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Abstract. In this paper, some properties of the higher rank numerical hulls, as a generalization
of higher rank numerical ranges and polynomial numerical hulls, of matrices are investigated.
In particular, the higher rank numerical hulls of Pauli matrices are characterized. Moreover, the
notion of higher rank numerical hulls of matrix polynomials is introduced, and some algebraic
properties of this notion are investigated. The higher rank numerical hulls of the basic A -factor
block circulant matrix, which is the block companion matrix of the matrix polynomial Q(λ) =
λ sIn −A , are also studied.

1. Introduction and preliminaries

Let Mn×m be the vector space of all n×m complex matrices. For the case n = m ,
Mn×n is denoted by Mn , namely, the algebra of all n×n complex matrices. Throughout
the paper, k,m and n are considered as positive integers, and k � n . Moreover, Ik
denotes the k× k identity matrix, and In,k is the set of all n× k isometry matrices,
i.e., In,k = {X ∈Mn×k : X∗X = Ik} . Motivated by the study of convergence of iterative
methods in solving linear systems, e.g., see [23], researchers studied the polynomial
numerical hull of order m of a matrix A ∈ Mn , which is defined and denoted by

Vm(A) = {λ ∈ C : |p(λ )| � ‖p(A)‖ for all p ∈ Pm},

where Pm is the set of all scalar polynomials of degree m or less and ‖.‖ is the spectral
matrix norm (i.e., the matrix norm subordinate to the Euclidean vector norm). This is
a set designed to give more information than the spectrum alone can provide about the
behavior of the matrix A under the action of polynomials and other functions. For more
information see [7], [8], [12], [13] and [24].
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In the context of quantum information theory, if the quantum states are represented
as matrices in Mn , then a quantum channel is a trace preserving completely positive
map L : Mn −→ Mn with the operator sum representation:

L(A) =
r

∑
j=1

E∗
j AE j,

where E1, . . . ,Er ∈ Mn satisfy ∑r
j=1 EjE∗

j = In . The matrices E1, . . . ,Er are known as
the error operators of the quantum channel L . Let V be a k -dimensional subspace
of Cn , and P be the orthogonal projection of Cn onto V. Then, the k -dimensional
subspace V is a quantum error correction code for the channel L if and only if there are
scalars γi j ∈ C with i, j ∈ {1, . . . ,r} such that PE∗

i E jP = γi jP ; for more information,
see [16], [17] and [18]. In this connection, the rank-k numerical range of A ∈ Mn is
defined and denoted by

Λk(A) = {λ ∈ C : X∗AX = λ Ik for some X ∈ In,k}.
The sets Λk(A) , where k ∈ {1, . . . ,n}, are generally called higher rank numerical
ranges of A ; see [5], [6], [19], [20] and [21] for more information.

Recently, the notion of rank-k numerical hull of order m of a matrix A ∈Mn , as a
generalization of Vm(A) and Λk(A) , is introduced by A. Salemi in [26] and is denoted
by:

X m
k (A) = {λ ∈ C : (λ ,λ 2, . . . ,λ m) ∈ conv(Λk(A,A2, . . . ,Am))},

where conv(S) denotes the convex hull of S ⊆ C , and

Λk(A1,A2, . . . ,Am) = {(λ1, . . . ,λm) ∈ Cm : ∃X ∈ In,k s.t. X∗AjX = λ jIk, j = 1, . . . ,m}
is the joint rank-k numerical range of (A1,A2, . . . ,Am) ∈ Mn ×·· ·×Mn︸ ︷︷ ︸

m−times

. The joint

rank-1 numerical range of (A1,A2, . . . ,Am) is the joint numerical range; namely,

Λ1(A1,A2, . . . ,Am)=W(A1,A2, . . . ,Am)= {(x∗A1x,x
∗A2x, . . . ,x

∗Amx) : x∈Cn, x∗x = 1}.
The sets X m

k (A) , where k ∈ {1,2, . . . ,n} and m ∈ N , are generally called higher rank
numerical hulls of A . For the case k = m = 1, X m

k (A) reduces to the classical numer-
ical range of A ; namely,

X 1
1 (A) = V 1(A) = Λ1(A) = W (A) := {x∗Ax : x ∈ Cn,x∗x = 1},

which is useful in studying and understanding of matrices and operators, and has many
applications in numerical analysis, differential equations, systems theory, etc; e.g., see
[9, 14, 15] and references cited there. The rank-k spectrum of a matrix A ∈ Mn , as a
generalization of the spectrum of A , is defined and denoted, see [26], by σk(A) = {λ ∈
C : dim(ker(λ In−A)) � k}.

