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THE GLOW OF FOURIER MATRICES:

UNIVERSALITY AND FLUCTUATIONS

TEODOR BANICA

(Communicated by H. Bercovici)

Abstract. The glow of an Hadamard matrix H ∈ MN (C) is the probability measure μ ∈ P(C)
describing the distribution of ϕ(a,b) = 〈a,Hb〉 , where a,b ∈ TN are random. We prove that
ϕ/N becomes complex Gaussian with N → ∞ , and that the universality holds as well at order
2. In the case of a Fourier matrix, FG ∈MN (C) with |G| = N , the universality holds up to order
4, and the fluctuations are encoded by certain subtle integrals, which appear in connection with
several Hadamard-related questions. In the Walsh matrix case, G = Z

n
2 , we conjecture that the

glow is polynomial in N = 2n .

Introduction

A complex Hadamard matrix is a matrix H ∈ MN(T) , whose rows are pairwise
orthogonal. The basic example is the Fourier matrix, FN = (wi j) with w = e2π i/N .
More generally, associated to a finite abelian group G = ZN1 × . . .×ZNk is its Fourier
matrix FG = FN1 ⊗ . . .⊗FNk , which is a complex Hadamard matrix. In general, the
complex Hadamard matrices are known to appear in connection with a wide array of
questions, mainly coming from operator algebras and quantum physics. See [5], [10],
[11], [14].

Two such matrices H,K ∈MN(T) are called equivalent if one can pass from one to
the other by permuting rows and columns, or by multiplying the rows and columns by
numbers z∈T . In the case where both Hadamard matrices are binary, H,K ∈MN(±1) ,
it is customary to use for the equivalence relation binary scalars only, z ∈ {±1} .

The glow is an analytic invariant introduced in [1], inspired from the Gale-Ber-
lekamp game [8], [12], and from the notion of numerical range [6], [7]. The glow of
H ∈ MN(T) is by definition the complex probability measure μ ∈ P(C) describing
the distribution of the total sum of the entries, Ω = ∑i j Hi j , over the equivalence class
of H .

In order to understand this notion, let us first consider a binary matrix H ∈MN(±1) ,
and define μ as above, but with respect to the usual equivalence relation for binary ma-
trices. It is useful to think of μ as being the “glow” of the matrix, in the following way.
Assume that we have a square city, with N horizontal streets and N vertical streets, and
with street lights at each crossroads. When evening comes the lights are switched on at
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the positions (i, j) where Hi j = 1, and then, all night long, they are randomly switched
on and off, with the help of 2N master switches, one at the end of each street:

→ ♦ ♦ ♦ ♦
→ ♦ × ♦ ×
→ ♦ ♦ × ×
→ ♦ × × ♦

↑ ↑ ↑ ↑
With this picture in mind, μ describes indeed the glow of the city.
Now back to the complex case, all the scalars will now belong to T instead of ±1,

but the above interpretation will somehow subsist, and this is why we call our invariant
“glow”. Observe that the glow is by construction rotationally invariant, so we are in
fact basically interested in computing a probability measure supported by R+ .

As already mentioned, there are some obvious connections with the Gale-Berle-
kamp game [8], [12], and with the notion of numerical range [6], [7]. Yet another
motivation comes from the operator algebra problematics in [10], [11]. Indeed, the
spectral measure η of the subfactor associated to H ∈ MN(T) depends as well only on
the equivalence class of H , and one may wonder whether is there is a deeper relation
between μ ,η .

In order to further discuss the motivations, we will need the explicit formula of the
moments of Ω = ∑i j Hi j . This formula, obtained by Möbius inversion, is as follows:∫

TN×TN
|Ω|2p = ∑

π∈P(p)
K(π)N|π |I(π)

Here P(p) is the set of partitions of {1, . . . , p} , and for π ∈P(p) we denote by |π |
the number of blocks, and we set K(π) = ∑σ∈P(p) μ(π ,σ)

( r
σ
)
, where μ is the Möbius

function. Regarding now I(π) , which is the key quantity in the above formula, this is:

I(π) =
1

N|π | ∑
[i]=[ j]

〈Hπ(i),Hπ( j)〉

Here [i] is the set with repetitions associated to a multi-index i , and we use the no-
tation Hπ(i) =

⊗
β∈π ∏r∈β Hir , where Hx ∈T

N are the rows of H . As a basic example,
in the Fourier matrix case H = FG , with |G| = N , these quantities are as follows:

I(π) =
∫

TN

(
∏
β∈π

∑
Σxi=Σyi

ax1 . . .ax|β |
ay1 . . .ay|β |

)
da

With these formulae in hand, we can now explain our precise motivations for in-
vestigating the glow. We have in fact two main motivations, as follows:

1. Invariant theory. The moment formula shows that μ depends only on the quan-
tities 〈Hπ(i),Hπ( j)〉 , and the same is known from [3] to hold for the spectral
measure η . Thus, we have evidence for a deeper relation between μ ,η .
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2. Counting problems. In the Fourier matrix case, H = FG with |G|= N , the above
quantities I(π) are those coming from the work in [2], [4], which control the
number of G-patterned complex Hadamard matrices.

