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Abstract. We prove that if X is a complex Banach space, A ⊆ B (X) is a unital standard
subalgebra of linear and continuous operators on X and ϕ : A → A a surjective linear map
such that for each T ∈ A the point spectrum of ϕ (T ) is a subset of the point spectrum of T ,
then ϕ is automatically continuous. As a corollary, we prove that a characterization of bilocal
automorphisms of A given by L. Molnár, P. Šemrl and A. R. Sourour can be obtained without
any continuity assumption on them.

1. Introduction and statement of the main result

Let X be a complex Banach space and B (X) the algebra of linear and bounded
operators on X . For T ∈ B (X) we denote by σ (T ) , σp (T ) and r (T ) respectively its
classical spectrum, its point spectrum and its spectral radius.

A subalgebra A ⊆ B (X) is called standard if it is closed and contains all the
finite rank operators and unital if it contains the identity I ∈ B(X) . Following Zhu and
Xiong [5], for a unital standard subalgebra A ⊆ B (X) we call a linear map ϕ : A →
B (X) a bilocal derivation if for every T in A and x in X there exists a derivation
ϕT,x : A → B (X) (that is, depending on T and x ), such that

ϕ(T )(x) = (ϕT,x(T )) (x) . (1)

It is proved in [5, Theorem 3] that any such bilocal derivation must be in fact a deriva-
tion.

Replacing derivations with automorphisms, a linear map ϕ : A → A is called a
bilocal automorphism if for every T in A and x in X there exists an automorphism
ϕT,x : A → A such that (1) holds. Unlike for derivations, in the particular case when
X is an infinite-dimensional separable Hilbert space, A = B (X) and ϕ : A →A is a
linear bilocal ∗ -automorphism (that is, given any T in B (X) and x in X there exists an
algebra ∗ -automorphism ϕT,x of B (X) such that (1) holds), then ϕ is not necessarily
a ∗ -automorphism of B (X) ([2, Theorem 1]). In the case of bilocal automorphisms of
unital standard operator algebras over an infinite-dimensional separable Banach space,
the following result holds.
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THEOREM 1. (See [3, Theorem 1.2].) Let X be an infinite-dimensional sep-
arable complex Banach space and A ⊆ B (X) a unital standard operator algebra.
Assume that a linear map ϕ : A →A is bijective and continuous. Then ϕ is a bilocal
automorphism if and only if it is an automorphism.

The authors also provided examples which show that the surjectivity and the sep-
arability are indispensable in the statement of Theorem 1. They also conjectured that
Theorem 1 holds without the continuity assumption on the map ϕ . In fact, it is proved
at [3, Proposition 2.1] that any bilocal automorphism ϕ of A compresses the point
spectrum of operators, that is

σp(ϕ (T )) ⊆ σp(T ) (T ∈ A ). (2)

In the last section of [3] the authors asked whether bijective linear maps on unital stan-
dard operator algebras compressing the point spectrum are automatically continuous.
The next result asserts that this is true even in the case when ϕ is supposed to be only
surjective.

THEOREM 2. Let A be a unital standard algebra on X and ϕ : A → A a sur-
jective linear map such that (2) holds. Then ϕ is continuous.

A classical result of B. E. Johnson in the theory of semisimple (unital, complex)
Banach algebras states that all the Banach algebra norms on such an algebra are equiv-
alent. The original proof uses mainly representation theory, but a much shorter proof
using subharmonicity methods for the spectral radius may be found in [1, Section 5.5].
The norm-equivalence result is obtained as a direct consequence of [1, Theorem 5.5.2],
where it is proved that if A and B are Banach algebras, with B semisimple, and
ϕ : A →B linear and onto has the property that it decreases the spectral radius, then ϕ
is automatically continuos. In particular, the same is true by supposing σ(ϕ (x))⊆σ(x)
for each a ∈ A . Theorem 2 shows that in the case of a unital standard algebra on a
Banach space X the result also holds by replacing the spectrum with the point spectrum
which, unlike its classical counterpart, might be empty!

As an application of Theorem 2 we can eliminate the continuity assumption in the
statement of Theorem 1.

THEOREM 3. Let A be a unital standard operator algebra on X and ϕ : A →A
a surjective linear map which is a bilocal automorphism. Then ϕ is automatically
continuous. Furthermore, if X is an infinite-dimensional separable Banach space and
ϕ is also supposed injective, then ϕ is an automorphism.

2. Proofs

The following lemma is the key fact in the proof of our main result. It allows us
to obtain elements in the point spectrum of a rank-one perturbation of an element in
B (X) . For x ∈ X and f ∈ X ′ (the dual of X ), by x⊗ f ∈ B (X) we denote the rank
one operator given by y �→ f (y)x.
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LEMMA 1. (See [4, Lemma 3.2].) Let T ∈B (X) , x∈ X and f ∈ X ′ and suppose
that λ ∈ C\σ (T ) and μ := f ((λ I−T )−1x) is not zero. Then

λ ∈ σp(T + x⊗ f/μ).

Proof. We have

(λ I−T − x⊗ f/μ)((λ I−T )−1x) = x− f ((λ I −T)−1x)
f ((λ I −T)−1x)

x

= 0.