Next, we list some properties of the higher rank numerical hulls and rank-k spec-
trum of matrices which will be useful in our discussion. One may see [26] for more
details.
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PROPOSITION 1.1. Let A ∈ Mn . Then the following assertions are true:

(i) σk(A) ⊆ σk−1(A) ⊆ ·· · ⊆ σ1(A) = σ(A);

(ii) σk(A)⊆X m
k (A)⊆X m

k−1(A)⊆ ·· ·⊆X m
1 (A)=Vm(A)⊆Vm−1(A)⊆ ·· · ⊆V 1(A)

= W (A);

(iii) σk(A)⊆X m
k (A)⊆X m−1

k (A)⊆ ·· · ⊆X 1
k (A)= Λk(A)⊆Λk−1(A)⊆ ·· · ⊆Λ1(A)

= W (A);

(iv) X m
k (αA+ β In) = αX m

k (A)+ β ; where α,β ∈ C;

(v) If A is Hermitian and m � 2 , then X m
k (A) = σk(A);

(vi) If A is unitary, then X m
k (A)∩σ(A) = σk(A);

(vii) If m,k � 2 , n = 2k , and A is a unitary matrix with distinct eigenvalues, then
X m

k (A) = /0 .

At the end of this section, we give some information about matrix polynomials.
Notice that matrix polynomials arise in many applications and their spectral analysis
is very important when studying linear systems of ordinary differential equations with
constant coefficients [11]. Suppose that

Q(λ ) = Asλ s + · · ·+A1λ +A0 (1)

is a matrix polynomial, where Ai ∈ Mn ( i = 0,1, . . . ,s), As 	= 0 and λ is a complex
variable. The numbers s and n are referred to as the degree and the order of Q(λ ) ,
respectively. The matrix polynomial Q(λ ) , as in (1), is called selfadjoint if all coef-
ficients Ai are Hermitian. It is called a monic matrix polynomial if As = In . A scalar
λ0 ∈ C is an eigenvalue of Q(λ ) if the system Q(λ0)x = 0 has a nonzero solution
x0 ∈ Cn . This solution x0 is known as an eigenvector of Q(λ ) corresponding to λ0 ,
and the set of all eigenvalues of Q(λ ) is said to be the spectrum of Q(λ ) ; namely,
σ [Q(λ )] = {μ ∈ C : det(Q(μ)) = 0} . The (classical) numerical range of Q(λ ) , as in
(1), is defined as:

W [Q(λ )] := {μ ∈ C : x∗Q(μ)x = 0 for some nonzero x ∈ Cn},
which is closed and contains σ [Q(λ )] ; see [22] for more information. The numerical
range of matrix polynomials plays an important role in the study of overdamped vi-
bration systems with finite number of degrees of freedom, and it is also related to the
stability theory; e.g., see [11] and [22]. One generalization of the classical numerical
range of Q(λ ) , as in (1), is the polynomial numerical hull of order m , which is defined
and denoted, see [1] and [27], by

Vm[Q(λ )] = {μ ∈ C : |p(0)| � ‖p(Q(μ))‖ for all p ∈ Pm}.
Recently, the notion of rank-k numerical range of Q(λ ) , as another generalization of
the classical numerical range of Q(λ ) was introduced by Aretki and Maroulas [2] as

Λk[Q(λ )] = {μ ∈ C : X∗Q(μ)X = 0Ik for some X ∈ In,k}.
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It is known that V 1[Q(λ )] =W [Q(λ )] = Λ1[Q(λ )] . Also, for the case Q(λ ) = λ In−A ,
where A ∈ Mn , we have Vm[Q(λ )] = Vm(A) and Λk[Q(λ )] = Λk(A) . So, Vm[Q(λ )]
and Λk[Q(λ )] can be considered as generalizations of Vm(A) and Λk(A) , respectively.
In this paper, we are going to study some algebraic and geometrical properties of the
higher rank numerical hulls of matrices, and we are also going to generalize this notion
for matrix polynomials. For this mind, in Section 2, we present some algebraic and
geometrical properties of the higher rank numerical hulls of matrices. In Section 3,
we characterize the higher rank numerical hulls of Pauli matrices. In Section 4, we
introduce and study the notion of higher rank numerical hulls of matrix polynomials.
The higher rank numerical hulls of the basic A-factor block circulant matrix, denoted by
πA , which is the block companion matrix of the matrix polynomial Q(λ ) = λ sIn −A ,
are also studied.

2. Some properties of higher rank numerical hulls of matrices

At first, we state a result about joint higher rank numerical ranges of matrices
which will be useful in our discussion.

THEOREM 2.1. Let A1,A2, . . . ,Am ∈ Mn . Then the following assertions are true:

(i) Λk(A1,A2, . . . ,Am)⊆Λk(A1⊕B1,A2⊕B2, . . . ,Am⊕Bm) , where B1,B2, . . . ,Bm ∈
Mn′ ;

(ii) Λk(A1,A2, . . . ,Am) ⊆ ⋂
X∈In,n−k+1

W (X∗A1X , . . . ,X∗AmX) , and for the case k = 1 ,

the equality holds.

