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SPECTRALLY TWO–UNIFORM FRAMES FOR ERASURES

SALIHA PEHLIVAN, DEGUANG HAN AND RAM MOHAPATRA

Abstract. We continue to work on the problem of characterizing erasure-optimal frames when
spectral radius is used as a measurement of the error operator. Spectrally optimal (N,n) -frames
for one erasures are the ones that the minimal spectral error n/N can be achieved. This class
of frames was completely characterized in [28] in terms of the connectivity property and the
redundancy distributions of the involved frames. We show that the best spectral error for the two

erasures is always greater than or equal to n
N + ( Nn−n2

N2(N−1) )
1/2 . We characterize all the frames

such that the above lower bound can be achieved. Different characterizations are also obtained
for the case that when N = n + 1 or n + 2 . We show that in these special cases, spectrally
2-erasure optimal frames are related to the n -independence property of frames.
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