{∣∣∣∣ek,k(λ )− ek,k

(
− b

a

)∣∣∣∣
}

� ∑
k∈Z

sup

{ |xk(aλ +b)|√
λ 2−4

}
∪

{∣∣∣∣ek,k(λ )− ek,k

(
− b

a

)∣∣∣∣
}

λ→− b
a−→ 0. �
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