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HOCHSCHILD COHOMOLOGY OF TYPE II1

VON NEUMANN ALGEBRAS WITH PROPERTY Γ

WENHUA QIAN AND JUNHAO SHEN

(Communicated by D. Hadwin)

Abstract. In this paper, Property Γ for a type II 1 von Neumann algebra is introduced as a
generalization of Murray and von Neumann’s Property Γ for a type II 1 factor. The main result
of this paper is that if a type II 1 von Neumann algebra M with separable predual has Property
Γ , then the continuous Hochschild cohomology group Hk(M ,M ) vanishes for every k � 2 .
This gives a generalization of an earlier result in [4].

1. Introduction

The continuous Hochschild cohomology of von Neumann algebras was initialized
by Johnson, Kadison and Ringrose in [14], [15], [11], where it was conjectured that
the k -th continuous Hochschild cohomology group Hk(M ,M ) is trivial for any von
Neumann algebra M , k � 1. In the case k = 1, this conjecture, which is equivalent
to the problem of whether a derivation of a von Neumann algebra into itself is inner,
had been solved by Kadison and Sakai independently in [13], [21]. In the following we
focus on the case when k � 2. In [11], it was shown that Hk(M ,M ) = 0 for k � 2 if
M is an injective von Neumann algebra. It follows that if M is a type I von Neumann
algebra, then Hk(M ,M ) = 0 for k � 2.

Significant progress was made after the introduction of completely boundedHochs-
child cohomology groups for von Neumann algebras ([2], [3], [4], [5], [6], [7], [18],
[19], [23], [24]). It was shown in [6], [8] (see also [22]) that the completely bounded
Hochschild cohomology group Hk

cb(M ,M ) = 0 for k � 2. As a consequence of re-
sults in [2], if M is a type II∞ or type III von Neumann algebra, then Hk(M ,M ) = 0
for k � 2. In the case that M is a type II1 von Neumann algebra, many results as
listed below have also been obtained. (We refer to a wonderful book [22] by Sinclair
and Smith for a survey of Hochschild cohomology theory for von Neumann algebras
and proofs of most of the following results.)

(i) Hk(M ,M ) = 0 for k � 2 if the type II1 central summand in the type decompo-
sition M = M1 ⊕Mc1 ⊕Mc∞ ⊕M∞ of the von Neumann algebra M satisfies
Mc1 ⊗R ∼= Mc1 , where R is the hyperfinite type II1 factor ([2]).
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(ii) Hk(M ,M )= 0 for k � 2 if M is a type II1 von Neumann algebra with a Cartan
subalgebra and separable predual ([3], [18], [23], [24]); it was shown later in [1]
that Hk(M ,M ) = 0 if M is a type II1 factor with a Cartan masa.

(iii) H2(M ,M ) = 0 for k � 2 if M is a type II1 factor satisfying various technical
properties related to its action on L2(M ,tr) ([18]).

(iv) Hk(M ,M ) = 0 for k � 2 if M is a type II1 factor with Property Γ ([4]).

(v) H2(M1⊗M2,M1⊗M2) = 0 if both M1 and M2 are type II1 von Neumann
algebras ([19]).

A motivation of this paper is to generalize the listed result (iv) in [4] for type II1

factors with Property Γ to general type II1 von Neumann algebras with certain prop-
erties. Recall Murray and von Neumann’s Property Γ for type II1 factors as follows.
Suppose A is a type II1 factor with a trace τ . Let ‖ · ‖2 be the 2 -norm on A given
by ‖a‖2 =

√
τ(a∗a) for any a ∈ A . Then A has Property Γ if, given ε > 0 and

a1,a2, . . . ,ak ∈ A , there exists a unitary u ∈ A such that

(a) τ(u) = 0 ;

(b) ‖ua j −a ju‖2 < ε, ∀ 1 � j � k .

An equivalent definition of Property Γ for a type II1 factor A was given by
Dixmier in [9]. Suppose A is a type II1 factor with a trace τ . Let ‖·‖2 be the 2 -norm
on A given by ‖a‖2 =

√
τ(a∗a) for any a ∈ A . Then A has Property Γ if, given

n ∈ N , ε > 0 and a1,a2, . . . ,ak ∈ A , there exist n orthogonal equivalent projections
{p1, p2, . . . , pn} in A with sum I such that

‖pia j −a j pi‖2 < ε, ∀ 1 � i � n,1 � j � k.

In the paper, we extend Dixmier’s equivalent definition of Murray and von Neu-
mann’s Property Γ to general von Neumann algebras as follows.

DEFINITION 3.1. Suppose M is a type II1 von Neumann algebra with a predual
M� . Suppose that σ(M ,M�) is the weak-∗ topology on M induced from M� . We
say that M has Property Γ̂ if and only if ∀ a1,a2, . . . ,ak ∈M and ∀ n∈ N , there exist
a partially ordered set Λ and a family of projections

{piλ : 1 � i � n;λ ∈ Λ} ⊆ M

satisfying

(i) For each λ ∈ Λ , {p1λ , p2λ , . . . , pnλ} is a family of orthogonal equivalent projec-
tions in M with sum I .

(ii) For each 1 � i � n and 1 � j � k ,

lim
λ

(piλ a j −a j piλ )∗(piλ a j −a jpiλ ) = 0 in σ(M ,M�) topology.
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We note that Definition 3.1 coincides with Dixmier’s definition (and Murray and
von Neumann’s definition) when M is a type II1 factor (see Corollary 3.5). The fol-
lowing theorem is our main result of this paper, which gives a generalization of an
earlier result in [4].

THEOREM 6.4. Suppose M is a type II1 von Neumann algebra with separable
predual. If M has Property Γ , then the Hochschild cohomology group

Hk(M ,M ) = 0, ∀ k � 2.

The proof of Theorem 6.4 follows the similar line as the one in [4] besides that
new tools from direct integral theory for von Neumann algebras need to be developed.

The organization of this paper is as follows. In section 3, we introduce a defini-
tion of Property Γ for type II1 von Neumann algebras. In section 4, by applying the
technique of direct integrals to M , we will construct a hyperfinite subfactor R such
that the relative commutant of R is the center of M and R satisfies the additional
property of containing an asymptotically commuting family of projections for M . In
section 5, we will prove a Grothendick inequality for R -multimodular normal multilin-
ear maps. Then, in section 6, we combine these results obtained in section 4 and section
5 to show that for a type II1 von Neumann algebra M with separable predual, if M
has Property Γ , then every bounded k -linear R -multimodular separately normal map
from M k to M is completely bounded, which implies the triviality of the cohomology
group Hk(M ,M ) by Theorem 3.1.1 and Theorem 4.3.1 in [22].

2. Preliminaries

2.1. Hochschild cohomology

In this subsection, we will recall a definition of continuous Hochschild cohomol-
ogy groups (see [22]).

Let M be a von Neumann algebra. We say that a Banach space X is a Ba-
nach M -bimodule if there is a module action of M on both the left and right of X
satisfying

‖mξ‖ � ‖m‖‖ξ‖

and

‖ξm‖ � ‖ξ‖‖m‖

for any m ∈ M ,ξ ∈ X .
For each integer k � 1, we denote by L k(M ,X ) the Banach space of k -linear

bounded maps φ : M k → X . For k = 0, we define L 0(M ,X ) to be X . Then we
can define coboundary operators ∂ k : L k(M ,X ) → L k+1(M ,X ) as follows:
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(i) when k � 1, for any φ ∈ L k(M ,X ),a1,a2, . . . ,ak ∈ M ,

∂ kφ(a1,a2, . . . ,ak+1) = a1φ(a2, . . . ,ak+1)

+
k

∑
i=1

(−1)kφ(a1, . . . ,ai−1,aiai+1, . . . ,ak+1)

+ (−1)k+1φ(a1, . . . ,ak)ak+1.

(ii) when k = 0, for any ξ ∈ X ,a ∈ M , ∂ 0ξ (a) = aξ − ξa .

It’s easy to check that ∂ k∂ k−1 = 0 for each k � 1. Thus Im∂ k−1 (the space of
coboundaries) is contained in Ker∂ k (the space of cocycles). The continuousHochschild
cohomology groups Hk(M ,X ) are then defined to be the quotient vector spaces
Ker∂ k/Im∂ k−1,k � 1.

2.2. Direct integral

The concepts of direct integrals of separable Hilbert spaces and von Neumann
algebras acting on separable Hilbert spaces were introduced by von Neumann in [26].
General knowledge on direct integrals can be found in [26], [16]. Here, we list some
lemmas which will be needed in this paper.

LEMMA 2.1. ([16]) Suppose M is a von Neumann algebra acting on a sepa-
rable Hilbert space H . Let Z be the center of M . Then there is a direct integral
decomposition of M relative to Z , i.e., there exists a locally compact complete sepa-
rable metric measure space (X ,μ) such that

(i) H is (unitarily equivalent to) the direct integral of {Hs : s ∈ X} over (X ,μ) ,
where each Hs is a separable Hilbert space, s ∈ X .

(ii) M is (unitarily equivalent to) the direct integral of {Ms} over (X ,μ) , where
Ms is a factor in B(Hs) almost everywhere. Also, if M is of type In (n could
be infinite), II1 , II∞ or III , then the components Ms are, almost everywhere, of
type In , II1 , II∞ or III , respectively.

Moreover, the center Z is (unitarily equivalent to) the algebra of diagonalizable op-
erators relative to this decomposition.

The following lemma gives a decomposition of a normal state on a direct integral
of von Neumann algebras.

LEMMA 2.2. ([16]) Suppose H is the direct integral of separable Hilbert spaces
{Hs} over (X ,μ) , M is a decomposable von Neumann algebra on H (i.e every oper-
ator in M is decomposable relative to the direct integral decomposition, see Definition
14.1.6 in [16]) and ρ is a normal state on M . There is a positive normal linear func-
tional ρs on Ms for every s ∈ X such that ρ(a) =

∫
X ρs(a(s))dμ for each a in M . If

M contains the algebra C of diagonalizable operators and ρ |EME is faithful or tra-
cial, for some projection E in M , then ρs|E(s)MsE(s) is, accordingly, faithful or tracial
almost everywhere.
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REMARK 2.3. From the proof of Lemma 14.1.19 in [16], we obtain that if ρ =
∞
∑

n=1
ωyn on M , where {yn} is a sequence of vectors in H such that

∞
∑

n=1
‖yn‖2 = 1 and

ωy is defined on M such that ωy(a) = 〈ay,y〉 for any a ∈ M ,y ∈ H , then ρs can be

chosen to be
∞
∑

n=1
ωyn(s) for each s ∈ X .

REMARK 2.4. Let M =
∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ be the direct integral

decompositions of (M ,H) relative to the center Z of M . By the argument in section
14.1 in [16], we can find a separable Hilbert space K and a family of unitaries {Us :
Hs → K;s ∈ X} such that s→Usx(s) is measurable (i.e. s →〈Usx(s),y〉 is measurable
for any vector y in K ) for every x ∈ H and s → Usa(s)U∗

s is measurable (i.e. s →
〈Usa(s)U∗

s y,z〉 is measurable for any vectors y,z in K ) for every decomposable operator
a ∈ B(H) .

PROPOSITION 2.5. Let M be a type II1 von Neumann algebra acting on a sepa-
rable Hilbert space H. Let M =

∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ be the direct integral

decompositions of M and H relative to the center Z of M . Suppose K is a Hilbert
space and {Us : Hs → K} is a family of unitaries as in Remark 2.4. Denote by B
the unit ball of B(K) equipped with the ∗ -strong operator topology. Suppose ρ is a
faithful normal tracial state on M . Then there is a family of positive, faithful, normal,
tracial linear functionals ρs on Ms (almost everywhere) such that

(a) ρ(a) =
∫
X ρs(a(s))dμ for every a ∈ M ;

(b) for any a0 ∈ M , there exists a Borel μ -null subset N of X such that the maps

(s,b) → ρs((a0(s)U∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s)))

and
(s,b) → ρs(U∗

s bUs)

are Borel measurable from (X \N)×B to C .

