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THE GLOW OF FOURIER MATRICES:

UNIVERSALITY AND FLUCTUATIONS

TEODOR BANICA

Abstract. The glow of an Hadamard matrix H ∈ MN (C) is the probability measure μ ∈ P(C)
describing the distribution of ϕ(a,b) = 〈a,Hb〉 , where a,b ∈ TN are random. We prove that
ϕ/N becomes complex Gaussian with N → ∞ , and that the universality holds as well at order
2. In the case of a Fourier matrix, FG ∈MN (C) with |G| = N , the universality holds up to order
4, and the fluctuations are encoded by certain subtle integrals, which appear in connection with
several Hadamard-related questions. In the Walsh matrix case, G = Zn

2 , we conjecture that the
glow is polynomial in N = 2n .
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