Summarizing, we have reasons to believe that μ is an interesting invariant, and
that its exact computation for the Fourier matrices FG is of particular interest. In this
paper we will perform an asymptotic study of μ , our conclusions being as follows:

1. Ω/N becomes complex Gaussian in the N → ∞ limit.

2. A universality result holds as well at order 2.

3. Within the class {FG} , the universality holds up to order 4.

Perhaps the most surprising finding in this series is the last one. Here is the result,
and we refer to the body of the paper for the precise statement:

THEOREM. For a Fourier matrix FG , with |G| = N , we have

1
p!

∫
TN×TN

( |Ω|
N

)2p

= 1+K1N
−1 +K2N

−2 +K3N
−3 +O(N−4)

with K1,K2,K3 being certain polynomials in p, independent of N and G.

Regarding now the proof, this is based on the moment formula given above, and on
a number of computations and estimates regarding the integrals I(π) . We believe that
these computations and estimates can be of use in connection with the above-mentioned
motivations, but for the moment we have no further results. Let us mention however
that our computer simulations suggest to first look in detail at the Walsh matrix case.

The paper is organized as follows: 1 is a preliminary section, in 2-3 we state and
prove our main results, and 4 contains a few concluding remarks.

Acknowledgements. I would like to thank Ion Nechita and Jean-Marc Schlenker for
interesting discussions and recent joint work on related questions, and Benoı̂t Collins
for some help with a number of analytic issues.

1. The binary glow

An Hadamard matrix is a square matrix H ∈ MN(±1) , whose rows are pairwise
orthogonal. The size of such a matrix must be N = 2 or N ∈ 4N . See [13].

These matrices are usually taken under the following equivalence relation:

DEFINITION 1.1. H,K ∈ MN(±1) are called equivalent if one can pass from one
to the other by permuting rows and columns, or switching signs on rows and columns.

As explained in the introduction, we are interested in the total sum of the entries.
Since this number is invariant under permutations of rows and columns, we can restrict
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attention to the matrices H̃ 	 H obtained by switching signs on rows and columns.
More precisely, let (a,b) ∈ ZN

2 ×ZN
2 , and consider the following matrix:

H̃i j = aib jHi j

We will regard the sum of entries of H̃ as a random variable, as follows:

DEFINITION 1.2. Let H ∈ MN(±1) be an Hadamard matrix.

1. We define ϕ : ZN
2 ×ZN

2 → Z by ϕ(a,b) = ∑i j aib jHi j .

2. We let μ be the probability measure on Z given by μ({k}) = P(ϕ = k) .

In this definition P denotes the probability with respect to the uniform measure on
the group ZN

2 ×ZN
2 . In other words, we regard ϕ as a random variable over this group,

and we denote by μ the distribution of this random variable:

μ({k}) =
1
4N #

{
(a,b) ∈ Z

N
2 ×Z

N
2

∣∣∣ϕ(a,b) = k
}

As explained in the introduction, μ can be thought of as being the “glow” of the
matrix. In order to compute the glow, it is useful to have in mind the following picture:

b1 . . . bN

↓ ↓
(a1) → H11 . . . H1N ⇒ S1

...
...

...
...

(aN) → HN1 . . . HNN ⇒ SN

Here the columns of H have been multiplied by the entries of the horizontal
switching vector b , the resulting sums on rows are denoted S1, . . . ,SN , and the ver-
tical switching vector a still has to act on these sums, and produce the glow component
at b .

PROPOSITION 1.3. The glow of a matrix H ∈ MN(±1) is given by

μ =
1
2N ∑

b∈ZN
2

β1(c1)∗ . . .∗βN(cN)

where βr(c) =
(

δr+δ−r
2

)∗c
, and cr = #{r ∈ |S1|, . . . , |SN |} , with S = Hb.

Proof. We use the interpretation of the glow which was explained above. So,
consider the decomposition of the glow over b components:

μ =
1
2N ∑

b∈ZN
2

μb
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With the notation S = Hb , the numbers S1, . . . ,SN are the sums on the rows of the
matrix H̃i j = Hi jaib j . Thus the glow components are given by:

μb = law(±S1±S2 . . .±SN)

By permuting now the sums on the right, we have the following formula:

μb = law
(±0 . . .±0︸ ︷︷ ︸

c0

±1 . . .±1︸ ︷︷ ︸
c1

. . . . . .±N . . .±N︸ ︷︷ ︸
cN

)
Now since the ± variables each follow a Bernoulli law, and these Bernoulli laws

are independent, we obtain a convolution product as in the statement. �

We will need the following elementary lemma:

LEMMA 1.4. Let H ∈ MN(±1) be an Hadamard matrix of order N � 4 .

1. The sums of entries on rows S1, . . . ,SN are even, and equal modulo 4 .

2. If the sums on the rows S1, . . . ,SN are all 0 modulo 4 , then the number of rows
whose sum is 4 modulo 8 is odd for N = 4(8) , and even for N = 0(8) .