Proof. If ρ is a faithful, normal, tracial state on M , then there exist a sequence of

vectors {yn} ⊂ H with
∞
∑

n=1
‖yn‖2 = 1 such that ρ =

∞
∑

n=1
ωyn . Take ρs =

∞
∑

n=1
ωyn(s) for

every s ∈ X . By Remark 2.3, we know, for s ∈ X almost everywhere, ρs is a positive,
faithful, normal, tracial linear functional on Ms and

ρ(a) =
∫

X
ρs(a(s))dμ ∀a ∈ M . (2.1)

For each n ∈ N ,

ωyn(a) =
∫

X
ωyn(s)(a(s))dμ ∀a ∈ M .
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Consider the maps φn,ψn : X ×B → C :

φn(s,b) = ωyn(s)((a0(s)U∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s)))

and

ψn(s,b) = ωyn(s)(U
∗
s bUs).

We have

φn(s,b) = ωyn(s)((a0(s)U∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s)))

= 〈(a0sU
∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s))yn(s),yn(s)〉
= 〈a0(s)U∗

s bUsyn(s),a0(s)U∗
s bUsyn(s)〉

− 〈a0(s)U∗
s bUsyn(s),U∗

s bUsa0(s)yn(s)〉
− 〈U∗

s bUsa0(s)yn(s),a0(s)U∗
s bUsyn(s)〉

+ 〈U∗
s bUsa0(s)yn(s),U∗

s bUsa0(s)yn(s)〉
= 〈bUsyn(s),Usa

∗
0(s)U

∗
s Usa0(s)U∗

s bUsyn(s)〉
− 〈Usa0(s)U∗

s bUsyn(s),bUsa0(s)U∗
s Usyn(s)〉

− 〈bUsa0(s)U∗
s Usyn(s),Usa0(s)U∗

s bUsyn(s)〉
+ 〈Usa0(s)U∗

s Usyn(s),b∗bUsa0(s)U∗
s Usyn(s)〉.

By the choice of the family {Us : s ∈ X} in Remark 2.4, the maps

s →Usa0(s)U∗
s (2.2)

s →Usa
∗
0(s)U

∗
s (2.3)

from X to B(K) and
s →Usyn(s)

from X to K are measurable. Therefore by Lemma 14.3.1 in [16], there is a Borel
μ -null subset Nn,1 of X such that, restricted to X \Nn,1 , the maps (2.2) and (2.3) are all
Borel maps. It follows that the map φn is a Borel map from (X \Nn,1)×B .

Since ωyn(s)(U∗
s bUs) = 〈bUsyn(s),Usyn(s)〉 , the map (s,b)→ ωyn(s)(U∗

s bUs) from
X ×B to C is measurable by the choice of {Us : s ∈ X} in Remark 2.4. By Lemma
14.3.1 in [16], there exists a Borel μ -null subset Nn,2 of X such that the map

ψn : (s,b) → ωyn(s)(U
∗
s bUs)

is Borel measurable from (X \Nn,2)×B to C .
By the discussions in the preceding paragraphs, the maps

φn : (s,b) → ωyn(s)((a0(s)U∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s)))

and
ψn : (s,b) → ωyn(s)(U

∗
s bUs)
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are Borel measurable from (X \Nn)×B to C , where Nn = Nn,1 ∪Nn,2 is a μ -null
subset of X .

Since ρs =
∞
∑

n=1
ωyn(s) , we obtain that

(s,b) → ρs((a0(s)U∗
s bUs−U∗

s bUsa0(s))∗(a0(s)U∗
s bUs−U∗

s bUsa0(s))) (2.4)

and
(s,b) → ρs(U∗

s bUs) (2.5)

are Borel measurable from (X \N)×B to C , where N = ∪n∈NNn is a Borel μ -null
subset of X . By (2.1), (2.4), and (2.5), we complete the proof of the proposition. �

3. Property Γ for type II1 von Neumann algebras

In this section, we will introduce Property Γ for general von Neumann algebras
and discuss some of its properties.

Murray and von Neumann’s Property Γ for a type II1 factor is defined as follows.
Suppose A is a type II1 factor with a trace τ . Let ‖ · ‖2 be the 2 -norm on A given
by ‖a‖2 =

√
τ(a∗a) for any a ∈ A . Then A has Property Γ if, given ε > 0 and

a1,a2, . . . ,ak ∈ A , there exists a unitary u ∈ A such that

(a) τ(u) = 0 ;

(b) ‖ua j −a ju‖2 < ε, ∀ 1 � j � k .

An equivalent definition of Property Γ for a type II1 factor A was given by
Dixmier in [9]. Suppose A is a type II1 factor with a trace τ . Let ‖·‖2 be the 2 -norm
on A given by ‖a‖2 =

√
τ(a∗a) for any a ∈ A . Then A has Property Γ if, given

n ∈ N , ε > 0 and a1,a2, . . . ,ak ∈ A , there exists n orthogonal equivalent projections
{p1, p2, . . . , pn} in A with sum I such that

‖pia j −a j pi‖2 < ε, ∀ 1 � i � n,1 � j � k.

We introduce a definition of Property Γ̂ for a type II1 von Neumann algebra as
follows.

DEFINITION 3.1. Suppose M is a type II1 von Neumann algebra with a predual
M� . Suppose that σ(M ,M�) is the weak-∗ topology on M induced from M� . We
say that M has Property Γ̂ if and only if ∀ a1,a2, . . . ,ak ∈M and ∀ n∈ N , there exist
a partially ordered set Λ and a family of projections

{piλ : 1 � i � n;λ ∈ Λ} ⊆ M

satisfying

(i) For each λ ∈ Λ , {p1λ , p2λ , . . . , pnλ} is a family of orthogonal equivalent projec-
tions in M with sum I .
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(ii) For each 1 � i � n and 1 � j � k ,

lim
λ

(piλ a j −a j piλ )∗(piλ a j −a jpiλ ) = 0 in σ(M ,M�) topology.

REMARK 3.2. Suppose that M acts on a Hilbert space H . It is well-known
that σ(M ,M�) , the weak-∗ topology, on the unit ball of M coincides with the weak
operator topology on the unit ball of M . (See Theorem 7.4.2 in [16])

Let M be a countably decomposable type II1 von Neumann algebra with a faith-
ful normal tracial state ρ . Let ‖ ·‖2 be the 2-norm on M given by ‖a‖2 =

√
ρ(a∗a) ,

∀a ∈ M . Let Hρ = L2(M ,ρ) . For each element a ∈ M , we denote by a the corre-
sponding vector in Hρ . Let πρ be the left regular representation of M on Hρ induced

by πρ(a)(b) = ab,∀a,b ∈ M . The vector I is cyclic for πρ , where I is the unit of
M . Since that ρ is faithful, we obtain that πρ is faithful.

The following result is well-known. For the purpose of completeness, we include
a proof here.

LEMMA 3.3. Let M be a countably decomposable type II1 von Neumann alge-
bra acting on a Hilbert space H and ρ be a faithful normal tracial state on M . Let
‖ · ‖2 be the 2 -norm on M given by ‖a‖2 =

√
ρ(a∗a),∀a ∈ M . Then the topology

induced by ‖ · ‖2 coincides with the strong operator topology on bounded subsets of
M .

Proof. We claim that πρ is WOT −WOT continuous on bounded subsets of M .
To show this, we first suppose {aλ} is a net in the unit ball (M )1 of M such that

WOT − lim
λ

aλ = a ∈ (M )1.

Then for any b,c ∈ M ,

lim
λ
〈πρ(aλ )πρ(b) I ,πρ(c) I 〉 = lim

λ
ρ(c∗aλ b) = ρ(c∗ab) = 〈πρ(a)πρ(b) I ,πρ(c) I 〉.

(3.1)
Since the vector I is cyclic for πρ , we obtain from (3.1) that

lim
λ
〈πρ(aλ )x,y〉 = 〈πρ(a)x,y〉, ∀x,y ∈ Hρ .

Therefore WOT − lim
λ

πρ(aλ ) = πρ(a) and πρ is WOT −WOT continuous on bounded

subsets of M .
Since (M )1 is WOT compact, the unit ball (πρ(M ))1 = πρ((M )1) is WOT

closed. By Kaplansky’s Density Theorem, πρ(M ) is a von Neumann algebra. Hence
πρ from M onto πρ(M ) is a ∗ -isomorphism between von Neumann algebras. By
Theorem 7.1.16 in [16], πρ is a ∗ -homeomorphism from (M )1 onto (πρ(M ))1 when
both are endowed with the strong operator topology.

Now we can prove the result. First suppose {bλ} is a net in (M )1 such that
SOT − lim

λ
bλ = 0. Then SOT − lim

λ
b∗λ bλ = 0. Since ρ is SOT -continuous on (M )1 ,
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lim
λ

ρ(b∗λbλ ) = 0, which implies that lim
λ

‖bλ‖2 = 0. On the other hand, suppose {cλ}
is a net in (M )1 such that lim

λ
‖cλ‖2 = 0. Then for any a ∈ M , lim

λ
‖cλ a‖2 = 0, and

hence

lim
λ
〈πρ(cλ )a,πρ(cλ )a〉 = lim

i
〈πρ(a∗c∗λ cλ a) I , I 〉

= lim
λ

ρ(a∗c∗λ cλ a)

= lim
λ

‖cλa‖2
2

= 0.

Because {a : a ∈ M } is norm dense in Hρ , it follows that SOT − lim
i

πρ(cλ ) = 0 in

B(Hρ) . Since πρ is a homeomorphism from (M )1 onto (πρ(M ))1 when both are
endowed with the strong operator topology, SOT − lim

i
cλ = 0 in B(H) . �

COROLLARY 3.4. Let M be a countably decomposable type II1 von Neumann
algebra with a faithful normal tracial state ρ . Then the following are equivalent:

(a) M has Property Γ̂ (in the sense of Definition 3.1);

(b) Given any ε > 0 , any positive integer n and elements a1,a2, . . . ,ak ∈ M , there
exist orthogonal equivalent projections p1, p2, . . . , pn in M summing to I satis-
fying

‖pia j −a j pi‖2,ρ < ε, 1 � i � n,1 � j � k,

where the 2 -norm ‖ ·‖2,ρ on M is given by ‖a‖2,ρ =
√

ρ(a∗a) for any a∈M .

(c) For any faithful normal tracial state ρ̃ on M , any ε > 0 , any positive integer
n and elements a1,a2, . . . ,ak ∈ M , there exist orthogonal equivalent projections
p1, p2, . . . , pn in M summing to I satisfying

‖pia j −a j pi‖2,ρ̃ < ε, 1 � i � n,1 � j � k,

where the 2 -norm ‖ ·‖2,ρ̃ on M is given by ‖a‖2,ρ̃ =
√

ρ̃(a∗a) for any a∈M .

Proof. We might assume that M acts on a Hilbert space H .
(a)⇒(b) It follows directly from Definition 3.1, Remark 3.2 and Lemma 3.3.
(b)⇒(a) Assume that (b) holds. Let n ∈ N and a1,a2, . . . ,ak ∈ M . By (b), there

exists a family of projections

{pir : 1 � i � n;r � 1} ⊆ M

satisfying

(1) for each r � 1, p1r, p2r, . . . , pnr is a family of orthogonal equivalent projections
in M with sum I .
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(2) for each 1 � i � n and 1 � j � k ,

lim
r→∞

ρ((pira j −a j pir)∗(pira j −a j pir)) = 0. (3.2)

In order to show that M has Property Γ̂ , we need only to verify that the family of
projections {pir : 1 � i � n;r � 1} satisfies condition (ii) in Definition 3.1. Actually,
combining equation (3.2) and Lemma 3.3, we know that, for each 1 � i � n and 1 �
j � k , as r → ∞ , pira j −a j pir converges to 0 in strong operator topology. Therefore,
for each 1 � i � n and 1 � j � k , as r → ∞ , (pira j −a j pir)∗(pira j −a j pir) converges
to 0 in weak operator topology and, whence in σ(M ,M�) by Remark 3.2. Therefore,
M has Property Γ̂ .

(b)⇔(c) Suppose ρ1 and ρ2 are two faithful normal tracial states on M . By
Lemma 3.3, the 2-norms induced by ρ1 and ρ2 will give the same topology on bounded
subsets of M (since they both coincide with the strong operator topology on bounded
subsets of M ). Therefore (b) and (c) are equivalent. �

COROLLARY 3.5. Suppose that M is a factor of type II1 with a tracial state τ .
The following are equivalent:

(i) M has Property Γ̂ in the sense of Definition 3.1.