Proof. Let (λ1, . . . ,λm) ∈ Λk(A1,A2, . . . ,Am) . So, there exists a X ∈ In,k such

that X∗AiX = λiIk for i = 1,2, . . . ,m . By setting Y :=
(

X
0

)
∈M(n+n′)×k , we have Y ∈

In+n′,k and Y ∗(Ai⊕Bi)Y = X∗AiX = λiIk , for i = 1,2, . . . ,m . Hence, (λ1,λ2, . . . ,λm)∈
Λk(A1 ⊕B1,A2 ⊕B2, . . . ,Am ⊕Bm) and so, the result in (i) holds.

To prove the result in (ii) , let (α1,α2, . . . ,αm) ∈ Λk(A1,A2, . . . ,Am) be given. So,
there exists a Y ∈In,k such that Y ∗AjY = α jIk for j = 1, . . . ,m . Now, let X ∈In,n−k+1
be given. The dimensions of the column spaces of Y and X are k and n−k+1, respec-
tively. Hence, there exists a unit vector w in the intersection of the column spaces of Y
and X . Let Y = [y1,y2, . . . ,yk] . Since X∗X = In−k+1 , there exists a unit vector z ∈ Cn

such that Xz = w . If w = β1y1 + β2y2 + · · ·+ βkyk , where βi ∈ C and ∑k
i=1 |βi|2 =

1, then for every j = 1, . . . ,m , we have z∗X∗AjXz = w∗Ajw = |β1|2y∗1Ajy1 + · · ·+
|βk|2y∗kA jyk = α j . So, (α1, . . . ,αm) ∈W (X∗A1X ,X∗A2X , . . . ,X∗AmX) , and hence, the
proof of ⊆ is complete. Since W (U∗A1U, . . . ,U∗AmU) = W (A1, . . . ,Am) for any uni-
tary matrix U ∈ Mn , the second assertion is also true. �

The following example shows that the set equality in Theorem 2.1(ii) does not
hold in general.
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EXAMPLE 2.2. Consider the following matrices in M4 :

A1 =
(

I2 0
0 −I2

)
, A2 =

(
0 I2
I2 0

)
, and A3 =

(
0 ıI2

−ıI2 0

)
,

where ı =
√−1. By [19, Example 2.6], we have Λ2(A1,A2,A3) = {(x1,x2,x3) ∈ R3 :

x2
1 + x2

2 + x2
3 = 1} , which is not convex. Also W (X∗A1X ,X∗A2X ,X∗A3X) is convex for

every X ∈ I4,3 . So,
⋂

X∈I4,3

W (X∗A1X ,X∗A2X ,X∗A3X) is convex, and can not be equal

to Λ2(A1,A2,A3) .

Now, in the following proposition, we are going to state some basic properties of
the higher rank numerical hulls of matrices.

PROPOSITION 2.3. Let A ∈ Mn . Then the following assertions are true:

(i) X m
k (A) is a compact set;

(ii) X m
k (A∗) = X m

k (A) . Consequently, if A is Hermitian, then X m
k (A) ⊆ R;

(iii) X m
k (U∗AU) = X m

k (A) , where U ∈ Mn is unitary;

(iv) X m
k (A)∪X m

k (B) ⊆ X m
k (A⊕B) , where B ∈ Mn′ and k � min{n,n′} .

Proof. It is clear that Λk(A,A2, . . . ,Am) is compact, and hence, conv(Λk(A,A2, . . . ,
Am)) is also compact by [4, Lemma 2.7]. So, X m

k (A) is a closed subset of the compact
set W (A) and hence the result in (i) holds.

We have that λ ∈ X m
k (A∗) if and only if there exist l ∈ N and positive real num-

bers ti (i = 1, . . . , l) with ∑l
i=1 ti = 1, and Xi ∈In,k such that λ jIk = ∑l

i=1 tiX∗
i (A∗) jXi =

(∑l
i=1 tiX∗

i A jXi)∗ , for j = 1, . . . ,m . This is equivalent to λ
j
Ik = ∑l

i=1 tiX∗
i A jXi , for

j = 1, . . . ,m ; or equivalently, λ ∈ X m
k (A) . So the result in (ii) also holds.

The result in (iii) is derived easily from this fact that Λk(U∗A1U, . . . ,U∗AmU) =
Λk(A1, . . . ,Am) , for every A1, . . . ,Am ∈ Mn , and for any unitary matrix U ∈ Mn .

For (iv) , let λ ∈ X m
k (A)∪X m

k (B) . Without loss of generality, we assume that
λ ∈ X m

k (A) . Then (λ ,λ 2, . . . ,λ m) ∈ conv(Λk(A,A2, . . . ,Am)) ⊆ conv(Λk(A⊕B,A2 ⊕
B2, . . . ,Am ⊕Bm)) , in which the inclusion follows from Theorem 2.1(i) . This means
that λ ∈ X m

k (A⊕B) . �
Notice that X m

k (·) can be an empty or a nonempty set in C . For example, let
A = diag(1,−1) . Then by Proposition 1.1(v) , X 2

2 (A) = σ2(A) = /0 ; while X 2
2 (A⊕

A) = σ2(A⊕A)= {−1,1} 	= /0 . Moreover, by [20, Theorem 3] and Proposition 1.1(iii) ,
we have the following result.