Proof. (1) Let us pick two rows of our matrix, and then permute the columns such
that these two rows look as follows:⎛⎝+ . . .+ + . . .+ − . . .− − . . .−

+ . . .+︸ ︷︷ ︸
a

− . . .−︸ ︷︷ ︸
b

+ . . .+︸ ︷︷ ︸
c

− . . .−︸ ︷︷ ︸
d

⎞⎠
We have a+b+c+d = N , and by orthogonality a+d = b+c , so a+d = b+c =

N
2 . Now since N/2 is even, we conclude that b = c(2) , and this gives the result.

(2) In the case where H is “row-dephased”, in the sense that its first row consists
of 1 entries only, the row sums are N,0, . . . ,0, and so the result holds. In general now,
by permuting the columns we can assume that our matrix looks as follows:

H =

⎛⎜⎝+ . . .+ − . . .−
...︸︷︷︸
x

...︸︷︷︸
y

⎞⎟⎠
We have x+y = N = 0(4) , and since the first row sum S1 = x−y is by assumption

0 modulo 4, we conclude that x,y are even. In particular, since y is even, the passage
from H to its row-dephased version H̃ can be done via y/2 double sign switches.

Now, in view of the above, it is enough to prove that the conclusion in the statement
is stable under a double sign switch. So, let H ∈ MN(±1) be Hadamard, and let us
perform to it a double sign switch, say on the first two columns. Depending on the
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values of the entries on these first two columns, the total sums on the rows change as
follows: (

+ + . . . . . .
)

: S → S−4(
+ − . . . . . .

)
: S → S(− + . . . . . .
)

: S → S(− − . . . . . .
)

: S → S+4

We can see that the changes modulo 8 of the row sum S occur precisely in the first
and in the fourth case. But, since the first two columns of our matrix H ∈ MN(±1) are
orthogonal, the total number of these cases is even, and this finishes the proof. �

Observe that Proposition 1.3 and Lemma 1.4 (1) show that the glow of an Hadamard
matrix of order N � 4 is supported by 4Z . With this remark in hand, we have:

PROPOSITION 1.5. Let H ∈ MN(±1) be an Hadamard matrix of order N � 4 ,
and denote by μeven,μodd the mass one-rescaled restrictions of μ ∈P(4Z) to 8Z,8Z+
4 .

1. At N = 0(8) we have μ = 3
4 μeven + 1

4 μodd .

2. At N = 4(8) we have μ = 1
4 μeven + 3

4 μodd .

Proof. We use the glow decomposition over b components, from Proposition 1.3:

μ =
1
2N ∑

b∈ZN
2

μb

The idea is that the decomposition formula in the statement will occur over aver-
ages of the following type, over truncated sign vectors c ∈ Z

N−1
2 :

μ ′
c =

1
2
(μ+c + μ−c)

Indeed, we know from Lemma 1.4 (1) that modulo 4, the sums on rows are either
0, . . . ,0 or 2, . . . ,2. Now since these two cases are complementary when pairing switch
vectors (+c,−c) , we can assume that we are in the case 0, . . . ,0 modulo 4.

Now by looking at this sequence modulo 8, and letting x be the number of 4
components, so that the number of 0 components is N− x , we have:

1
2
(μ+c + μ−c) =

1
2

⎛⎝law(±0 . . .±0︸ ︷︷ ︸
N−x

±4 . . .±4︸ ︷︷ ︸
x

)+ law(±2 . . .±2︸ ︷︷ ︸
N

)

⎞⎠
Now by using Lemma 1.4 (2), the first summand splits 1−0 or 0−1 on 8Z,8Z+

4, depending on the class of N modulo 8. As for the second summand, since N is even
this always splits 1

2 − 1
2 on 8Z,8Z+ 4. So, by making the average we obtain either a
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3
4 − 1

4 or a 1
4 − 3

4 splitting on 8Z,8Z+ 4, depending on the class of N modulo 8, as
claimed. �

Our various computer simulations suggest that the measures μeven,μodd don’t
have further general algebraic properties. Analytically speaking now, we have:

THEOREM 1.6. The binary glow moments of H ∈ MN(±1) are given by:

∫
ZN

2 ×ZN
2

(
Ω
N

)2p

= (2p)!!+O(N−1)

In particular the variable Ω/N becomes Gaussian in the N → ∞ limit.

Proof. Let Peven(r) ⊂ P(r) be the set of partitions of {1, . . . ,r} having all blocks
of even size. The moments of the variable Ω = ∑i j aib jHi j are then given by:∫

ZN
2 ×ZN

2

Ωr = ∑
ix

Hi1x1 . . .Hirxr

∫
ZN

2

ai1 . . .air

∫
ZN

2

bx1 . . .bxr

= ∑
π ,σ∈Peven(r)

∑
ker i=π ,kerx=σ

Hi1x1 . . .Hirxr

Thus the moments decompose over partitions π ∈ Peven(r) , with the contributions
being obtained by integrating the following quantities:

C(σ) = ∑
kerx=σ

∑
i

Hi1x1 . . .Hirxr ·ai1 . . .air

Now by Möbius inversion, we obtain a formula as follows:∫
ZN

2 ×ZN
2

Ωr = ∑
π∈Peven(r)

K(π)N|π |I(π)

Here K(π) = ∑σ∈Peven(r) μ(π ,σ) , where μ is the Möbius function of Peven(r) , and

I(π) = ∑i ∏b∈π
1
N 〈∏r∈b Hir ,1〉 , where H1, . . . ,HN ∈ Z

N
2 are the rows of H .