Since f ((λ I−T )−1x) 	= 0 then (λ I−T )−1x 	= 0 in X , and therefore λ ∈ σp(T + x⊗
f/μ). �

The next result gives semisimplicity for the algebras considered in the statement
of Theorem 2.

LEMMA 2. Let A ⊆B (X) be a unital standard algebra. Then A is semisimple.

Proof. Let us recall that A is semisimple if its Jacobson radical is zero. By [1,
Theorem 3.1.3], for Q ∈ A we have that Q ∈ Rad(A ) if and only if I−TQ ∈ A is
invertible in A , for all T ∈ A . So if Q ∈ Rad(A ) then λ I−TQ ∈ A is invertible in
A for all T ∈ A and every nonzero λ ∈ C . Therefore, r (TQ) = 0 for all T ∈ A . In
particular, this holds for every rank one operator T .

Suppose there exists x ∈ X such that Q(x) 	= 0 in X . Let then f ∈ X ′ such that
f (Q(x))= 1. Putting T = x⊗ f , then (TQ)(x)= x . Therefore 1∈σp (TQ)⊆σ (TQ) ,
which implies r(TQ) � 1, arriving to a contradiction. Therefore Q(x) = 0 for all
x ∈ X . �

We have used in the above proof (and we shall also use the same fact in the final
part of the next proof) the fact that for W ∈ A the spectral radius of W computed with
respect to the subalgebra A ⊆ B (X) equals r (W ) , the spectral radius of W ∈ B (X)
computed with respect to B (X) .

We are now ready for the proof of our main result.

Proof of Theorem 2. Let T ∈A and let λ0 ∈ σ(ϕ (T )) such that |λ0|= r (ϕ (T )) .
Let {λn}n�1 ⊆ C be a sequence such that |λn| > r (ϕ (T )) for n � 1 and λn → λ0 .
Since λnI−ϕ (T ) is invertible in B (X) for each n � 1 and λ0I−ϕ (T ) is not, by [1,
Theorem 3.2.11] we have

lim
n→∞

||(λnI−ϕ (T ))−1|| → +∞.

Denote Tn = (λnI − ϕ (T ))−1 ∈ B (X) , n � 1. Since (‖Tn‖)n is not bounded,
using the Uniform Boundedness Principle we find x ∈ X such that (Tn (x))n is not
bounded in X . Then (Tn (x))n is not bounded in the bidual of X , so using once
more the Uniform Boundedness Principle we find f ∈ X ′ such that ( f (Tn (x)))n is
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not bounded in C . By passing to a subsequence, we may therefore suppose that
f ((λnI−ϕ (T ))−1 (x)) 	= 0 for each n � 1 and that

lim
n→∞

∣
∣ f ((λnI−ϕ (T ))−1 (x))

∣
∣ = +∞.

Since ϕ is surjective and x⊗ f ∈ A , there exists R ∈ A such that ϕ (R) = x⊗ f .
Denoting

μn = f ((λnI−ϕ (T ))−1 (x)) (n = 1,2, ...),

then |μn| → ∞ and by (2) we have that

σp(ϕ (T )+ x⊗ f/μn) ⊆ σp(T +R/μn) (n = 1,2, ...).

By Lemma 1 we have that λn ∈ σp(ϕ (T ) + x⊗ f/μn) for each integer n � 1, and
therefore

λn ∈ σp(T +R/μn) ⊆ σ(T +R/μn) (n = 1,2, ...).

Using the upper semicontinuity of the spectrum [1, Theorem 3.4.2], that λn → λ0 in C

and R/μn → 0 in B (X) imply λ0 ∈ σ (T ) . Thus |λ0| � r(T ) , and therefore

r(ϕ (T )) � r(T ) (T ∈ A ). (3)

Using (3), the surjectivity of ϕ , the fact that by Lemma 2 the algebra A is semisimple
and [1, Theorem 5.5.2], we infer that ϕ is continuous. �

A subalgebra A ⊆B (X) is called a regular operator algebra on X if the follow-
ing conditions are fulfilled:

• A contains the identity I;

• every automorphism ψ of A is spatial, that is there exists A ∈ B (X) invertible
such that

ψ(T ) = ATA−1 (T ∈ A ).

• for every pair of linearly independent vectors u,v ∈ X and every pair of linearly
independent vectors x,y ∈ X , there exists A∈A invertible such that Ax = u and
Ay = v.

It is proved in the beginning of [3, Proof of Theorem 1.2] that if A is a unital
standard operator algebra on X , then A is a regular operator algebra. This fact and [3,
Proposition 2.1] allow us to use Theorem 2 to obtain the automatic continuity result for
bilocal automorphisms also.

Proof of Theorem 3. By [3, Proposition 2.1] we have that ϕ is unital and that (2)
holds. We use then Theorem 2 and the surjectivity of ϕ to obtain the first part of the
statement.

For the second part, if ϕ is supposed bijective, since ϕ is proved to be continuous,
by [3, Theorem 1.2] we have that it is necessarily an automorphism. �
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