PROPOSITION 2.4. If k � n/3+1 , then there exists A ∈ Mn such that X m
k (A) =

/0 .

In the following theorem, we study the higher rank numerical hulls of nilpotent
matrices.
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THEOREM 2.5. Let A ∈ Mn be a nilpotent matrix and s be the geometric multi-
plicity of its zero eigenvalue. Let t be the smallest positive integer number such that
At = 0 . If m � t , then X m

k (A) ⊆ {0} , and for the case k � s, the equality holds.

Proof. It is clear that:

X m
k (A) = {λ ∈ C : (λ ,λ 2, . . . ,λ m) ∈ conv(Λk(A,A2, . . . ,At−1, 0, . . . ,0︸ ︷︷ ︸

(m−t+1)− times

))}

= {λ ∈ C : (λ ,λ 2, . . . ,λ m) ∈ conv(Λk(A,A2, . . . ,At−1))×{0}× ·· ·×{0}︸ ︷︷ ︸
(m−t+1)− times

}.

Now, if X m
k (A) 	= /0 and λ ∈ X m

k (A) , then by this fact that t � m , λ t = 0 and hence
λ = 0. So X m

k (A) ⊆ {0} . If k � s , then by Proposition 1.1((ii) or (iii)), {0} =
σk(A) ⊆ X m

k (A) ⊆ {0} . Hence, X m
k (A) = {0} . �

COROLLARY 2.6. Let A∈Mn be a nilpotent matrix and t be the smallest positive
integer number such that At = 0 . If m � t , then Vm(A) = {0} .

The following example shows that the result in Theorem 2.5 for the case t > m
does not hold.

EXAMPLE 2.7. Let A =
(

0 1
0 0

)
. One can easily see that A2 = 0 and

X 1
1 (A) = W (A) = {z ∈ C : |z| � 1/2}� {0}.

At the end of this section, we are going to study the higher rank numerical hulls
of tensor products of matrices. For this mind, we need the following lemma. Before,
we recall that for the compact set S ⊆ C , the polynomially convex hull of degree m of
S (e.g., see [10]), is the following set:

pconvm(S) = {λ ∈ C : |p(λ )| � max
z∈S

|p(z)| for all p ∈ Pm}.

LEMMA 2.8. Let A =A1⊕A2⊕·· ·⊕Al ∈Mn , where Ai ∈Mni(n1+n2+ · · ·+nl =
n) . If all matrices Ai are normal such that σ(Ai) = σk(Ai) , then

Vm(A) = pconvm(
l⋃

i=1

X m
k (Ai)).

Proof. Since Ai ’s are normal for i = 1,2, . . . , l , in view of Proposition 2.3(iii) ,
we assume, without loss of generality, that they are diagonal. Note that the prop-
erty σ(Ai) = σk(Ai) implies that X m

k (Ai) 	= /0 for i = 1,2, . . . , l . Now, by setting
S =

⋃l
i=1 X m

k (Ai) and using [10, Theorem 1(v)], it is enough to show that ‖p(A)‖ =
maxz∈S|p(z)| for all p ∈ Pm . Let p ∈ Pm be given. It is known that ‖p(A)‖ =
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max1�i�l‖p(Ai)‖ . Since, X m
k (Ai) ⊆ Vm(Ai) for all i , S ⊆ ⋃l

i=1Vm(Ai) , and hence,
max1�i�l‖p(Ai)‖ � maxz∈S|p(z)| . So ‖p(A)‖ � maxz∈S|p(z)| .

Conversely, we assume that ‖p(A)‖ = |p(α)| , where α ∈ σ(Aj) for some 1 �
j � l . Since σ(Aj) = σk(Aj) , Proposition 1.1(ii) implies that α ∈ X m

k (Aj) ⊆ S , and
hence ‖p(A)‖ = |p(α)| � maxz∈S|p(z)| . So the proof is complete. �

THEOREM 2.9. Let A ∈ Mn1 , B ∈ Mn2 , and 1 � k1 � n1 and 1 � k2 � n2 be two
positive integers. Then the following assertions are true:

(i) X m
k1

(A)X m
k2

(B) ⊆ X m
k1k2

(A⊗B);

(ii) If A and B are normal matrices, and σk1(A) = σ(A) and σk2(B) = σ(B) , then

Vm(A⊗B) = pconvm(X m
k1

(A)X m
k2

(B));

(iii) If A and B are Hermitian matrices and m � 2 , then

X m
k1k2

(A⊗B) = σk1k2(A⊗B)⊇ σk1(A)σk2(B).