(ii) M has Property Γ in the sense of Dixmier (equivalently, of Murray and von
Neumann).

Proof. A type II1 factor is countably decomposable and τ is the unique faithful
normal tracial state of M . From Dixmier’s Definition of Property Γ for type II1 factors
and Corollary 3.4, we know that (i) ⇔ (ii) . �

REMARK 3.6. Because of Corollary 3.5, from now on we will use Definition 3.1
as a definition of Property Γ for type II1 von Neumann algebras.

In the rest of the paper, we will only consider von Neumann algebras with separa-
ble predual because direct integral theory is only applied to von Neumann algebras with
separable predual. Next proposition follows directly from Definition 3.1, Corollary 3.4
and the assumption that M is a type II1 von Neumann algebra with separable predual.

PROPOSITION 3.7. Let M be a type II1 von Neumann algebra with separable
predual and ρ be a faithful normal tracial state on M . Then M has Property Γ if
and only if for any n ∈ N , there exists a family of projections {pir : 1 � i � n,r ∈ N}
such that

(i) for each r ∈ N , {pir : 1 � i � n} is a set of n equivalent orthogonal projections
in M with sum I ;

(ii) for each 1 � i � n, lim
r→∞

‖pira− apir‖2 = 0 for any a ∈ M , where ‖ · ‖2 is the

2 -norm induced by ρ on M .
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With the help of Proposition 3.7 and Corollary 3.4, we can directly get the next
corollary.

COROLLARY 3.8. Let M be a type II1 von Neumann algebra with separable
predual and ρ a faithful normal tracial state on M . Suppose {a j : j ∈ N} is a
sequence of elements in M that generates M as a von Neumann algebra. Then
M has Property Γ if and only if for any n ∈ N , there exists a family of projections
{pir : 1 � i � n,r ∈ N} such that

(i) for each r ∈ N , {pir : 1 � i � n} is a set of n equivalent orthogonal projections
in M with sum I ;

(ii) for each 1 � i � n and j ∈ N , lim
r→∞

‖pira j − a j pir‖2 = 0 , where ‖ · ‖2 is the

2 -norm induced by ρ on M .

EXAMPLE 3.9. Let A1 be a type II1 factor with separable predual and A2 a finite
von Neumann algebra with separable predual. Suppose A1 has Property Γ . Then the
von Neumann algebra tensor product A1⊗A2 is a type II1 von Neumann algebra with
separable predual and Property Γ .

REMARK 3.10. Let M be a von Neumann algebra acting on a separable Hilbert
space H and Z the center of M . Suppose M =

∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ

are the direct integral decompositions of M and H over (X ,μ) relative to Z . Take a
countable SOT dense self-adjoint subset F of M and let S be the set of all rational
∗ -polynomials (i.e, coefficients from Q+ iQ ) with variables from F . We observe that
S is countable and SOT dense in M . Take {a j : j ∈ N} to be the unit ball of S .
By Kaplansky’s Density Theorem, {a j : j ∈ N} is SOT dense in the unit ball (M )1 .
By Definition 14.1.14 and Lemma 14.1.15 in [16], {a j(s) : j ∈ N} is SOT dense in the
unit ball (Ms)1 for almost every s ∈ X . In the rest of this paper, when we mention a
SOT dense sequence {a j : j ∈ N}of (M )1 (or (M ′)1 ), we always assume that this
sequence has been chosen such that {a j(s) : j ∈N} is SOT dense in the unit ball (Ms)1

(or (M ′
s )1 ) for almost every s ∈ X .

LEMMA 3.11. Suppose H =
∫
X

⊕
Hsdμ is a direct integral of separable Hilbert

spaces and A is a decomposable von Neumann algebra (see definition in [16]) over
H such that A ∼= Mm(C) , the m×m matrix algebra over C for some m ∈ N . Then
As

∼= Mm(C) for almost every s ∈ X .

Proof. Notice that A is also a finite dimensional C∗ -algebra. By Theorem 14.1.13
in [16] and the fact that A is separable, the map from A to As given by a → a(s) is
a unital ∗ -homomorphism for almost every s ∈ X . Since A ∼= Mm(C) , A is simple.
Therefore As

∼= Mm(C) for almost every s ∈ X . �

The following Proposition gives a useful characterization of a type II1 von Neu-
mann algebra with Property Γ .
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PROPOSITION 3.12. Let M be a type II1 von Neumann algebra acting on a sep-
arable Hilbert space H and Z the center of M . Suppose ρ is a faithful normal tracial
state on M and a 2 -norm ‖·‖2 on M is defined by ‖a‖2 =

√
ρ(a∗a) for any a∈M .

Suppose M =
∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ are the direct integral decompositions

of M and H over (X ,μ) relative to Z . Then the following are equivalent:

(i) M has Property Γ .

(ii) There exists a positive integer n0 � 2 such that

for any ε > 0 , and any a1,a2, . . . ,ak ∈ M , there exist orthogonal equiva-
lent projections p1 , p2 , . . . , pn0 in M summing to I satisfying

‖pia j −a j pi‖2 < ε, 1 � i � n0,1 � j � k.

(iii) Ms is a type II1 factor with Property Γ for almost every s ∈ X .

Proof. Since M is a type II1 von Neumann algebra, by Lemma 2.1, the compo-
nent Ms is a type II1 factor for almost every s ∈ X . We may assume Ms is a type II1

factor with a trace τs for each s ∈ X .
By Lemma 2.2, there is a positive faithful normal tracial linear functional ρs on

Ms for almost every s ∈ X such that ρ(a) =
∫
X ρs(a(s))dμ for each a in M . We

may assume ρs is positive, faithful, normal and tracial for each s ∈ X . Hence for each
s ∈ X , ρs is a positive scalar multiple of the unique trace τs on the type II1 factor Ms .

Let {a j : j ∈ N},{a′j : j ∈ N} be SOT dense subsets of the unit balls M1,(M ′)1

of M and M ′ respectively. By Proposition 14.1.24 in [16], we may assume that
(M ′)s = (Ms)′ for every s ∈ X and we use the notation M ′

s for both. By Remark
3.10, we may assume {a j(s) : j ∈ N} and {a′j(s) : j ∈ N} are SOT dense in (Ms)1

and (M ′
s )1 for every s ∈ X .

(i)⇒ (ii): The result is clear from Corollary 3.4, Corollary 3.5 and Remark 3.6.
(ii)⇒ (iii): For this direction, we suppose (ii) holds. Notice that M acts on a

separable Hilbert space, whence M is countably generated in strong operator topology.

By (ii), there exists a sequence of systems of matrix units {{e(r)
i, j }n0

i, j=1 r ∈ N} such that

(A) for each r ∈ N , we have

n0

∑
i=1

e(r)
i,i = I , (e(r)

i, j )
∗ = e(r)

j,i and e(r)
i, j e

(r)
k,l = δ jke

(r)
i,l for all 1 � i, j,k, l � n0 .

(B) for each 1 � i � n0 , lim
r→∞

‖e(r)
i,i a−ae(r)

i,i ‖2 = 0 for any a ∈ M .

By condition (A) and Lemma 3.11, there exists a μ -null subset N0 of X such that, for

each r ∈ N , {e(r)
i, j (s)}n0

i, j=1 is a system of matrix units such that ∑n0
i=1 e(r)

i,i (s) = Is (the
identity in Ms ) in Ms for each s ∈ X \N0 . In the following, we let

pi,r = e(r)
ii for all 1 � i � n0,r ∈ N.

Therefore, without loss of generality, we can assume that
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(I) {p1,r(s), p2,r(s), . . . , pn0,r(s)} is a set of n0 equivalent orthogonal projections
with sum Is in Ms for every r ∈ N and every s ∈ X ;

(II) for each 1 � i � n0 ,

lim
r→∞

‖pi,ra−api,r‖2 = 0 for any a ∈ M .

In the following we will use a diagonal selection process to produce a subsequence
{rm : m ∈ N} of {r : r ∈ N} and a μ -null subset X0 of X such that

lim
m→∞

‖pi,rm(s)a j(s)−a j(s)pi,rm(s)‖2,s = 0 ∀ i ∈ {1,2, . . . ,n0} and ∀ s ∈ X \X0,

(3.3)
where the ‖ · ‖2,s is the 2-norm induced by the unique trace τs on each Ms .

First, by Assumption (II), for each i ∈ {1,2, . . . ,n0} ,

lim
r→∞

‖pi,ra1−a1pi,r‖2

= lim
r→∞

∫
X

ρs((pi,r(s)a1(s)−a1(s)pi,r(s))∗(pi,r(s)a1(s)−a1(s)pi,r(s)))dμ = 0.

Therefore there exists a μ -null subset Y1 of X and a subsequence {r1,m : m ∈ N} of
{r : r ∈ N} such that

lim
m→∞

ρs((pi,r1,m(s)a1(s)−a1(s)pi,r1,m(s))∗(pi,r1,m(s)a1(s)−a1(s)p1,r1,m(s))) = 0

for any s ∈ X \Y1 and any i ∈ {1,2, . . . ,n0} . Since ρs is a positive scalar multiple of
the unique trace τs on the type II1 factor Ms , we obtain

lim
m→∞

‖pi,r1,m(s)a1(s)−a1(s)pi,r1,m(s)‖2,s = 0

for any i∈ {1,2, . . . ,n} and any s∈ X \Y1 , where ‖·‖2,s is the 2-norm on Ms induced
by τs .

Again, there is a subsequence {r2,m : m ∈ N} of {r1,m : m ∈ N} and a μ -null
subset Y2 of X such that

lim
m→∞

‖pi,r2,m(s)a2(s)−a2(s)pi,r2,m(s)‖2,s = 0

for any i ∈ {1,2, . . . ,n0} and any s ∈ X \Y2 .
Continuing in this way, we obtain a subsequence {rk,m : m ∈ N} of {rk−1,m : m ∈

N} and a μ -null subset Yk for each k � 2, satisfying

lim
m→∞

‖pi,rk,m(s)ak(s)−ak(s)pi,rk,m(s)‖2,s = 0

for any i ∈ {1,2, . . . ,n0} and any s ∈ X \Yk . Now we apply the diagonal selection by
letting rm = rm,m for each m ∈ N to these subsequences and obtain that

lim
m→∞

‖pi,rm(s)a j(s)−a j(s)pi,rm(s)‖2,s = 0 (3.4)



520 W. QIAN AND J. SHEN

for any i ∈ {1,2, . . . ,n0} , j ∈ N and s ∈ X \X0 , where X0 = ∪k∈NYk is a μ -null subset
of X .

Since {a j : j ∈ N} is SOT dense in the unit ball of Ms for each s ∈ X , (3.4)
implies that, for any i ∈ {1,2, . . . ,n0} , s ∈ X \X0 and any a ∈ Ms ,

lim
m→∞

‖pi,rm(s)a−api,rm(s)‖2,s = 0. (3.5)

It follows from (3.5) and Assumption (I) that Ms is a type II1 factor with Property Γ
for almost every s ∈ X .

(iii) ⇒ (i): Suppose Ms is a type II1 factor with Property Γ for almost every
s ∈ X . We may assume that for every s ∈ X , Ms is a type II1 factor with Property Γ .

By Remark 2.4, we can obtain a separable Hilbert space K and a family of uni-
taries {Us : Hs → K;s ∈ X} such that s →Usx(s) and s →Usa(s)U∗

s are measurable
for any x ∈ H and any decomposable operator a ∈ B(H) . Let B be the unit ball of
self-adjoint elements in B(K) equipped with the ∗ -strong operator topology. Then it
is metrizable by setting d(S,T ) = ∑∞

m=1 2−m(‖(S− T )em‖+ ‖(S∗ − T ∗)em‖) for any
S,T ∈ B , where {em} is an orthonormal basis of K . The metric space (B,d) is com-
plete and separable. Now let B1 = B2 = . . . = Bl = . . . = B and C = ∏

l∈N

Bl provided

with the product topology of the ∗ -strong operator topology on each Bl . It follows that
C is metrizable and it’s also a complete separable metric space.