With this formula in hand, the first assertion follows, because the biggest elements
of the lattice Peven(2p) are the (2p)!! partitions consisting of p copies of a 2-block.

As for the second assertion, this follows from the formula in the statement, and
from the fact that the glow of H ∈ MN(±1) is real, and symmetric with respect to
0. �

2. Complex matrices

In this section and in the next one we discuss the complex case, which is the one
that we are truly interested in. We will use inspiration from section 1.

We recall that a complex Hadamard matrix is a matrix H ∈ MN(T) , where T is
the unit circle in the complex plane, whose rows are pairwise orthogonal. Two such
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matrices H,K are called equivalent if one can pass from one to the other by permuting
the rows and columns, or by multiplying the rows and columns by numbers in T . See
[14].

As explained in the introduction, we are interested in the following invariant:

DEFINITION 2.1. The glow of H ∈MN(T) is the probability measure μ ∈P(C)
given by: ∫

C

ϕ(x)dμ(x) =
∫

TN×TN
ϕ

(
∑
i j

aib jHi j

)
d(a,b)

That is, μ is the law of the variable Ω = ∑i j Hi j , over the equivalence class of H .

As a first observation, since μ is invariant under rotations, we are in fact interested
in computing a certain measure μ+ supported by R+ . More precisely, if we denote
by × the multiplicative convolution, and by ε the uniform measure on T , then the
probability distributions μ ,μ+ of Ω, |Ω| over TN ×TN are related by the formula
μ = ε × μ+ .

We develop now some moment machinery. Let P(p) be the set of partitions of
{1, . . . , p} , with its standard order relation � , which is such that �� . . . � π � | | . . . | ,
for any π ∈ P(p) . We denote by μ(π ,σ) the associated Möbius function, given by:

μ(π ,σ) =

⎧⎪⎨⎪⎩
1 if π = σ
−∑π�τ<σ μ(π ,τ) if π < σ
0 if π �� σ

For π ∈ P(p) we set
(p

π
)

=
( p
b1...b|π|

)
= p!

b1!...b|π|!
, where b1, . . . ,b|π | are the block

lenghts. Finally, we use the following notation, where H1, . . . ,HN ∈ TN are the rows of
H :

Hπ(i) =
⊗
β∈π

∏
r∈β

Hir

With these notations, we have the following result:

PROPOSITION 2.2. The glow moments of a matrix H ∈ MN(T) are given by

∫
TN×TN

|Ω|2p = ∑
π∈P(p)

K(π)N|π |I(π)

where K(π) = ∑σ∈P(p) μ(π ,σ)
(p

σ
)

and I(π) = 1
N|π| ∑[i]=[ j]〈Hπ(i),Hπ( j)〉 .
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Proof. The moments are given by the following formula:

∫
TN×TN

|Ω|2p =
∫

TN×TN

∣∣∣∑
i j

Hixaibx

∣∣∣2p
=
∫

TN×TN

(
∑
i jxy

Hix

Hjy
· aibx

a jby

)p

= ∑
i jxy

Hi1x1 . . .Hipxp

Hj1y1 . . .Hjpyp

∫
TN

ai1 . . .aip

a j1 . . .a jp
da
∫

TN

bx1 . . .bxp

by1 . . .byp

db

= ∑
[i]=[ j],[x]=[y]

Hi1x1 . . .Hipxp

Hj1y1 . . .Hjpyp

With σ = kerx,ρ = kery , we deduce that the moments of |Ω|2 decompose over
partitions,

∫
TN×TN |Ω|2p =

∫
TN ∑σ ,ρ∈P(p)C(σ ,ρ) , with the contributions being as fol-

lows:

C(σ ,ρ) = ∑
kerx=σ ,kery=ρ

δ[x],[y] ∑
i j

Hi1x1 . . .Hipxp

Hj1y1 . . .Hjpyp

· ai1 . . .aip

a j1 . . .a jp

We have C(σ ,ρ) = 0 unless σ ∼ ρ , in the sense that σ ,ρ must have the same
block structure. The point now is that the sums of type ∑kerx=σ can be computed by
using the Möbius inversion formula. We obtain a formula as follows:

C(σ ,ρ) = δσ∼ρ ∑
π�σ

μ(π ,σ) ∏
β∈π

C|β |(a)

Here the functions on the right are by definition given by:

Cr(a) = ∑
x

∑
i j

Hi1x . . .Hirx

Hj1x . . .Hjrx
· ai1 . . .air

a j1 . . .a jr

= ∑
i j

< Hi1 . . .Hir ,Hj1 . . .Hjr > · ai1 . . .air

a j1 . . .a jr

Now since there are
(p

σ
)

partitions having the same block structure as σ , we
obtain: ∫

TN×TN
|Ω|2p =

∫
TN

∑
π∈P(p)

(
∑

σ∼ρ
∑

μ�σ
μ(π ,σ)

)
∏
β∈π

C|β |(a)

= ∑
π∈P(p)

(
∑

σ∈P(p)
μ(π ,σ)

(
p
σ

))∫
TN

∏
β∈π

C|β |(a)

But this gives the formula in the statement, and we are done. �
Let us discuss now the asymptotic behavior of the glow. For this purpose, we first

study the coefficients K(π) in Proposition 2.2. We have here:

LEMMA 2.3. K(π) = ∑π�σ μ(π ,σ)
(p

σ
)

has the following properties:

1. K̃(π) = K(π)
p! is multiplicative: K̃(ππ ′) = K̃(π)K̃(π ′) .
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2. K(�� . . .�) = ∑σ∈P(p)(−1)|σ |−1(|σ |−1)!
(p

σ
)
.