Proof. Let λ ∈X m
k1

(A) and μ ∈ X m
k2

(B) be given. Then there exists nonnegative
real numbers t1, . . . ,tp and s1, . . . ,sq with ∑p

i=1 ti = 1 and ∑q
i=1 si = 1, and X1, . . . ,Xp ∈

In1,k1 , and Y1, . . . ,Yq ∈ In2,k2 such that for i = 1,2, . . . ,m , λ iIk1 = ∑p
j=1 t j(X∗

j A
iXj)

and μ iIk2 = ∑q
j=1 s j(Y ∗

j BiYj) . Now, for i = 1,2, . . . ,m , we have:

(λ μ)iIk1k2 = (λ iIk1)⊗ (μ iIk2)

=
p

∑
j=1

q

∑
l=1

t jsl(Xj ⊗Yl)∗(A⊗B)i(Xj ⊗Yl).

Since ∑p
j=1 ∑q

l=1 t jsl = 1 and Xj ⊗Yl ∈ In1n2,k1k2 ,

(λ μ ,(λ μ)2, . . . ,(λ μ)m) ∈ conv(Λk1k2((A⊗B),(A⊗B)2, . . . ,(A⊗B)m)),

and hence λ μ ∈ X m
k1k2

(A⊗B) . So, the result in (i) holds.
If A and B are normal matrices, then A⊗B is also normal.
Without loss of generality, by Proposition 2.3(iii) , we assume that A = diag(α1,

α2, . . . ,αn1) . So, A⊗B = α1B⊕α2B⊕·· ·⊕αn1B , and hence by Lemma 2.8, Vm(A⊗
B) = pconvm(

⋃n1
j=1(α jX m

k2
(B))) . In view of Proposition 1.1(ii) , α j ∈ X m

k1
(A) ( j =

1,2, . . . ,n1) and hence pconvm(
⋃n1

j=1(α jX m
k2

(B))) ⊆ pconvm(X m
k1

(A)X m
k2

(B)) . So,
Vm(A⊗ B) ⊆ pconvm(X m

k1
(A)X m

k2
(B)) . On the other hand, by (i) and Proposition

1.1(iii) , we have X m
k1

(A)X m
k2

(B) ⊆Vm(A⊗B) .
Hence, by [10, Theorem 1(v)], pconvm(X m

k1
(A)X m

k2
(B)) ⊆ Vm(A⊗B) . So the

result in (ii) also holds.
The set equality in (iii) follows from Proposition 1.1(v) , and also ⊇ is clear. So,

the proof is complete. �
By setting k1 = k2 = 1 in Theorem 2.9, we have the following result.
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COROLLARY 2.10. (See also [1, Theorem 3.5]) Let A ∈Mn1 and B ∈Mn2 . Then

(i) pconvm(Vm(A)Vm(B)) ⊆Vm(A⊗B);

(ii) If A and B are normal matrices, then Vm(A⊗B) = pconvm(Vm(A)Vm(B)) .

The following example shows that there are matrices in Theorem 2.9( i) such that
the set equality holds.

EXAMPLE 2.11. Let A = I2 and B = [−1]⊕ I3 . By setting k1 = 2, k2 = 3 and
m = 2 in Theorem 2.9( i), and using Proposition 1.1(v) , we have X 2

2 (A) = σ2(A) =
{1}, X 2

3 (B) = σ3(B) = {1}, X m
k1k2

(A⊗B) = X 2
6 (I2⊕B) = σ6(B) = {1} .

So, X m
k1

(A)X m
k2

(B) = X m
k1k2

(A⊗B).

3. Higher rank numerical hulls of Pauli matrices

Four extremely useful matrices in the study of quantum computation and quantum
information are known as Pauli matrices, represented as follows:

σ0 := I2 =
(

1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −ı
ı 0

)
and σ3 :=

(
1 0
0 −1

)
,

where ı =
√−1. These four matrices form an orthogonal basis for the algebra of 2×2

complex matrices with the Hilbert-Schmidt inner product 〈A,B〉 = trace(B∗A) . Let N
be a positive integer and n = 2N . The Pauli group PN is defined to consist of all N-fold
tensor product of Pauli matrices with multiplicative factors ±1 and ±ı , as follows

PN = {α (σi1 ⊗σi2 ⊗·· ·⊗σiN ) : i1, i2, . . . , iN ∈ {0,1,2,3},α ∈ {±1,±ı}}.

By a Pauli matrix P ∈ Mn we mean an element of the Pauli group PN . For more
information, see [16] and [25].

In the following theorem, we characterize the higher rank numerical hulls of Pauli
matrices.

THEOREM 3.1. Let n = 2N and P = α (σi1 ⊗σi2 ⊗ ·· ·⊗σiN ) ∈ Mn , where α ∈
{±1,±ı} and i1, i2, . . . , iN ∈ {0,1,2,3} , be a Pauli matrix. Then

X m
k (P) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{−α,α} if P 	= αIn , k � n/2 and m > 1,

[−α,α] if P 	= αIn , k � n/2 and m = 1,

/0 if P 	= αIn, k > n/2,

{α} if P = αIn,

where [−α,α] = {αx : −1 � x � 1} .
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Proof. We know that both σ1 and σ2 are unitarily similar to σ3 . Thus, if i j = 0
for all j , then P = αIn ; otherwise, P is unitarily similar to α(In/2 ⊕−In/2) if i j 	= 0
for some j . Now, Proposition 1.1(v) and [6, Theorem 2.4] yield that

X m
k (In/2⊕−In/2) =

⎧⎪⎨
⎪⎩

σk(In/2⊕−In/2) = {−1,1} if k � n/2 and m > 1,

Λk(In/2⊕−In/2) = [−1,1] if k � n/2 and m = 1,

/0 if k > n/2.