Replacing a0 by a j for j ∈ N , we apply Proposition 2.5 countably many times
and obtain positive, faithful, normal, tracial linear functionals ρs on Ms (almost ev-
erywhere) and a Borel μ -null subset N of X such that,

(1) ρ(a) =
∫
X ρs(a(s))dμ for every a ∈ M ;

(2) for any j ∈ N , the maps

s → ρs((a jU
∗
s bUs−U∗

s bUsa j(s))∗(a jU
∗
s bUs−U∗

s bUsa j(s))) (3.6)

and
s → ρs(U∗

s bUs) (3.7)

from X to C are Borel measurable when restricted to X \N .

We denote by (s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) an element in X ×C .
Since b → b∗ and b → b2 are ∗ -SOT continuous from B to B , the maps

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) → Qit , (3.8)

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) → Q2
it , (3.9)

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) → Q∗
it (3.10)

are Borel measurable from X ×C to B .
By Remark 2.4, the map s → Usa′j(s)U∗

s from X to B is measurable for every
j ∈ N . Therefore, by Lemma 14.3.1 in [16], there exists a Borel μ -null subset N′ of
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X such that the map s →Usa′j(s)U∗
s is Borel measurable when restricted to X \N′ for

every j ∈ N . Hence the maps

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) → QitUsa
′
j(s)U

∗
s , (3.11)

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) →Usa
′
j(s)U

∗
s Qit (3.12)

are Borel measurable when restricted to (X \N′)×C for every j ∈ N .
Since the functionals ρs are chosen such that the maps

s → ρs((a jU
∗
s bUs−U∗

s bUsa j(s))∗(a jU
∗
s bUs−U∗

s bUsa j(s)))

and
s → ρs(U∗

s bUs)

are Borel measurable when restricted to X \N , where N is a Borel μ -null subset of X ,
the maps

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .))
→ ρs((a j(s)U∗

s QitUs−U∗
s QitUsa j(s))∗(a j(s)U∗

s QitUs −U∗
s QitUsa j(s))) (3.13)

and

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . .)) → ρs(U∗
s QitUs) (3.14)

are Borel measurable when restricted to (X \N)×C for each j ∈ N .
Take N0 = N ∪N′ . Then we have the following claim.

Claim 3.12.1. N0 is a Borel μ -null subset of X and the maps (3.8)–(3.14) are
Borel measurable when restricted to X \N0 .

Next we introduce the following subset η of (X \N0)×C .
Let η be a subset of (X \N0)×C that consists of all these elements

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . . ,Q1t ,Q2t , . . . ,Qnt , . . .)) ∈ (X \N0)×C

satisfying

(a) for any 1 � i � n,t ∈ N ,
Qit = Q∗

it = Q2
it �= 0; (3.15)

(b) for any 1 � i � n, t, j ∈ N ,

QitUsa
′
j(s)U

∗
s = Usa

′
j(s)U

∗
s Qit ; (3.16)

(c) for any 1 � i � n, t ∈ N,1 � j � t ,

ρs((a j(s)U∗
s QitUs−U∗

s QitUsa j(s))∗(a j(s)U∗
s QitUs−U∗

s QitUsa j(s))) < 1/t;
(3.17)
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(d) for any t ∈ N ,

ρs(U∗
s Q1tUs) = . . . = ρs(U∗

s QntUs) and Q1t +Q2t + . . .+Qnt = I. (3.18)

We have the following claim.

Claim 3.12.2: The set η is analytic.

Proof of Claim 3.12.2. By Claim 3.12.1, we know the maps (3.8)–(3.14) are Borel
measurable when restricted to X \N0 . It follows that the set η is a Borel set. Thus by
Theorem 14.3.5 in [16], η is analytic. The proof of Claim 3.12.2 is completed. �

Claim 3.12.3: Let π be the projection of X ×M onto X . Then π(η) = X \N0 .

Proof of Claim 3.12.3. Let

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . . ,Q1t ,Q2t , . . . ,Qnt , . . .))

be an element in η . From the definitions of the set η , it’s not hard to see that condition
(a) is equivalent to that each Qit is a nonzero projection. Since {a′j(s) : j ∈ N} is
SOT dense in (M ′)1 for each s ∈ X , condition (b) is equivalent to the condition that
U∗

s QitUs ∈ Ms . Notice that {a j(s) : j ∈ N} is SOT dense in (M )1 for each s ∈ X ,
condition (c) is equivalent to

lim
t→∞

ρs((aU∗
s QitUs−U∗

s QitUsa)∗(aU∗
s QitUs−U∗

s QitUsa)) = 0

for any a ∈ Ms . Furthermore, ρs is a positive scalar multiple of τs on Ms for each
s ∈ X , it follows that condition (c) is equivalent to

lim
t→∞

‖aU∗
s QitUs−U∗

s QitUsa‖2,s = 0

for any a ∈ Ms . Moreover, (s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . . ,Q1t ,Q2t , . . . ,
Qnt , . . .)) satisfies condition (a) and condition (d) if and only if U∗

s Q1tUs,U∗
s Q2tUs, . . . ,

U∗
s QntUs are n equivalent projections in Ms with sum Is for each n ∈ N and each

t ∈ N .
For each s ∈ X , notice that Ms is a type II1 factor with Property Γ . From the

argument in the preceding paragraph, there exist projections {U∗
s QitUs : 1 � i � n,t ∈

N} in Ms such that

(s,(Q11,Q21, . . . ,Qn1,Q12,Q22, . . . ,Qn2, . . . ,Q1t ,Q2t , . . . ,Qnt , . . .)) ∈ X ×C

satisfies conditions (a), (b), (c) and (d). Therefore the image of η under π is exactly
X \N0 . The proof of Claim 3.12.3 is completed. �

Continue the proof of Proposition 3.12. By Claim 3.12.2 and Claim 3.12.3, η is
analytic and the image of η under π is X \N0 . By Theorem 14.3.6 in [16], there is a
measurable mapping

s → (Q(s)
11 ,Q(s)

21 , . . . ,Q(s)
n1 ,Q(s)

12 ,Q(s)
22 , . . . ,Q(s)

n2 , . . .)
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from X \N0 to C such that, for s ∈ X \N0 almost everywhere,

(s,(Q(s)
11 ,Q(s)

21 , . . . ,Q(s)
n1 ,Q(s)

12 ,Q(s)
22 , . . . ,Q(s)

n2 , . . .))

satisfies conditions (a), (b), (c) and (d) (see (3.15), (3.16), (3.17) and (3.18)). By defin-

ing Q(s)
it = 0 for any t ∈ N,1 � i � n,s ∈ N0 , we obtain a measurable mapping

s → (Q(s)
11 ,Q(s)

21 , . . . ,Q(s)
n1 ,Q(s)

12 ,Q(s)
22 , . . . ,Q(s)

n2 , . . .) (3.19)

from X to C such that such that, for s ∈ X almost everywhere,

(s,(Q(s)
11 ,Q(s)

21 , . . . ,Q(s)
n1 ,Q(s)

12 ,Q(s)
22 , . . . ,Q(s)

n2 , . . .))

satisfies conditions (a), (b), (c) and (d) (see (3.15), (3.16), (3.17) and (3.18)).
By (3.19), for any t ∈ N,1 � i � n and any vectors y,z ∈ H , we have

〈U∗
s Q(s)

it Usy(s),z(s)〉 = 〈Q(s)
it Usy(s),Usz(s)〉

and thus the map

s → 〈U∗
s Q(s)

it Usy(s),z(s)〉
is measurable. Since

|〈U∗
s Q(s)

it Usy(s),z(s)〉| � ‖y(s)‖‖z(s)‖,

the map s → 〈U∗
s QitUsy(s),z(s)〉 is integrable. By Definition 14.1.1 in [16], it follows

that

U∗
s Q(s)

it Usy(s) = (pity)(s) (3.20)

almost everywhere for some pity in H . For each t ∈ N , (3.20) implies that pit(s) =
U∗

s Q(s)
it Us for almost every s ∈ X . Therefore pit ∈ M for each t ∈ N . Notice con-

ditions (a) and (d) together imply that U∗
s Q(s)

1t Us,U∗
s Q(s)

2t Us, . . . ,U∗
s Q(s)

nt Us are n or-
thogonal equivalent projections in Ms with sum Is for each t ∈ N . It follows that
p1t , p2t , . . . , pnt are n orthogonal equivalent projections in M with sum I for each
t ∈ N .

In order to show that M has Property Γ , it suffices to show that for any i ∈
{1,2, . . . ,n} and a ∈ M ,

lim
t→∞

ρ((apit − pita)∗(apit − pita)) = 0. (3.21)

By condition (c), we obtain that for each j ∈ N,1 � i � n and s ∈ X ,

lim
t→∞

ρs((a j(s)U∗
s Q(s)

it Us −U∗
s Q(s)

it Usa j(s))∗(a j(s)U∗
s Q(s)

it Us −U∗
s Q(s)

it Usa j(s))) = 0.

(3.22)
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Fix i ∈ {1,2, . . . ,n} and j ∈ N . For each t ∈ N , define a function ft : X → C such that

ft (s) = ρs((a j(s)U∗
s Q(s)

is Us−U∗
s Q(s)

it Usa j(s))∗(a j(s)U∗
s Q(s)

it Us−U∗
s Q(s)

it Usa j(s))).

It follows from (3.22) that

lim
t→∞

ft (s) = 0 (3.23)

almost everywhere. By Lemma 14.1.9 in [16], for each j ∈ N , ‖a j‖ is the essential
bound of {‖a j(s)‖ : s ∈ X} . Therefore

‖(a j(s)U∗
s Q(s)

it Us−U∗
s Q(s)

it Usa j(s))∗(a j(s)U∗
s Q(s)

it Us−U∗
s Q(s)

it Usa j(s))‖
� 4‖a j(s)‖2

� 4‖a j‖2

almost everywhere. Hence

0 � ft (s) � 4‖a j‖2ρs(Is) (3.24)

almost everywhere. Furthermore,
∫

X
4‖a j‖2ρs(Is)dμ = 4‖a j‖2ρ(I) = 4‖a j‖2 � 4, (3.25)

by the Dominated Convergence Theorem, it follows from (3.23), (3.24) and (3.25) that

lim
t→∞

∫
X

ρs((a j(s)U∗
s Q(s)

it Us−U∗
s Q(s)

it Usa j(s))∗(a j(s)U∗
s Q(s)

it Us−U∗
s Q(s)

it Usa j(s)))dμ = 0.

(3.26)
Since pit(s) = U∗

s Q(s)
it Us for almost every s ∈ X , (3.26) implies

lim
t→∞

ρ((a j pit − pita j)∗(a( j)pit − pita j)) = 0. (3.27)

From the fact that {a j : j ∈ N} is SOT dense in the unit ball of M , we obtain equation
(3.21) from (3.27). Thus M is a type II1 von Neumann algebra with Property Γ . �

If M is a type II1 von Neumann algebra, then by Lemma 6.5.6 in [16], for any
m ∈ N , there is a unital subalgebra A of M such that A ∼= Mm(C) .

PROPOSITION 3.13. Suppose M is a type II1 von Neumann algebra acting on a
separable Hilbert space H . Suppose further A is a unital subalgebra of M such that
A ∼= Mm(C) for some m ∈ N . Let N = A ′ ∩M . Then M has Property Γ if and
only if N has Property Γ .

Proof. By Lemma 11.4.11 in [16], M ∼= A ⊗N ∼= Mm(C)⊗N . It is trivial to
see that if N has Property Γ , then M has Property Γ . Thus we only need to show
that Property Γ of M implies Property Γ of N .
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Suppose M has Property Γ . Let M =
∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ be the

direct integral decompositions relative to the center Z of M . Since M is a type II1

von Neumann algebra with Property Γ , by Proposition 3.12, Ms is a type II1 factor
with Property Γ for almost every s ∈ X . We may assume Ms is a type II1 factor with
Property Γ for every s ∈ X .