3. K(�� . . .�) = ∑p
r=1(−1)r−1(r−1)!Cpr , where Cpr = ∑p=a1+...+ar

( p
a1,...,ar

)2
.

Proof. (1) We use the fact that μ(ππ ′,σσ ′) = μ(π ,σ)μ(π ′,σ ′) , which is a well-
known property of the Möbius function, which can be proved by recurrence. Now if
b1, . . . ,bs and c1, . . . ,ct are the block lengths of σ ,σ ′ , we obtain, as claimed:

K̃(ππ ′) = ∑
ππ ′�σσ ′

μ(ππ ′,σσ ′) · 1
b1! . . .bs!

· 1
c1! . . .ct !

= ∑
π�σ ,π ′�σ ′

μ(π ,σ)μ(π ′,σ ′) · 1
b1! . . .bs!

· 1
c1! . . .ct !

= K̃(π)K̃(π ′)

(2) We use here the formula μ(�� . . .�,σ) = (−1)|σ |−1(|σ | − 1)! , which once
again is well-known, and can be proved by recurrence on |σ | . We obtain, as claimed:

K(�� . . .�) = ∑
σ∈P(p)

μ(�� . . .�,σ)
(

p
σ

)
= ∑

σ∈P(p)
(−1)|σ |−1(|σ |−1)!

(
p
σ

)
(3) By using the formula in (2), and summing over r = |σ | , we obtain:

K(�� . . .�) =
p

∑
r=1

(−1)r−1(r−1)! ∑
|σ |=r

(
p
σ

)

Now if we denote by a1, . . . ,ar with ai � 1 the block lengths of σ , then
(p

σ
)

=( p
a1,...,ar

)
. On the other hand, given a1, . . . ,ar � 1 with a1 + . . . + ar = p , there are

exactly
( p
a1,...,ar

)
partitions σ having these numbers as block lengths, and this gives the

result. �
Now let us take a closer look at the integrals I(π) . We have here:

LEMMA 2.4. Consider the one-block partition �� . . .� ∈ P(p) .

1. I(�� . . .�) = #{i, j ∈ {1, . . . ,N}p|[i] = [ j]} .

2. I(�� . . .�) =
∫
TN |∑i ai|2pda.

3. I(�� . . .�) = ∑σ∈P(p)
(p

σ
)

N!
(N−|σ |)! .

4. I(�� . . .�) = ∑p−1
r=1 Cpr

N!
(N−r)! , where Cpr = ∑p=b1+...+br

( p
b1,...,br

)2
.

Proof. (1) This follows indeed from the following computation:

I(�� . . .�) = ∑
[i]=[ j]

1
N

< Hi1 . . .Hir ,Hj1 . . .Hjr >= ∑
[i]=[ j]

1
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(2) This follows from the following computation:

∫
TN

∣∣∣∣∣∑i
ai

∣∣∣∣∣
2p

=
∫

TN
∑
i j

ai1 . . .aip

a j1 . . .a jp
da = #

{
i, j
∣∣∣[i] = [ j]

}
(3) If we let σ = ker i in the above formula of I(�� . . .�) , we obtain:

I(�� . . .�) = ∑
σ∈P(p)

#
{

i, j
∣∣∣ker i = σ , [i] = [ j]

}

Now since there are N!
(N−|σ |)! choices for i , and then

( p
σ
)

for j , this gives the
result.

(4) If we set r = |σ | , the formula in (3) becomes:

I(�� . . .�) =
p−1

∑
r=1

N!
(N − r)! ∑

σ∈P(p),|σ |=r

(
p
σ

)

Now since there are exactly
( p
b1,...,br

)
permutations σ ∈ P(p) having b1, . . . ,br as

block lengths, the sum on the right equals ∑p=b1+...+br

( p
b1,...,br

)2
, as claimed. �

In general, the integrals I(π) can be estimated as follows:

LEMMA 2.5. Let H ∈ MN(T) , having its rows pairwise orthogonal.

1. I(| | . . . |) = Np .

2. I(| | . . . | π) = NaI(π) , for any π ∈ P(p−a) .

3. |I(π)| � p!Np , for any π ∈ P(p) .

Proof. (1) Since the rows of H are pairwise orthogonal, we have:

I(| | . . . |) = ∑
[i]=[ j]

p

∏
r=1

δir , jr = ∑
[i]=[ j]

δi j = ∑
i

1 = Np

(2) This follows by the same computation as the above one for (1).
(3) We have indeed the following estimate:

|I(π)| � ∑
[i]=[ j]

∏
β∈π

1 = ∑
[i]=[ j]

1 = #
{

i, j ∈ {1, . . . ,N}
∣∣∣[i] = [ j]

}
	 p!Np

Thus we have obtained the formula in the statement, and we are done. �

We have now all needed ingredients for a universality result:
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THEOREM 2.6. The glow of a complex Hadamard matrix H ∈ MN(T) is given
by:

1
p!