Hence, by Propositions 1.1(iv) and 2.3(iii) , the result holds. �

By setting k = 1 or m = 1 in Theorem 3.1, we have the following result.

COROLLARY 3.2. Let n = 2N and P = α (σi1 ⊗ σi2 ⊗ ·· · ⊗ σiN ) ∈ Mn , where
α ∈ {±1,±ı} and i1, i2, . . . , iN ∈ {0,1,2,3} , be a Pauli matrix. Then

Vm(P) =

⎧⎪⎨
⎪⎩
{−α,α} if P 	= αIn and m > 1,

[−α,α] if P 	= αIn and m = 1,

{α} if P = αIn,

and

Λk(P) =

⎧⎪⎨
⎪⎩

[−α,α] if P 	= αIn and k � n/2,

/0 if P 	= αIn and k > n/2,

{α} if P = αIn,

where [−α,α] = {αx : −1 � x � 1} .

4. Higher rank numerical hulls of matrix polynomials

In this section, we consider a matrix polynomial Q(λ ) = Asλ s + · · ·+A1λ +A0 as
in (1), and at first, we introduce the notions of higher rank numerical hulls and rank-k
spectrum of Q(λ ) .

DEFINITION 4.1. Let Q(λ ) be a matrix polynomial as in (1). The rank-k numer-
ical hull of order m of Q(λ ) is defined and denoted by

X m
k [Q(λ )] = {μ ∈ C : 0 ∈ X m

k (Q(μ))}.

Also, the rank-k spectrum of Q(λ ) is defined and denoted by

σk[Q(λ )] = {μ ∈ C : 0 ∈ σk(Q(μ))}.

The sets X m
k [Q(λ )] , where k ∈ {1,2, . . . ,n} and m ∈ N , are called generally higher

rank numerical hulls of Q(λ ) .
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REMARK 4.2. Let Q(λ ) = λ I−A , where A ∈ Mn . By Definition 4.1 and Propo-
sition 1.1(iv) , it is clear that X m

k [Q(λ )] = X m
k (A) . Also, σk[Q(λ )] = σk(A) . Thus,

the notions of rank-k numerical hull and rank-k spectrum of matrix polynomials are
generalizations of the rank-k numerical hull and rank-k spectrum of matrices, respec-
tively.

In the next theorem, we establish some basic properties of the higher rank numer-
ical hulls of matrix polynomials.

THEOREM 4.3. Let Q(λ ) be a matrix polynomial as in (1). Then the following
assertions are true:

(i) σk[Q(λ )] ⊆ X m
k [Q(λ )] ⊆ X m

k−1[Q(λ )] ⊆ ·· · ⊆ X m
1 [Q(λ )] = Vm[Q(λ )]

⊆Vm−1[Q(λ )] ⊆ ·· · ⊆V 1[Q(λ )] = W [Q(λ )];

(ii) σk[Q(λ )] ⊆ X m
k [Q(λ )] ⊆ X m−1

k [Q(λ )] ⊆ ·· · ⊆ X 1
k [Q(λ )] = Λk[Q(λ )]

⊆ Λk−1[Q(λ )] ⊆ ·· · ⊆ Λ1[Q(λ )] = W [Q(λ )];

(iii) X m
k [Q(λ + α)] = X m

k [Q(λ )]−α , where α ∈ C;

(iv) X m
k [αQ(λ )] = X m

k [Q(λ )] , where α ∈ C\ {0} ;

(v) X m
k [U∗Q(λ )U ] = X m

k [Q(λ )], where U ∈ Mn is unitary;

(vi) X m
k [Q(λ )] = X m

k [(Q(λ ))∗] , where (Q(λ ))∗ = A∗
s λ s + · · ·+A∗

1λ +A∗
0 ;

(vii) If R(λ ) = λ sQ(λ−1) := A0λ s +A1λ s−1 + · · ·+As−1λ +As, then

X m
k [R(λ )]\ {0}= {μ−1 : μ ∈ X m

k [Q(λ )],μ 	= 0};

(viii) If all the powers of λ in Q(λ ) are even (or all of them are odd), then X m
k [Q(λ )]

is symmetric with respect to the origin.