Since A ∼= Mm(C) , by Lemma 3.11, we may assume As
∼= Mm(C) for every

s ∈ X . Since N = A ′ ∩M , Ns = A ′
s ∩Ms for almost every s ∈ X . Then by Lemma

11.4.11 in [16],
Ms

∼= As⊗Ns
∼= Mm(C)⊗Ns

for almost every s ∈ X . Since Ms is a type II1 factor with Property Γ for every s ∈ X ,
by Lemma 5.1 in [4], Ns has Property Γ for almost every s∈ X . By a similar argument
as the proof of Proposition 3.12, we can conclude that N has Property Γ . �

4. Hyperfinite II1 subfactors in type II1 von Neumann algebras

Let M be a type II1 von Neumann algebra with separable predual and Property
Γ . We will devote this section to the construction of a hyperfinite type II1 subfactor R
of M such that

(I) R ′ ∩M = Z , where Z is the center of M ;

(II) for any given a1,a2, . . . ,ak ∈ M ,n ∈ N and ε > 0, there exist orthogonal equiv-
alent projections p1, p2, . . . , pn in R with sum I such that

‖pia j −a j pi‖2 < ε, i = 1,2, . . . ; j = 1,2, . . . ,k,

where the 2-norm ‖ ·‖2 is given by ‖a‖2 =
√

ρ(a∗a),∀a∈M for some faithful
tracial state ρ on M .

LEMMA 4.1. Let M be a type II1 von Neumann algebra acting on a separable
Hilbert space H . Let m ∈ N and A be a unital subalgebra of M such that A ∼=
Mm(C) . Let N = A ′ ∩M . Assume that M =

∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ are

the direct integral decompositions relative to the center Z of M . Assume that ρ is
a faithful normal tracial state on M and {ρs : s ∈ X} is a family of positive, faithful,
normal, tracial functionals as introduced in Lemma 2.2 and Proposition 2.5. If M has
Property Γ , then

∀a1,a2, . . . ,ak ∈ M , ∀n ∈ N and ∀ε > 0 , there exist a μ -null subset X0 of X
and a family of mutually orthogonal equivalent projections {p1, p2, . . . , pn} in
N with sum I such that,

ρs((pi(s)a j(s)−a j(s)pi(s))∗(pi(s)a j(s)−a j(s)pi(s))) < ε,

for all i = 1,2, . . . ,n, j = 1,2, . . . ,k, and s ∈ X \X0 .
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Proof. Since A ∼= Mm(C) and N = A ′ ∩M , by Lemma 11.4.11 in [16], M ∼=
A ⊗N . Then by the discussion in section 11.2 in [16], N is a type II1 von Neumann
algebra. Let {agh}m

g,h=1 be a system of matrix units for A . By Lemma 3.11, we may
assume that As

∼= Mm(C) and Ms
∼= As⊗Ns for every s ∈ X . We also assume that,

for each s ∈ X , {agh(s)}m
g,h=1 is a system of matrix units for As . By Proposition 3.12,

we may assume that Ms is a type II1 factor with Property Γ for every s ∈ X . Then by
Lemma 5.1 in [4], Ns is a type II1 factor with Property Γ for every s ∈ X .

Let {a′r : r∈N} be a SOT dense subset in the unit ball M ′
1 of M ′ . By Proposition

14.1.24 in [16], we may assume that (M ′)s = (Ms)′ for every s ∈ X and we use the
notation M ′

s for both. Therefore by Remark 3.10, we may assume {a′r(s) : r ∈ N} is
SOT dense in (M ′

s )1 for every s ∈ X .
Take a separable Hilbert space K and a family of unitaries {Us : Hs → K;s ∈ X}

as in Remark 2.4 such that s→Usx(s) and s→Usa(s)U∗
s are measurable for any x∈H

and any decomposable operator a ∈ B(H) . Let B be the unit ball of B(K) equipped
with the ∗ -strong operator topology. Since K is separable, B is metrizable by setting
d(S,T ) = ∑∞

j=1 2− j(‖(S−T )e j‖+‖(S∗−T ∗)e j‖) for any S,T ∈B , where {e j : j ∈N}
is an orthonormal basis for K . Then the metric space (B,d) is complete and separable.
For each 1 � i, j � n , let Bi j = B . Take C = ∏

1�i, j�n
Bi j equipped with the product

topology. It follows that C is a complete separable metric space.
By the choices of {Us} , we know that the maps s→Usa′r(s)U∗

s , and s→Usagh(s)U∗
s

from X to B(K) are measurable for any r ∈ N and any g,h = 1,2, . . . ,m . By Lemma
14.3.1 in [16], there exists a Borel μ -null subset N1 of X such that the maps

(s,b) → bUsa
′
r(s)U

∗
s , (4.1)

(s,b) →Usa
′
r(s)U

∗
s b, (4.2)

(s,b) → bUsagh(s)U∗
s , (4.3)

(s,b) →Usagh(s)U∗
s b (4.4)

are Borel measurable from (X \ N1)× B to B(K) for any r ∈ N and any g,h =
1,2, . . . ,m . Since ρ is a faithful normal tracial state, by Lemma 2.2, we may assume
that, for every s ∈ X , there exists a positive, faithful, normal, tracial functional ρs on
Ms such that ρ(a) =

∫
X ρs(a(s))dμ for any a ∈ M . By Proposition 2.5, there is a

Borel μ -null subset N2 of X such that, for each j ∈ {1,2, . . . ,k} , the map

(s,b) → ρs((U∗
s bUsa j(s)−a j(s)U∗

s bUs)∗(U∗
s bUsa j(s)−a j(s)U∗

s bUs)) (4.5)

is Borel measurable from (X \N2)×B to C . From the fact that each ρs is a positive,
faithful, normal, tracial functional on Ms , it follows that ρs is a positive scalar multiple
of the unique trace τs on Ms for each s in X \N2 .

Let N = N1 ∪N2 . Let η be the collection of all these elements

(p,E11,E12, . . . ,Enn) ∈ (X \N)×C

such that
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(i) for all i1, i2, i3, i4 ∈ {1,2, . . . ,n} ,

Ei1i2 = E∗
i2i1 and Ei1i2Ei3i4 = δi2i3Ei1i4 ; (4.6)

(ii)
E11 +E22 + . . .+Enn = I; (4.7)

(iii) for all i1, i2 ∈ {1,2, . . . ,n} and r ∈ N,

Ei1i2Usa
′
r(s)U

∗
s = Usa

′
r(s)U

∗
s Ei1i2 ; (4.8)

(iv) for all i1, i2 ∈ {1,2, . . . ,n} and g,h ∈ {1,2, . . . ,m} ,

Ei1i2Usagh(s)U∗
s = Usagh(s)U∗

s Ei1i2 ; (4.9)

(v) for all i in {1,2, . . . ,n} and j in {1,2, . . . ,k} ,

ρs((U∗
s EiiUsa j(s)−a j(s)U∗

s EiiUs)∗(U∗
s EiiUsa j(s)−a j(s)U∗

s EiiUs)) < ε.;
(4.10)

We have the following claim.

Claim 4.1.1. The set η is analytic.

Proof of Claim 4.1.1. The maps

(E11,E12, . . . ,Enn) → Ei1i2 ,

(E11,E12, . . . ,Enn) → E∗
i2i1 ,

(E11,E12, . . . ,Enn) → Ei1i2Ei3i4 ,

(E11,E12, . . . ,Enn) → E11 +E22 + . . .+Enn

are continuous from C (with the product topology) to B (with the ∗ -strong operator
topology). Therefore, we obtain that the maps

(s,E11,E12, . . . ,Enn) → Ei1i2 ,

(s,E11,E12, . . . ,Enn) → E∗
i2i1 ,

(s,E11,E12, . . . ,Enn) → Ei1i2Ei3i4 ,

(s,E11,E12, . . . ,Enn) → E11 +E22 + . . .+Enn

are Borel measurable from (X \N)×C to B for all 1 � i1, i2, i3, i4 � n . From the fact
that the maps (4.1), (4.2), (4.3) and (4.4) are Borel measurable from (X \N1)×B to
B(K) and the map (4.5) is Borel measurable from (X \N2)×B to C , it follows that
the following maps

(s,E11,E12, . . . ,Enn) → Ei1i2Usa
′
r(s)U

∗
s ,

(s,E11,E12, . . . ,Enn) →Usa
′
r(s)U

∗
s Ei1i2 ,

(s,E11,E12, . . . ,Enn) → Ei1i2Usagh(s)U∗
s ,

(s,E11,E12, . . . ,Enn) →Usagh(s)U∗
s Ei1i2 ,

(s,E11,E12, . . . ,Enn) → ρs((U∗
s EiiUsa j(s)−a j(s)U∗

s EiiUs)∗(U∗
s EiiUsa j(s)−a j(s)U∗

s EiiUs))
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are Borel measurable when restricted to (X \N)×C for all 1 � i1, i2, i � n,1 � g,h �
m,r ∈ N, and 1 � j � k . Therefore η is a Borel set. Thus η is analytic by Theorem
14.3.5 in [16]. This completes the proof of Claim 4.1.1. �

Claim 4.1.2. Let π be the projection of X ×C onto X . Then π(η) = X \N .

Proof of Claim 4.1.2. Notice that an element (s,E11,E12, . . . ,Enn) in (X \N)×C
satisfies conditions (i) and (ii) if and only if {Ei1i2}n

i1,i2=1 is a system of matrix units for
a matrix algebra which is isomorphic to Mn(C) . Condition (iii) is equivalent to that
U∗

s Ei1i2Us ∈ Ms . Condition (iv) is equivalent to that U∗
s Ei1i2Us ∈ A ′

s .
By assumption, for each s ∈ X , Ms and Ns are type II1 factors with Prop-

erty Γ and Ms
∼= As⊗Ns . Thus A ′

s ∩Ms = Ns . It follows from the argument in
the preceding paragraph that, for each s ∈ X , there exists a system of matrix units
{U∗

s E11Us,U∗
s E12Us, . . . ,U∗

s EnnUs} in Ns such that (s,E11,E12, . . . ,Enn) satisfies con-
ditions (i), (ii), (iii), (iv) and (v). Therefore the image of η under π is exactly X \N .
This completes the proof of Claim 4.1.2. �

Continue the proof of Lemma 4.1. By Claim 4.1.1 and Claim 4.1.2, η is analytic
and π(η) = X \N . By the measure-selection principle (Theorem 14.3.6 in [16]), there
is a measurable mapping

s → (E11,s,E12,s, . . . ,Enn,s)

from X \N to C such that, for s ∈ X \N almost everywhere, (s,E11,s,E12,s, . . . ,Enn,s)
satisfies conditions (i), (ii), (iii), (iv) and (v) (see (4.6), (4.7), (4.8), (4.9), and (4.10)).
Defining Ei1i2,s = 0 for s ∈ N,1 � i1, i2 � n , we get a measurable map

s → (E11,s,E12,s, . . . ,Enn,s) (4.11)

from X to C such that, for s ∈ X almost everywhere, (s,E11,s,E12,s, . . . ,Enn,s) satisfies
conditions (i), (ii), (iii), (iv) and (v) (see (4.6), (4.7), (4.8), (4.9), and (4.10)).

From (4.11), for any 1 � i1, i2 � n and any two vectors x,y ∈ H , it follows

〈U∗
s Ei1i2,sUsx(s),y(s)〉 = 〈Ei1i2,sUsx(s),Usys〉,

and the map s → 〈U∗
s Ei1i2,sUsx(s),y(s)〉 are measurable. Since

|〈U∗
s Ei1i2,sUsx(s),y(s)〉| � ‖x(s)‖‖y(s)‖,

we know s → 〈UsEi1i2,sUsx(s),y(s)〉 is integrable. By Definition 14.1.1 in [16], it fol-
lows that

U∗
s Ei1i2,sUsx(s) = (pi1i2x)(s) (4.12)

almost everywhere for some pi1i2x ∈ H . From (4.12), we have that

pi1i2(s) = U∗
s Ei1i2,sUs (4.13)

for almost every s ∈ X and thus pi1i2 ∈ M . By condition (iv),

U∗
s Ei1i2,sUs ∈ A ′

s .
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Hence

pi1i2 ∈ A ′ ∩M = N . (4.14)

Since conditions (i) and (ii) together imply that {Ei1i2,s}n
i1,i2=1 is a system of ma-

trix units, by (4.13), we obtain that p11(s), p22(s), . . . , pnn(s) are n orthogonal equiva-
lent projections in Ms with sum Is almost everywhere. Therefore (4.14) implies that
p11, p22, . . . , pnn are n orthogonal equivalent projections in N with sum I . For each
i ∈ {1,2, . . . ,n} , let pi = pii . From condition (v), we conclude that p1, p2, . . . , pn is
a family of mutually orthogonal equivalent projections in N with sum I satisfying,
∀i = 1,2, . . . ,n,∀ j = 1,2, . . . ,k,

ρs((pi(s)a j(s)−a j(s)pi(s))∗(pi(s)a j(s)−a j(s)pi(s)))< ε for s∈X almost everywhere.