∫
TN×TN

( |Ω|
N

)2p

= 1−
(

p
2

)
N−1 +O(N−2)

In particular, Ω/N becomes complex Gaussian in the N → ∞ limit.

Proof. We use the moment formula in Proposition 2.2. By using Lemma 2.5 (3),
we conclude that only the p -block and (p− 1)-block partitions contribute at order 2,
so:∫

TN×TN
|Ω|2p = K(| | . . . |)NpI(| | . . . |)+

(
p
2

)
K(�| . . . |)Np−1I(�| . . . |)+O(N2p−2)

Now by dividing by N2p and then by using the various formulae in Lemma 2.3,
Lemma 2.4 and Lemma 2.5 above, we obtain, as claimed:

∫
TN×TN

( |Ω|
N

)2p

= p!−
(

p
2

)
p!
2
· 2N−1

N2 +O(N−2)

Finally, since the law of Ω is invariant under centered rotations in the complex
plane, this moment formula gives as well the last assertion. �

3. Fourier matrices

In this section we study the glow of an arbitrary Fourier matrix, F = FG . We use
the standard formulae FixFiy = Fi,x+y , Fix = Fi,−x and ∑x Fix = Nδi0 . We first have:

PROPOSITION 3.1. For a Fourier matrix FG we have

I(π) = #

{
i, j
∣∣∣[i] = [ j], ∑

r∈β
ir = ∑

r∈β
jr,∀β ∈ π

}

with all the indices, and with the sums at right, taken inside G.

Proof. The basic components of the integrals I(π) are given by:

1
N

〈
∏
r∈β

Fir ,∏
r∈β

Fjr

〉
=

1
N

〈
F∑r∈β ir ,F∑r∈β ir

〉
= δ∑r∈β ir ,∑r∈β jr

But this gives the formula in the statement, and we are done. �

We have the following interpretation of the above integrals:
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PROPOSITION 3.2. For any partition π we have the formula

I(π) =
∫

TN
∏
b∈π

(
1
N2 ∑

i j
|Hi j|2|β |

)
da

where H = FAF∗ , with F = FG and A = diag(a0, . . . ,aN−1) .

Proof. We have the following computation:

H = F∗AF =⇒ |Hxy|2 = ∑
i j

FiyFjx

FixFjy
· ai

a j

=⇒ |Hxy|2p = ∑
i j

Fj1x . . .Fjpx

Fi1x . . .Fipx
· Fi1y . . .Fipy

Fj1y . . .Fjpy
· ai1 . . .aip

a j1 . . .a jp

=⇒ ∑
xy
|Hxy|2p = ∑

i j

∣∣< Hi1 . . .Hip ,Hj1 . . .Hjp >
∣∣2 · ai1 . . .aip

a j1 . . .a jp

But this gives the formula in the statement, and we are done. �
The above formula is interesting in connection with the considerations in [2], [4],

and with the general counting problematics for circulant Hadamard matrices [9]. See
[4].

Regarding now the glow estimates, we first have the following result:

LEMMA 3.3. For FG we have the estimate

I(π) = b1! . . .b|π |!Np +O(Np−1)

where b1, . . . ,b|π | with b1 + . . .+b|π | = p are the block lengths of π .

Proof. With σ = ker i we obtain:

I(π) = ∑
σ∈P(p)

#

{
i, j
∣∣∣ker i = σ , [i] = [ j], ∑

r∈β
ir = ∑

r∈β
jr,∀β ∈ π

}

Since there are N!
(N−|σ |)! 	 N|σ | choices for i satisfying ker i = σ , and then there

are
( p

σ
)

= O(1) choices for j satisfying [i] = [ j] , we conclude that the main contribu-
tion comes from σ = | | . . . | , and so we have:

I(π) = #

{
i, j
∣∣∣ker i = | | . . . |, [i] = [ j], ∑

r∈β
ir = ∑

r∈β
jr,∀β ∈ π

}
+O(Np−1)

Now the condition ker i = | | . . . | tells us that i must have distinct entries, and there
are N!

(N−p)! 	 Np choices for such multi-indices i . Regarding now the indices j , the
main contribution comes from those obtained from i by permuting the entries over the
blocks of π , and since there are b1! . . .b|π |! choices here, this gives the result. �

At the second order now, the estimate is as follows:



470 T. BANICA

LEMMA 3.4. For FG we have the formula

I(π)
b1! . . .bs!Np = 1+

(
∑
i< j

∑
c�2

(
bi

c

)(
b j

c

)
− 1

2 ∑
i

(
bi

2

))
N−1 +O(N−2)

where b1, . . . ,bs being the block lengths of π ∈ P(p) .