Proof. The results in parts (i) , (ii) , (iii) , (iv) and (vii) follows from Definition
4.1 and Proposition 1.1((ii),(iii),(iv)) . By Definition 4.1 and Proposition 2.3((ii) and
(iii)) , the results in (v) and (vi) can be easily verified. For investigating (viii) , assume
that all the powers of λ in Q(λ ) are even. Thus, μ ∈ X m

k [Q(λ )] if and only if 0 ∈
X m

k (Q(μ)) = X m
k (Q(−μ)) ; or equivalently, −μ ∈X m

k [Q(λ )] . Another case in (viii)
follows from this fact that Q(−μ) = −Q(μ) and using the same manner in the proof
of the first case. So, the proof is complete. �

It is known, by Proposition 1.1(ii) , that the higher rank numerical hulls of matrices
are bounded sets. In the next example, we show that this result is not necessarily true
for matrix polynomials.

EXAMPLE 4.4. Let A = diag(1,−1, ı,0) . Then, by Proposition 1.1(ii) and [8,
Theorem 2.5], we have

X 2
1 (A) = V 2(A) = σ(A)∪{ıs : 0 � s � 1}.
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So, by Theorem 4.3(vii) and the fact that 0 /∈ X 2
1 (I) , we have

X 2
1 [Aλ − I] = {μ−1 : μ ∈ X 2

1 (A),μ 	= 0} = {−1,1,−ıs : s � 1},

which is an unbounded set in the complex plane.

By [2, Proposition 7] and Theorem 4.3(ii) , we have the following result.

PROPOSITION 4.5. Let L(λ ) = Aλ + B be a selfadjoint linear pencil. If A is
a positive semidefinite matrix such that 0 ∈ σk(A) , and B is a positive (or negative)
definite matrix, then X m

k [λA+B] = /0 for any k = 2,3, . . .n.

At the end of this section, we study the higher rank numerical hulls of block com-
panion matrix of the monic matrix polynomial Q(λ ) = Inλ s −A , where A ∈ Mn and
s � 2 (to avoid trivial consideration), which is called the basic A-factor block circulant
matrix and denoted by

πA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 In 0 . . . 0 0
0 0 In . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . In 0
0 0 0 . . . 0 In
A 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mns. (2)

Basic A-factor block circulant matrices have important applications in vibration analy-
sis and differential equations; e.g., see [3] and references therein.

It is known, see [1, Remark 3.2], that

π ps+q
A =

(
0 Is−q⊗Ap

Iq⊗Ap+1 0

)
∈ Mns,

where p and q are two nonnegative integers with q � s , I0 is a vacuous matrix and
A0 = In . By Proposition 1.1(iv) and Definition 4.1, we have X m

k [Q(λ )] = s
√

X m
k (A) ,

where for T ⊆ C , s
√

T := {μ ∈ C : μ s ∈ T} . In the following theorem, we state the
relationship between X m

k [Q(λ )] and the higher rank numerical hulls of πA .

THEOREM 4.6. Let A ∈ Mn and πA , as in (2), be the basic A-factor block circu-
lant matrix. Then

s
√

X m
k (A) ⊆ X ms

k (πA).

Proof. Let μ ∈ s
√

X m
k (A) be given. Then μ s ∈X m

k (A) , and hence, there are non-
negative real numbers t1,t2, . . . ,tl summing to 1, and isometry matrices X1,X2, . . . ,Xl ∈
In,k such that

μ s jIk =
l

∑
i=1

ti(X∗
i A jXi); j = 0,1, . . . ,m. (3)
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Now we consider the following isometries:

Yi =
1√

∑s−1
r=0 |μ |2r

⎛
⎜⎜⎜⎝

Xi

μXi
...

μ s−1Xi

⎞
⎟⎟⎟⎠ ∈ Ins,k; i = 1,2, . . . , l.

Let j ∈ N with j � ms be given. Then there are integers 0 � p � m−1 and 0 � q � s
such that j = ps+q . So, for any i = 1,2, . . . , l , we have:

s−1

∑
r=0

|μ |2r(Y ∗
i π j

AYi) = (
s−1

∑
r=0

|μ |2r)(Y ∗
i π ps+q

A Yi)

= (
s−1

∑
r=q

μ rμ r−q)(X∗
i ApXi)+ (

q−1

∑
r=0

μ rμ s−q+r)(X∗
i Ap+1Xi),

where for the case q = 0 we only consider the left summation and also for the case
q = s we only consider the right summation. Therefore, by (3), we have

(
s−1

∑
r=0

|μ |2r)(
l

∑
i=1

ti(Y ∗
i π j

AYi)) =
l

∑
i=1

ti[(
s−1

∑
r=0

|μ |2r)Y ∗
i π j

AYi]

=
l

∑
i=1

ti[(
s−1

∑
r=q

μ rμr−q)(X∗
i ApXi)+ (

q−1

∑
r=0

μ rμ r+s−q)(X∗
i Ap+1Xi)]

= (
s−1

∑
r=q

μ rμr−q)
l

∑
i=1

tiX
∗
i ApXi +(

q−1

∑
r=0

μ rμr+s−q)
l

∑
i=1

tiX
∗
i Ap+1Xi

(3)
=

s−1

∑
r=q

μ rμ r−qμ psIk +
q−1

∑
r=0

μ rμ r+s−qμ s(p+1)Ik

=
s−1

∑
r=q

μ r−qμ r−qμ ps+qIk +
q−1

∑
r=0

μ r+s−qμr+s−qμ ps+qIk

= (
s−1

∑
r=q

|μ |2(r−q))μ ps+qIk +(
q−1

∑
r=0

|μ |2(r+s−q))μ ps+qIk

= (
s−1

∑
r=0

|μ |2r)μ jIk.