This ends the proof of the lemma. �

A slight modification of the proof in Lemma 4.1 gives us the next corollary.

COROLLARY 4.2. Let M be a type II1 von Neumann algebra acting on a sep-
arable Hilbert space H . Let m ∈ N and A be a unital subalgebra of M such that
A ∼= Mm(C) . Let N = A ′ ∩M . Assume that M =

∫
X

⊕
Msdμ and H =

∫
X

⊕
Hsdμ

are the direct integral decompositions relative to the center Z of M . Assume that
M has Property Γ . Then, ∀a1,a2, . . . ,ak ∈ M , ∀n ∈ N and ∀ε > 0 , there exist a
μ -null subset X0 of X and a family of mutually orthogonal equivalent projections
{p1, p2, . . . , pn} in N with sum I such that

‖pi(s)a j(s)−a j(s)pi(s))‖2,s < ε, ∀i = 1,2, . . . ,n, ∀ j = 1,2, . . . ,k and s ∈ X \X0,

where ‖ · ‖2,s is the 2 -norm induced by the unique trace τs on Ms .

In [20], Popa proved that if A is a type II1 factor with separable predual, then
there is a hyperfinite subfactor B of A such that B′ ∩A = CI . The following lemma
is essentially Theorem 8 in [25]. The proof presented here is based on the direct integral
theory for von Neumann algebras and is different from the one in [25].

LEMMA 4.3. ([25]) If M is a type II1 von Neumann algebra acting on a sep-
arable Hilbert space H , then there is a hyperfinite type II1 subfactor R of M such
that R ′ ∩M = Z , where Z is the center of M .

Proof. By Lemma 2.1, M can be decomposed (relative to its center) as a direct
integral

∫
X

⊕
Msdμ over a locally compact complete separable metric measure space

(X ,μ) and Ms is a type II1 factor almost everywhere. In the following we assume that
Ms is a type II1 factor for every s ∈ X .

By Remark 2.4, we can obtain a separable Hilbert space K and a family of uni-
taries {Us : Hs → K;s ∈ X} such that the maps s → Usx(s) and s → Usa(s)U∗

s are
measurable for any x ∈ H and any decomposable a ∈ B(H) . Let B be the unit ball of
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B(K) with the ∗ -strong operator topology. We observe that B is metrizable by setting
d(S,T ) = ∑∞

j=1 2− j(‖(S−T )e j‖+‖(S∗−T ∗)e j‖) for any S,T ∈B , where {e j : j ∈N}
is an orthonormal basis of K . Moreover, (B,d) is a complete separable metric space.
Let C = B×B equipped with the product topology. It follows that C is a complete
separable metric space.

Let {a′j : j ∈ N} be a SOT dense subset of the unit ball (M ′)1 . By Lemma
14.1.24, we may assume that (M ′)s = (Ms)′ for every s ∈ X and we use the notation
M ′

s for both. By Remark 3.10, we may assume further that {a′j(s) : j ∈ N} is SOT
dense in (M ′

s )1 for every s∈X . Let {y j : j ∈N} be a countable dense subset in H . By
Lemma 14.1.3 in [16], the Hilbert space generated by {y j(s) : j ∈ N} is Hs for almost
every s ∈ X . Replacing {y j : j ∈ N} by the set of all finite rational-linear combinations
of vectors in {y j : j ∈ N} if necessary, in the following we assume that {y j(s) : j ∈ N}
is dense in Hs for every s ∈ X .

Fix an irrational number θ ∈ (0,1) . We denote by (s,W,V ) an element in X ×
B×B = X ×C .

The maps W →WW ∗ , W →W ∗W , V →VV ∗ , V →V ∗V are ∗ -SOT continuous
from B to B . The maps (W,V ) →WV,(W,V ) → e2π iθVW are continuous from C
with the product topology to B with the ∗ -strong operator topology. Therefore the
maps

(s,W,V ) →WW ∗, (4.15)

(s,W,V ) →W ∗W, (4.16)

(s,W,V ) →VV ∗, (4.17)

(s,W,V ) →V ∗V, (4.18)

(s,W,V ) →WV, (4.19)

(s,W,V ) → e2π iθVW (4.20)

are Borel measurable from X ×C to B . By Remark 2.4, the maps

s →Usa
′
j(s)U

∗
s

from X to B(K) and
s →Usy j(s)

from X to K are all measurable for each j ∈ N .
Let

Q〈X ,Y,Z1,Z2, . . .〉
be the collection of all ∗ -polynomials in intermediate variables X ,Y,Z1,Z2, . . . with
rational coefficients. It is a countable set. By Lemma 14.3.1 in [16], there exists a
Borel μ -null subset N of X such that, ∀ j1, j2 ∈ N , ∀ f ∈ Q〈X ,Y,Z1,Z2, . . .〉 , the maps

(s,W,V ) →WUsa
′
j(s)U

∗
s , (4.21)

(s,W,V ) →Usa
′
j(s)U

∗
s W, (4.22)

(s,W,V ) →VUsa
′
j(s)U

∗
s , (4.23)

(s,W,V ) →Usa
′
j(s)U

∗
s V (4.24)
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are Borel measurable from (X \N)×C to B and the map

(s,W,V ) →‖ f (W,V,{Usa
′
j(s)U

∗
s : j ∈ N})Usy j1(s)−Usy j2(s)‖ (4.25)

is Borel meaurable from (X \N)×C to C .
Now we introduce the set η as follows.
Let η be the collection of all these elements (s,W,V ) ∈ (X \N)×C satisfying

(i) WW ∗ = W ∗W = VV ∗ = V ∗V = I , where I is the identity in B(K);

(ii) WUsa′j(s)U
∗
s = Usa′j(s)U

∗
s W and VUsa′j(s)U

∗
s = Usa′j(s)U

∗
s V for every j ∈ N;

(iii) WV = e2π iθVW ;

(iv) for all N, j1, j2 ∈ N , there exists an f in Q〈X ,Y,Z1,Z2, . . .〉 such that

‖ f (W,V,{Usa
′
j(s)U

∗
s : j ∈ N})Usy j1(s)−Usy j2(s)‖ < 1/N.

Claim 4.3.1. The set η is analytic.

Proof of Claim 4.3.1. Since the maps (4.15)–(4.25) are all Borel measurable when
restricted to (X \N)×C , η is a Borel set. By Theorem 14.3.5 in [16], η is analytic.
This completes the proof of Claim 4.3.1. �

Claim 4.3.2. Let π be the projection of X ×C onto X . Then π(η) = X \N .

Proof of Claim 4.3.2. We observe that an element (s,W,V ) satisfies conditions
(i), (ii) and (iii) if and only if U∗

s WUs and U∗
s VUs are two unitaries in Ms such that

(U∗
s WUs)(U∗

s VUs) = e2π iθ (U∗
s VUs)(U∗

s WUs) . Since {y j(s) : j ∈ N} is dense in Hs for
every s ∈ X , condition (iv) is equivalent to the condition that the von Neumann algebra
generated by {U∗

s WUs,U∗
s VUs}∪{a′j(s) : j ∈ N} is B(Hs) .

For each s∈X , Ms is a type II1 factor with separable predual. By Popa’s result in
[20], there exists a type II1 hyperfinite subfactor R(s) of Ms such that (R(s))′ ∩Ms =
CIs . Notice a hyperfinite II1 factor always contains an irrational rotation C∗ -algebra
as a SOT dense subalgebra. Combining with the argument in the prededing para-
graph, we know that there exist two unitaries U∗

s WUs and U∗
s VUs in R(s) (where

W,V are unitaries in B ) such that they generate R(s) as a von Neumann algebra and
(s,W,V ) satisfies conditions (i), (ii) and (iii). The condition (R(s))′ ∩Ms = CIs is
equivalent to the condition that the von Neumann algebra generated by R(s) ∪M ′

s
is B(Hs) . Since U∗

s WUs and U∗
s VUs generate R(s) as a von Neumann algebra and

{a′j(s) : j ∈ N} is SOT dense in the unit ball of M ′
s , the von Neumann algebra

W ∗(U∗
s WUs,U∗

s VUs,{a′j(s) : j ∈N}) generated by U∗
s WUs,U∗

s VUs and {a′j(s) : j ∈N}
is B(Hs) . Hence, from the argument in the preceding paragraph, it follows that (s,W,V )
satisfies satisfy condition (iv). Therefore the image of η under π is X \N . This com-
pletes the proof of Claim 4.3.2. �

Continue the proof of Lemma 4.3. By Claim 4.3.1 and Claim 4.3.2, we know that
η is analytic and π(η) = X \N . By the measure-selection principle (Theorem 14.3.6
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in [16]), there is a measurable map s → (Ws,Vs) from X \N to C such that (s,Ws,Vs)
satisfies condition (i), (ii), (iii) and (iv) for s ∈ X \N almost everywhere. Defining
Ws = Vs = 0 for any s ∈ N , we get a measurable map

s → (Ws,Vs) (4.26)

from X to C such that (s,Ws,Vs) satisfies condition (i), (ii), (iii) and (iv) for s ∈ X
almost everywhere.

For any two vectors x,y ∈ H , we have

〈U∗
s WsUsx(s),y(s)〉 = 〈WsUsx(s),Usy(s)〉. (4.27)

Combining (4.27) with (4.26), we know the map

s → 〈U∗
s WsUsx(s),y(s)〉

from X to C is measurable. Since

|〈U∗
s WsUsx(s),y(s)〉| � ‖x(s)‖‖y(s)‖,

we obtain that
s → 〈U∗

s WsUsx(s),y(s)〉
is integrable. By Definition 14.1.1 in [16], it follows that

U∗
s WsUsx(s) = (Wx)(s)

almost everywhere for some Wx ∈ H . Therefore

W (s) = U∗
s WsUs (4.28)

for almost every s ∈ X . Since conditions (i) and (ii) imply that U∗
s WsUs is a unitary in

Ms , we obtain from equation (4.28) that W is a unitary in M . Similarly we can find
another unitary V in M such that

V (s) = U∗
s VsUs (4.29)

for almost every s ∈ X and thus, from condition (iii),

W (s)V (s) = e2π iθV (s)W (s)

for almost every s ∈ X . Therefore

WV = e2π iθVW . (4.30)

Let R(s) be the von Neumann subalgebra generated by U∗
s WsUs and U∗

s VsUs in
Ms . From condition (iv), we know that (R(s))′ ∩Ms = CIs for s ∈ X almost every-
where.
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Let R be a von Neumann subalgebra of M generated by two unitaries W ,V .
From (4.28), (4.29) and (4.30), it follows that R is a hyperfinite type II1 factor and
Rs = R(s) for almost every s ∈ X .

To complete the proof, we just need to show that R ′ ∩M = Z . Suppose a ∈
R ′ ∩M . Then a(s) ∈ R ′

s∩Ms for almost every s ∈ X . Since (R(s))′ ∩Ms = CIs and
Rs = R(s) for almost every s ∈ X , a(s) = csIs for almost every s ∈ X and thus a∈Z .
Hence R ′ ∩M = Z . �

The following result is a generalization of Theorem 5.4 in [4] in the setting of von
Neumman algebras. The proof follows the similar line as the one used in Theorem 5.4
in [4].