Proof. Let us define the “non-arithmetic” part of I(π) as follows:

I◦(π) = #
{

i, j
∣∣∣[ir|r ∈ β ] = [ jr|r ∈ β ],∀β ∈ π

}
We then have the following formula:

I◦(π) = ∏
β∈π

{
i, j ∈ I|β |

∣∣∣[i] = [ j]
}

= ∏
β∈π

I(β )

Also, Lemma 3.3 shows that we have the following estimate:

I(π) = I◦(π)+O(Np−1)

Our claim now is that we have the folowing formula:

I(π)− I◦(π)
b1! . . .bs!Np = ∑

i< j
∑
c�2

(
bi

c

)(
b j

c

)
N−1 +O(N−2)

Indeed, according to Lemma 3.3, we have a formula of the following type:

I(π) = I◦(π)+ I1(π)+O(Np−2)

More precisely, this formula holds indeed, with I1(π) coming from i1, . . . , ip dis-
tinct, [i] = [ j] , and with one constraint of type ∑r∈β ir = ∑ j∈β jr , with [ir|r ∈ β ] �=
[ jr|r ∈ β ] . Now observe that for a two-block partition π = (a,b) this constraint is
implemented, up to permutations which leave invariant the blocks of π , as follows:

i1 . . . ic k1 . . .ka−c j1 . . . jc l1 . . . la−c

j1 . . . jc︸ ︷︷ ︸
c

k1 . . .ka−c︸ ︷︷ ︸
a−c

i1 . . . ic︸ ︷︷ ︸
c

l1 . . . la−c︸ ︷︷ ︸
b−c

Let us compute now I1(a,b) . We cannot have c = 0,1, and once c � 2 is given,
we have

(a
c

)
,
(b
c

)
choices for the positions of the i, j variables in the upper row, then

Np−1 +O(Np−2) choices for the variables in the upper row, and then finally we have
a!b! permutations which can produce the lower row. We therefore obtain:

I1(a,b) = a!b! ∑
c�2

(
a
c

)(
b
c

)
Np−1 +O(Np−2)
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In the general case now, a similar discussion applies. Indeed, the constraint of
type ∑r∈β ir = ∑r∈β jr with [ir|r ∈ β ] �= [ jr|r ∈ β ] cannot affect � 1 blocks, because
we are not in the non-arithmetic case, and cannot affect either � 3 blocks, because
affecting � 3 blocks would require � 2 constraints. Thus this condition affects exactly
2 blocks, and if we let i < j be the indices in {1, . . . ,s} corresponding to these 2 blocks,
we obtain:

I1(π) = b1! . . .bs!∑
i< j

∑
c�2

(
bi

c

)(
b j

c

)
Np−1 +O(Np−2)

But this proves the above claim. Let us estimate now I(�� . . .�) . We have:

I(�� . . .�) = p!
N!

(N− p)!
+
(

p
2

)
p!
2
· N!
(N− p+1)!

+O(Np−2)

= p!Nr
(

1−
(

p
2

)
N−1 +O(N−2)

)
+
(

p
2

)
p!
2

Np−1 +O(Np−2)

= p!Np
(

1− 1
2

(
p
2

)
N−1 +O(N−2)

)
Now by using the formula I◦(π) = ∏β∈π I(β ) , we obtain:

I◦(π) = b1! . . .bs!N
p

(
1− 1

2 ∑
i

(
bi

2

)
N−1 +O(N−2)

)
By plugging this quantity into the above estimate, we obtain the result. �
In order to estimate glow, we will need the explicit formula of I(��) :

LEMMA 3.5. For FG with G = ZN1 × . . .×ZNk we have the formula

I(��) = N(4N3 −11N +2e +7)

where e ∈ {0,1, . . . ,k} is the number of even numbers among N1, . . . ,Nk .

Proof. We use the fact that, when dealing with the conditions ∑r∈β ir = ∑r∈β jr
defining the quantities I(π) , one can always erase some of the variables ir, jr , as to
reduce to the “purely arithmetic” case, {ir|r ∈ β}∩{ jr|r ∈ β} = /0 . We have:

I(��) = I◦(��)+ Iari(��)

Let us compute now Iari(��) . There are 3 contributions to this quantity, namely:
(1) Case (ii j j

j jii) , with i �= j , 2i = 2 j . Since 2(i1, . . . , ik) = 2( j1, . . . , jk) corresponds

to the collection of conditions 2ir = 2 jr , inside ZNr , which each have 1 or 2 solutions,
depending on whether Nr is odd or even, the contribution here is:

Iari
1 (��) = #{i �= j|2i = 2 j}

= #{i, j|2i = 2 j}−#{i, j|i = j}
= 2eN−N

= (2e −1)N



472 T. BANICA

(2) Case (ii jk
jkii) , with i, j,k distinct, 2i = j + k . The contribution here is:

Iari
2 (��) = 4#{i, j,k distinct|2i = j + k}

= 4#{i �= j|2i− j �= i, j}
= 4#{i �= j|2i �= 2 j}
= 4(#{i, j|i �= j}−#{i �= j|2i = 2 j})
= 4(N(N−1)− (2e−1)N)
= 4N(N−2e)

(3) Case (i jkl
kli j) , with i, j,k, l distinct, i+ j = k+ l . The contribution here is:

Iari
3 (��) = 4#{i, j,k, l distinct|i+ j = k+ l}

= 4#{i, j,k distinct|i+ j− k �= i, j,k}
= 4#{i, j,k distinct|i+ j− k �= k}
= 4#{i, j,k distinct|i �= 2k− j}