So, ∑l
i=1 ti(Y ∗

i π j
AYi) = μ jIk . Therefore, (μ ,μ2, . . . ,μms) ∈ conv(Λk(πA,π2

A, . . . ,πms
A )) ,

and hence μ ∈ X ms
k (πA) . So, the proof is complete. �

PROPOSITION 4.7. Let A ∈ Mn and πA , as in (2), be the basic A-factor block
circulant matrix. Then

s
√

Λk(A) ⊆ X s
k (πA),

and the equality holds if k = 1 or A is a scalar matrix.
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Proof. By setting m = 1 in Theorem 4.6, the inclusion ⊆ holds. For the case
k = 1, the equality holds by [1, Theorem 3.9]. If A = αI , for some α ∈ C , and μ ∈
X s

k (πA) , then (μ ,μ2, . . . ,μ s) ∈ conv(Λk(πA,π2
A, . . . ,π s

A)) . So, there exist nonnegative
real numbers t1, . . . ,tl with ∑l

i=1 ti = 1, and Y1, . . . ,Yl ∈ Ins,k , where l ∈ N , such that

μ sIk =
l

∑
i=1

tiY
∗
i π s

AYi.

Since π s
A = A⊕·· ·⊕A︸ ︷︷ ︸

s−times

= αIns , the above relation implies that μ sIk = αIk and hence,

μ s = α . So, μ ∈ s
√{α} = s

√
Λk(A), and hence the equality also holds. �

PROPOSITION 4.8. Let A ∈ Mn, k � n and m � s−1 . Then 0 ∈ X m
k (πA).

Proof. Since m � s−1, the (1,1)-block of π j
A , where j = 1,2, . . . ,m , is the zero

matrix. Hence, by setting

X =

⎛
⎜⎜⎜⎝

In×k

0
...
0

⎞
⎟⎟⎟⎠ ∈ Mns×k,

where In×k =
(

Ik
0

)
∈Mn×k , we have X ∈Ins,k and X∗π j

AX = 0Ik for j = 1,2, . . . ,m.

So, (0,0, . . . ,0︸ ︷︷ ︸
m−times

) ∈ Λk(πA,π2
A, . . . ,πm

A ) , and hence, 0 ∈ X m
k (πA) . �

THEOREM 4.9. Let A ∈ Mn and πA , as in (2), be the basic A-factor block circu-
lant matrix. Then

(i) X m
k (A) ⊆ X m

k2 (π s
A);

(ii) If m � 2 and A is Hermitian, and (r−1)s < k � rs for some 1 � r � n, then

X m
k (π s

A) = σr(A).

Proof. Since π s
A = Is⊗A , by Theorem2.9(i) , X m

k2 (π s
A)⊇X m

k (A)X m
k (I)= X m

k (A) ,
and hence, the result in (i) holds. To prove the result in (ii) , by Proposition 1.1((i),(v)) ,
we have

X m
k (π s

A) = X m
k (Is⊗A) = σk(Is⊗A) = σk(A⊕·· ·⊕A︸ ︷︷ ︸

s−times

) ⊇ σrs(A⊕·· ·⊕A︸ ︷︷ ︸
s−times

) = σr(A).

For the converse, let λ ∈ σk(A⊕·· ·⊕A︸ ︷︷ ︸
s−times

) . Then dim(ker((λ In−A)) � k/s . Since (r−

1) < k/s � r , dim(ker(λ In −A)) � r , and hence, λ ∈ σr(A) . Therefore, X m
k (π s

A) =
σk(Is ⊗A)⊆ σr(A) , and so, the result holds. �
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At the final proposition, we study the higher rank numerical hulls of unitary basic
A-factor block circulant matrices.

PROPOSITION 4.10. Let A ∈ Mn be a unitary matrix. Then

(i) X m
k (πA)∩σ(πA) = σk(πA) = s

√
σk(A);

(ii) If all eigenvalues of A are distinct, k,m � 2 and ns = 2k , then X m
k (πA) = /0 .

Proof. The result in (i) follows from Proposition 1.1(vi) . It is known that σ(πA)=
σ [Q(λ )] = { s

√μ : μ ∈ σ(A)} . Since eigenvalues of A are distinct, the eigenvalues of
πA are also distinct. By [1, Theorem 3.3], πA is unitary, and hence, Proposition 1.1(vii)
implies X m

k (πA) = /0 . So, the proof is complete. �
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