THEOREM 4.4. Let M be a type II1 von Neumann algebra with separable pre-
dual and Z be the center of M . Let ρ be a faithful normal tracial state on M and
‖ · ‖2 be the 2 -norm on M induced by ρ . If M has Property Γ , then there exists a
hyperfinite type II1 subfactor R of M such that

(I) R∩M ′ = Z ;

(II) for any n ∈ N , any elements a1,a2, ...,ak in M , there exists a countable collec-
tion of projections {p1t, p2t , . . . , pnt : t ∈ N} in R such that

(i) for each t ∈ N , p1t , p2t , . . . , pnt are n orthogonal equivalent projections in
R with sum I;

(ii) lim
t→∞

‖pita j −a jpit‖2 = 0 for any i = 1,2, . . . ,n; j = 1,2, . . . ,k .

Proof. Since M has separable predual, by Proposition A.2.1 in [12], there is a
faithful normal representation π of M on a separable Hilbert space. Replacing M
by π(M ) and ρ by ρ ◦π−1 , we may assume that M is acting on a separable Hilbert
space H .

By Lemma 2.1, there are direct integral decompositions M =
∫
X

⊕
Msdμ and

H =
∫
X Hsdμ of (M ,H) relative to Z over (X ,μ) , where Ms is a type II1 factor for

almost every s ∈ X . We assume that every Ms is a type II1 factor. Notice that ρ is
a faithful, normal, tracial state on M . From Lemma 2.2, we might assume there is a
positive, faithful, normal, tracial linear functional ρs on Ms for every s ∈ X such that

ρ(a) =
∫

X
ρs(a(s))dμ , ∀a ∈ M .

Let {φi : i ∈ N} be a sequence of normal states on M that is norm dense in
the set of all normal states on M . Let {b j : j ∈ N} be a sequence of elements that
is SOT dense in the unit ball (M )1 of M . By Remark 3.10, we may assume that
{b j(s) : j ∈ N} is SOT dense in the unit ball (Ms)1 of Ms for every s ∈ X .

Let τ be the unique center-valued trace on M such that τ(a) = a for all a ∈ Z
(see Theorem 8.2.8 in [16]).

We will show that there is an increasing sequence {At : t ∈ N} of full matricial
algebras in M satisfying, for all t ∈ N ,
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(a) there exists a μ -null subset Nt of X such that, for each 1 � l � t , there exist l
equivalent orthogonal projections p1, p2, . . . , pl in At with sum I satisfying

ρs((pi(s)b j(s)−b j(s)pi(s))∗(pi(s)b j(s)−b j(s)pi(s))) < 1/t

for any i = 1,2, . . . , l ; j = 1,2, . . . ,t ; s ∈ X \Nt ;

(b) let Ut be the unitary group of At and dμt be the normalized Haar measure on
Ut . Then for any i, j = 1,2, . . . ,t ,

|φi(
∫

Ut

ub ju
∗dμt − τ(b j))| < 1/t.

First, we observe that conditions (a) and (b) are satisfied by letting A1 = C1 and
p1 = I . Now suppose At−1 has been constructed. Take N1 = A ′

t−1 ∩M . By Lemma
11.4.11 in [16], M ∼= At−1⊗N1 .

Next, in order to construct At , we will apply Lemma 4.1 t − 1 times. At the
first time, applying Lemma 4.1 to At−1 and the set {b1,b2, . . . ,bt} , we obtain two
equivalent orthogonal projections p1,1, p2,1 in N1 with sum I and a μ -null subset Nt,1

of X such that

ρs((pi,1(s)b j(s)−b j(s)pi,1(s))∗(pi,1(s)b j(s)−b j(s)pi,1(s))) < 1/t (4.31)

for any i = 1,2; j = 1,2, . . . ,t , s ∈ X \Nt,1 . Note that p1,1, p2,1 are two equivalent
orthogonal projections in N1 with sum I . There is a unital subalgebra Bt,1 of N1

such that Bt,1
∼= M2(C) and p1,1, p2,1 ∈ Bt,1 . Take

At,1 = At−1⊗Bt,1. (4.32)

Now suppose that At,l−1 have been constructed for some 2 � l � t − 1. By applying
Lemma 4.1 to At,l−1 and {b1,b2, . . . ,bt} , we can find l + 1 equivalent orthogonal
projections p1,l, p2,l, . . . , pl+1,l in A ′

t,l−1 ∩M with sum I and a μ -null subset Nt,l of
X such that

ρs((pi,l(s)b j(s)−b j(s)pi,l(s))∗(pi,l(s)b j(s)−b j(s)pi,l(s))) < 1/t (4.33)

for any i = 1,2, . . . , l + 1, j = 1,2, . . . ,t, and s ∈ X \Nt,l . Again there is a unital
subalgebra Bt,l of A ′

t,l−1 ∩M such that Bt,l
∼= Ml+1(C) and p1,l, p2,l, . . . , pl+1,l ∈

Bt,l . Take

At,l = At,l−1⊗Bt,l . (4.34)

Now we let

Bt = At,t−1 (4.35)

and

Nt = ∪t−1
l=1Nt,l . (4.36)
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Then μ(Nt) = 0. By (4.31), (4.32), (4.33), (4.34), (4.35) and (4.36), Bt contains sets
of projections satisfying condition (a).

Let N = B′
t ∩M . By Lemma 11.4.11 in [16], we know that M ∼= Bt⊗N .

By the arguments in Section 11.2 in [16], N is a type II1 von Neumann algebra, and
therefore, by Lemma 4.3, there is a hyperfinite subfactor S of N such that S ′ ∩
N = ZN , where ZN is the center of N . Hence (Bt⊗S )′ ∩M = CI⊗ZN = Z .
Since S is a hyperfinite type II1 factor, there exists an increasing sequence {Fr :
r ∈ N} of matrix subalgebras of S whose union is ultraweakly dense in S and thus
∪r∈NBt⊗Fr is ultraweakly dense in Bt⊗S . Let Vr be the unitary group of Bt⊗Fr

with normalized Haar measure dνr . Since (Bt⊗S )′ ∩M = Z and τ is a center-
valued trace on M such that τ(a) = a for all a ∈ Z , Lemma 5.4.4 in [22] shows
that τ(a) = lim

r→∞

∫
Vr

vav∗dνr ultraweakly for all a ∈ M . Since each φi is normal, there

exists r large enough such that

|φi(
∫

Vr

vb jv
∗dνr − τ(b j))| < 1/t, ∀i, j = 1,2, . . . ,t. (4.37)

Now we let
At = Bt⊗Fr.

Then At satisfies both conditions (a) and (b). The construction is finished.
Let R ⊂ M be the ultraweak closure of ∪t∈NAt . It follows that R is a finite von

Neumann algebra containg an ultraweakly dense matricial C∗ -algebra. By Corollary
12.1.3 in [16], R is a hyperfinite type II1 subfactor of M .

Now fix n ∈ N , ε > 0 and elements a1,a2, . . . ,ak in M . We may first assume
that ‖al‖ � 1 for any 1 � l � k . Since {b j : j ∈ N} is SOT dense in the unit ball of
M , there exist elements b j1 ,b j2 , . . . ,b jk such that

‖al −b jl‖2 < ε/3 (4.38)

for any 1 � l � k . For each integer t > max{n, j1, j2, . . . , jk} , by condition (a), there ex-
ist a μ -null subset Nt of X and a set of n orthogonal equivalent projections {p1t , p2t , . . . ,
pnt} in At such that

ρs((pit (s)b jl (s)−b jl (s)pit(s))∗(pit(s)b jl (s)−b jl (s)pit(s)) < 1/t (4.39)

for all i ∈ {1,2, . . . ,n} , l ∈ {1,2, . . . ,k} , and s ∈ X \Nt .
Take N = ∪t∈NNt . Then μ(N) = 0 and inequality (4.39) implies

lim
t→∞

ρs((pit(s)b jl (s)−b jl(s)pit (s))∗(pit(s)b jl (s)−b jl(s)pit (s)) = 0 (4.40)

for all i ∈ {1,2, . . . ,n} , l ∈ {1,2, . . . ,k} , and s ∈ X \N . For any fixed i ∈ {1,2, . . . ,n} ,
l ∈ {1,2, . . . ,k} , define function ft : X → C such that

ft(s) = ρs((pit(s)b jl (s)−b jl(s)pit (s))∗(pit(s)b jl (s)−b jl(s)pit (s)).

Then | ft (s)| � ρs(4Is) for almost every s ∈ X . Since
∫

X
ρs(4Is)dμ = ρ(4I) = 4,
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by the Dominated Convergence Theorem, (4.40) gives

lim
t→∞

ρ((pitb jl −b jl pit)∗(pitb jl −b jl pit)) = 0

for all i ∈ {1,2, . . . ,n} , l ∈ {1,2, . . . ,k} . Hence there exists t0 ∈ N such that

‖pitb jl −b jl pit‖2 < ε/3 (4.41)

for all i ∈ {1,2, . . . ,n} , l ∈ {1,2, . . . ,k} and t > t0 .
Therefore for any t > t0 , it follows from (4.38) and (4.41) that

‖pital −al pit‖2 � ‖pitb jl −b jl pit‖2 +‖pit(al −b jl )− (al −b jl )pit‖2

� ‖pitb jl −b jl pit‖2 +2‖al −b jl‖2

< ε

for all i ∈ {1,2, . . . ,n} , l ∈ {1,2, . . . ,k} . Hence lim
t→∞

‖pital − al pit‖2 = 0 for all i ∈
{1,2, . . . ,n} , l ∈ {1,2, . . . ,k} .

It remains to show that R ′ ∩M = Z . Suppose that a ∈ R ′ ∩M and ‖a‖ = 1.
Since the sequence {b j : j ∈ N} is SOT dense in the unit ball of M , we can choose a
subsequence {b jl : l ∈ N} that converges to a in the strong operator topology. There-
fore this subsequence converges to a ultraweakly. By the fact that τ is ultraweakly
continuous, lim

l→∞
τ(b jl ) = τ(a) ultraweakly. Since a ∈ R ′ , for each i ∈ N ,

|φi(
∫

U jl

ub jl u
∗dμ jl −a)| = |φi(

∫
U jl

u(b jl −a)u∗dμ jl )|

� (φi((b jl −a)∗(b jl −a)))1/2

→ 0.

From the fact that the sequence {φi : i ∈ N} is norm dense in the set of normal states
on M , we get that

∫
U jl

ub jl u
∗dμ jl converges to a ultraweakly. By condition (b),∫

U jl
ub jl u

∗dμ jl converges to τ(a) ultraweakly. Therefore a = τ(a) and thus a ∈ Z .

Hence R ′ ∩M = Z . The proof is complete. �

5. Necessary inequalities

Suppose M is a von Neumann algebra and N is a von Neumann subalgebra of
M . A map φ : M k → B(H) is called N -multimodular if, for any s ∈ N and any
a1,a2, . . . ,ak ∈ M ,

sφ(a1,a2, . . . ,ak) = φ(sa1,a2, . . . ,ak),

φ(a1,a2, . . . ,ak)s = φ(a1,a2, . . . ,aks),

φ(a1,a2, . . . ,ais,ai+1, . . . ,ak) = φ(a1,a2, . . . ,ai,sai+1, . . . ,ak).
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For any n ∈ N , the n -fold amplication φ (n) : (Mn(M ))k → Mn(M ) of a bounded map

φ : M k → M is defined in [6] and [7] as follows: for elements (a(1)
i j ),(a(2)

i j ), . . . ,(a(k)
i j )

in Mn(M ) , the (i, j) entry of φ (n)((a(1)
i j ),(a(2)

i j ), . . . ,(a(k)
i j )) is

∑
1� j1, j2,..., jn−1�n

φ(a(1)
i j1

,a(2)
j1 j2

, . . . ,a(n−1)
jn−2 jn−1

,a(n)
jn−1 j).

A bounded map φ is said to be completely bounded if sup
n∈N

{‖φ (n)‖ : n∈ N}< ∞ . When

φ is completely bounded, we denote ‖φ‖cb = sup
n∈N

{‖φ (n)‖ : n ∈ N} .

Let {ei j}n
i, j=1 be the standard matrix units for Mn(C) . Then

‖φ (n)(e11a1e11,e11a2e11, . . . ,e11ake11)‖ � ‖φ‖‖a1‖ . . .‖ak‖

for any a1,a2, . . . ,ak in Mn(M ) .
If M is a type II1 von Neumann algebra and n is a positive integer, Mn(M )

is also a type II1 von Neumann algebra. In the rest of this section, we let τn be the
center-valued trace on Mn(M ) such that τn(a) = a for any a in the center of Mn(M )
(see Theorem 8.2.8 in [16]). Let

γn(a) = (‖a‖2 +n‖τn(a∗a)‖)1/2 (5.1)

for each a ∈ Mn(M ) .
Replacing trn by τn in the proof of Lemma 3.1 in [4], we can obtain the next

lemma directly.