We can split this quantity over two cases, 2 j �= 2k and 2 j = 2k , and we obtain:

Iari
3 (��) = 4(#{i, j,k distinct|2 j �= 2k, i �= 2k− j}

+#{i, j,k distinct|2 j = 2k, i �= 2k− j})
The point now is that in the first case, 2 j �= 2k , the numbers j,k,2k− j are distinct,

while in the second case, 2 j = 2k , we simply have 2k− j = j . Thus, we obtain:

Iari
3 (��) = 4

(
∑

j �=k,2 j �=2k

#{i|i �= j,k,2k− j}+ ∑
j �=k,2 j=2k

#{i|i �= j,k}
)

= 4(N(N −2e)(N−3)+N(2e−1)(N−2))
= 4N(N(N −3)−2e(N−3)+2e(N−2)− (N−2))
= 4N(N2 −4N +2e +2)

We can now compute the arithmetic part. This is given by:

Iari(��) = (2e −1)N +4N(N−2e)+4N(N2−4N +2e +2)
= N(2e −1+4(N−2e)+4(N2−4N +2e +2))
= N(4N2 −12N +2e +7)

Thus the integral to be computed is given by:

I(��) = N2(2N−1)2 +N(4N2−12N +2e +7)
= N(4N3 −4N2 +N +4N2−12N +2e +7)
= N(4N3 −11N +2e +7)

Thus we have reached to the formula in the statement, and we are done. �
We have the following asymptotic result:
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THEOREM 3.6. The glow of FG , with |G| = N , is given by

1
p!

∫
TN×TN

( |Ω|
N

)2p

= 1−K1N
−1 +K2N

−2 −K3N
−3 +O(N−4)

with K1 =
(p

2

)
, K2 =

(p
2

) 3p2+p−8
12 , K3 =

(p
3

) p3+4p2+p−18
8 .

Proof. We use the quantities K̃(π) = K(π)
p! , Ĩ(π) = I(π)

Np , which are such that

K̃(π | . . . |) = K̃(π), Ĩ(π | . . . |) = Ĩ(π) . In terms of J(σ) =
(p

σ
)
K̃(σ)Ĩ(σ) , we have:

1
p!

∫
TN×TN

|Ω|2p = J( /0)+N−1J(�)+N−2 (J(��)+ J(��))

+N−3 (J(���)+ J(���)+ J(���))+O(N−4)

We have K̃0 = K̃1 = 1, K̃2 = 1
2 −1 = − 1

2 , K̃3 = 1
6 − 3

2 +2 = 2
3 and:

K̃4 =
1
24

− 4
6
− 3

4
+

12
2

−6 = −11
8

Regarding now the numbers Cpr in Lemma 2.3, these are given by:

Cp1 = 1,Cp2 =
1
2

(
2p
p

)
−1, . . . ,Cp,p−1 =

p!
2

(
p
2

)
,Cpp = p!

We deduce that I(|) = N , I(�) = N(2N−1) , I(��) = N(6N2 −9N +4) and:

I(���) = N(24N3−72N2 +82N−33)

By using as well Lemma 3.4 and Lemma 3.5, we obtain the following formula:

1
p!

∫
TN×TN

|Ω|2p = 1− 1
2

(
p
2

)
(2N−1 −N−2)+

2
3

(
p
3

)
(6N−2−9N−3)+3

(
p
4

)
N−2

−33

(
p
4

)
N−3 −40

(
p
5

)
N−3−15

(
p
6

)
N−3 +O(N−4)

But this gives the formulae of K1,K2,K3 in the statement, and we are done. �

4. Concluding remarks

We have seen in this paper that the glow of the Fourier matrices, an invariant
which is related to a wide array of Hadamard matrix questions, is complex Gaussian in
the N → ∞ limit, and that the universality holds in fact up to order 4. Any potential
application, however, would require a much deeper understanding of the glow.

We believe that the formula in Theorem 3.6 should appear as truncation of the N−1

expansion of the moment formula for some “universal” measure μN . However, we do
not know for the moment on how to approach μN . One problem here is that we have
two natural candidates for this measure, one coming from the Fourier matrix FN , and
the other one coming from the Walsh matrix WN (defined only for values N = 2n ):
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1. Regarding FN , the formula in Lemma 3.5 shows that the next term K4 depends
on the parity of N . One could conjecture then that K4 might be polynomial both
in N odd, and in N even, but we have computer-assisted results showing that it
is not so. It is not clear on how to advance in this direction.

2. Regarding WN , where N = 2n and the underlying group is G = Zn
2 , here the num-

bers CI(J1, . . . ,Jr) = #
{
(ai)i∈I ∈ G distinct

∣∣∣∑ j∈Js a j = 0,∀s
}

are polynomial in

N = 2n , and this suggests that the integrals I(π) , and hence the glow, should be
polynomial in N . However, we don’t have a full proof of this fact.

As a conclusion, the results in the present paper, along with the data coming from
some extra computer simulations and computations, suggest the following key problem,
that we would like to raise here: what is the glow of the Walsh matrices?
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