LEMMA 5.1. Let M be a type II1 von Neumann algebra acting on a Hilbert
space H . Suppose R is a hyperfinite type II1 subfactor of M such that R ′ ∩M =
Z , the center of M . Let θ be a positive number and n be a positive integer. If
ψ : Mn(M )×Mn(M ) → B(Hn) is a normal bilinear map satisfying

ψ(ac,b) = ψ(a,cb),a,b ∈ Mn(M ),c ∈ Mn(R)

and
‖ψ(ae11,e11b)‖ � θ‖a‖‖b‖,a,b∈ Mn(M ),

then
‖ψ(a,b)‖ � θγn(a)γn(b)

for any a,b ∈ Mn(M )

If Lemma 3.1 in [4] is replaced by the preceding Lemma 5.1, the proof of Theorem
3.3 in [4] gives us the following result.

LEMMA 5.2. Let M be a type II1 von Neumann algebra acting on a Hilbert
space H . Suppose M has a hyperfinite subfactor R such that R ′ ∩M = Z , the



538 W. QIAN AND J. SHEN

center of M . Fix k ∈ N . If φ : M k → B(H) is a k -linear N -multimodular normal
map, then

‖φ (n)(a1,a2, . . . ,ak)‖ � 2k/2‖φ‖γn(a1)γn(a2) . . .γn(ak)

for all a1,a2, . . . ,ak ∈ Mn(M ) and n ∈ N .

COROLLARY 5.3. Let M be a type II1 von Neumann algebra and Z the center
of M . Suppose R is a hyperfinite type II1 subfactor of M such that R ′ ∩M = Z ,
the center of M . Let n,k ∈ N . Suppose p1, p2, . . . , pn are n orthogonal equivalent
projections in Mn(M ) with sum I and φ : M k → B(H) is a k -linear R -multimodular
normal map. Then

‖φ (n)(a1p j,a2p j, . . . ,akp j)‖ � 2k‖φ‖‖a1‖‖a2‖ . . .‖ak‖

for any j = 1,2, . . . ,n and any a1,a2, . . . ,ak ∈ Mn(M ) .

Proof. By Lemma 5.2, for any j = 1,2, . . . ,n ,

‖φ (n)(a1p j,a2p j, . . . ,ak p j)‖ � 2k/2‖φ‖γn(a1p j)γn(a2p j) . . . γn(ak p j). (5.2)

Since p1, p2, . . . , pn are orthogonal equivalent projections with sum I , τn(p j)= 1
n I

for each j . Then for any 1 � i � k ,

γn(aip j) = (‖aip j‖2 +n‖τn(p ja
∗
i ai p j)‖)1/2

� (‖ai‖)2 +n‖ai‖2‖τn(p j)‖)1/2

=
√

2‖ai‖.

Therefore (5.2) gives

‖φ (n)(a1p j,a2p j, . . . ,akp j)‖ � 2k‖φ‖‖a1‖‖a2‖ . . .‖ak‖

for any j = 1,2, . . . ,n and any a1,a2, . . . ,ak ∈ Mn(M ) . �

6. Hochschild cohomology of type II1 von Neumann algebras with separable
predual and property Γ

Let us recall some notations from [4]. Let Sk , k � 2, be the set of nonempty
subsets of {1,2, . . . ,k} . Suppose φ : M k → B(H) is a k -linear map, p is a projection
in M and σ ∈ Sk .

Define φσ ,p : M k → B(H) by

φσ ,p(a1, . . . ,ak) = φ(b1,b2, . . . ,bk),

where bi = pai−aip for i ∈ σ and bi = ai otherwise.
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Denote by l(σ) the least integer in σ . Define φσ ,p,i : M k → B(H) by changing
the i-th variable in φσ ,p from ai to pai − aip , 1 � i < l(σ) , and replacing pai − aip
by p(pai−aip) if i = l(σ) .

The following is Lemma 6.1 in [4].

LEMMA 6.1. ([4]) Let p be a projection in a von Neumann algebra M . Let
Ck,k � 2 , be the set of k -linear maps φ : M k → B(H) satisfying

pφ(a1,a2, . . . ,ak) = φ(pa1,a2, . . . ,ak) (6.1)

and
φ(a1, . . . ,aip,ai+1, . . . ,ak) = φ(a1, . . . ,ai, pai+1, . . . ,ak) (6.2)

for any a1,a2, . . . ,ak ∈ M and 1 � i � k−1 . Then if φ ∈ Ck ,

pφ(a1,a2, . . . ,ak)− pφ(a1p, . . . ,ak p) = ∑
σ∈Sk

(−1)|σ |+1pφσ ,p(a1, . . . ,ak).

Moreover, for each σ ∈ Sk ,

pφσ ,p(a1, . . . ,ak) =
l(σ)

∑
i=1

φσ ,p,i(a1,a2, . . . ,ak).

Let M be a type II1 von Neumann algebra with separable predual. Suppose ρ
is a faithful normal tracial state on M . Then by Lemma 3.3, the 2-norm induced by
ρ gives the same topology as the strong operator topology on bounded subsets of M .
The unit ball (M )1 is a metric space under this 2-norm. Using a similar argument as
Section 4 in [4], we can get the joint continuity of φ on (M )1 × (M )1 × . . .× (M )1

in the 2-norm induced by ρ . Therefore we have the following lemma.

LEMMA 6.2. Let M be a type II1 von Neumann algebra with separable predual
and φ : M k → B(H) be a bounded k -linear separately normal map. Let ρ be a faithful
normal tracial state on M . Suppose {pt : t ∈ N} is a sequence of projections in M
satisfying (6.1), (6.2) and

lim
t→∞

‖pta−apt‖2 = 0

for any a ∈M , where ‖ ·‖2 is the 2 -norm induced by ρ . Then for any a1,a2, . . . ,ak ∈
M , each σ ∈ Sk , each integer i � l(σ) and each pair of unit vectors x,y ∈ H ,

lim
t→∞

〈φσ ,pt ,i(a1,a2, . . . ,ak)x,y〉 = 0,

and
lim
t→∞

〈ptφσ ,pt (a1, . . . ,ak)x,y〉 = 0.

Proof. The proof is similar to the one of Lemma 6.2 in [4] and is skipped here. �
Now we have the following result.
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THEOREM 6.3. Let M be a type II1 von Neumann algebra with separable pre-
dual and Z be the center of M . Let ρ be a faithful normal tracial state on M
and ‖ · ‖2 be the 2 -norm induced by ρ on M . Suppose R is a hyperfinite type II1

subfactor of M such that

(I) R ′ ∩M = Z ;

(II) for any n ∈ N , any elements a1,a2, ...,am in M , there exists a countable collec-
tion of projections {p1t, p2t , . . . , pnt : t ∈ N} in R such that

(i) for each t ∈ N , p1t , p2t , . . . , pnt are mutually orthogonal equivalent projec-
tions in R with sum I, the identity in M ;

(ii) lim
t→∞

‖pital −al pit‖2 = 0 for any i = 1,2, . . . ,n, l = 1,2, . . . ,m.

Then a bounded k -linear R -multimodular separately normal map φ : M k → B(H) is
completely bounded and ‖φ‖cb � 2k ‖φ‖ .

Proof. The proof is similar to the one for Theorem 6.3 in [4] and is sketched here
for the purpose of completeness.

Fix n ∈ N and k elements b1,b2, . . . ,bk ∈ Mn(M ) .
By condition (II), we can find a family of projections {qit : 1 � i � n; t ∈ N} in R

such that

(a) for each t ∈ N , q1t , . . . ,qnt are n orthogonal equivalent projections in R with
sum I ;

(b) lim
t→∞

‖qita−aqit‖2 = 0 for any a ∈ M ,1 � i � n .

Let q′it = In⊗qit ∈ Mn(R) for each i and t . We obtain that

(a’) for each t ∈ N , q′1t , . . . ,q
′
nt are n orthogonal equivalent projections in Mn(R)

with sum In⊗ I ;

(b’) lim
t→∞

‖q′it b−bq′it‖2 = 0 for any b ∈ Mn(M ),1 � i � n .

Since φ is an R -multimodular map, φ (n) is an Mn(R)-multimodular map. Assume
that M acts on a Hilbert space H . For any two unit vectors x,y in Hn and any t ∈ N ,
by Lemma 6.1,

〈φ (n)(b1, . . . ,bk)x,y〉
= 〈

n

∑
i=1

q′itφ
(n)(b1, . . . ,bk)x,y〉

= 〈
n

∑
i=1

∑
σ∈Sk

(−1)|σ |+1q′itφ
(n)
σ ,q′it

(b1, . . . ,bk)x,y〉+ 〈
n

∑
i=1

q′itφ
(n)(b1q

′
it , . . . ,bkq

′
it)x,y〉

= 〈
n

∑
i=1

∑
σ∈Sk

(−1)|σ |+1q′itφ
(n)
σ ,q′it

(b1, . . . ,bk)x,y〉+ 〈
n

∑
i=1

q′itφ
(n)(b1q

′
it , . . . ,bkq

′
it)q

′
it x,y〉.
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Therefore

〈φ (n)(b1, . . . ,bk)x,y〉− 〈
n

∑
i=1

∑
σ∈Sk

(−1)|σ |+1q′itφ
(n)
σ ,q′it

(b1, . . . ,bk)x,y〉

= 〈
n

∑
i=1

q′itφ
(n)(b1q

′
it , . . . ,bkq

′
it)q

′
itx,y〉. (6.3)

Since {q′1t , . . . ,q′nt} is a set of n orthogonal projections for each t ∈ N , by Corol-
lary 5.3,

‖
n

∑
i=1

q′itφ (n)(b1q
′
it , . . . ,bkq

′
it)q

′
it‖ � max

1�i�n
‖q′itφ (n)(b1q

′
it , . . . ,bkq

′
it)q

′
it‖

� 2k‖φ‖‖b1‖ . . .‖bk‖ . (6.4)

By Lemma 6.2, condition (b’) implies

lim
t→∞

〈q′itφ (n)
σ ,q′it

(b1, . . . ,bk)x,y〉 = 0 (6.5)

for each 1 � i � n and σ ∈ Sk .
Letting t → ∞ for both sides of (6.3), it follows from inequality (6.4) and equation

(6.5) that
〈φ (n)(b1, . . . ,bk)x,y〉 � 2k‖φ‖‖b1‖ . . .‖bk‖.

Since n,x,y were arbitrarily chosen, ‖φ‖cb � 2k‖φ‖ . �
The following is the main result of the paper.

THEOREM 6.4. If M is a type II1 von Neumann algebra with separable predual
and Property Γ , then the Hochschild cohomology group

Hk(M ,M ) = 0, ∀ k � 2.

Proof. By Theorem 4.4, there is a hyperfinite type II1 subfactor R of M satis-
fying conditions (I) and (II) in Theorem 6.3.

Now consider the cohomology groups Hk(M ,M ) . By Theorem 3.1.1 in [22], it
suffices to consider a k -linear R -multimodular separately normal cocycle φ . Theo-
rem 5.3 shows that such cocycles are completely bounded. By Theorem 4.3.1 in [22],
completely bounded Hochschild cohomology groups are trivial. It follows that φ is a
coboundary, whence Hk(M ,M ) = 0,k � 2. �

The next result in [2] follows directly from Theorem 6.4 and Example 3.9.

COROLLARY 6.5. Suppose that M1 is a type II1 von Neumann algebra with sep-
arable predual and M2 is a type II1 factor with separable predual. If M2 has Property
Γ , then the Hochschild cohomology group

Hk(M1 ⊗M2,M1⊗M2) = 0, k � 2.
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In particular, if M is a type II1 von Neumann algebra with separable predual satisfy-
ing M ∼= M ⊗R , where R is the hyperfinite II1 factor, then

Hk(M ,M ) = 0, ∀ k � 2.
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