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HOCHSCHILD COHOMOLOGY OF TYPE II,
VON NEUMANN ALGEBRAS WITH PROPERTY I'

WENHUA QIAN AND JUNHAO SHEN

(Communicated by D. Hadwin)

Abstract. In this paper, Property I' for a type II; von Neumann algebra is introduced as a
generalization of Murray and von Neumann’s Property T" for a type IT factor. The main result
of this paper is that if a type I} von Neumann algebra .# with separable predual has Property
T, then the continuous Hochschild cohomology group H(.#,.#) vanishes for every k > 2.
This gives a generalization of an earlier result in [4].

1. Introduction

The continuous Hochschild cohomology of von Neumann algebras was initialized
by Johnson, Kadison and Ringrose in [14], [15], [11], where it was conjectured that
the k-th continuous Hochschild cohomology group H¥(.# ,.#) is trivial for any von
Neumann algebra .#, k > 1. In the case k = 1, this conjecture, which is equivalent
to the problem of whether a derivation of a von Neumann algebra into itself is inner,
had been solved by Kadison and Sakai independently in [13], [21]. In the following we
focus on the case when k > 2. In [11], it was shown that Hk(///,g///) =0 for k> 2 if
A is an injective von Neumann algebra. It follows that if .# is a type I von Neumann
algebra, then H*(.# ,.4/) =0 for k > 2.

Significant progress was made after the introduction of completely bounded Hochs-
child cohomology groups for von Neumann algebras ([2], [3], [4], [5], [6], [7], [18],
[19], [23], [24]). It was shown in [6], [8] (see also [22]) that the completely bounded
Hochschild cohomology group Hfb(/// , /) =0 for k >2. As a consequence of re-
sults in [2], if .# is a type Il.. or type III von Neumann algebra, then H* (M, M)=0
for k > 2. In the case that .# is a type II; von Neumann algebra, many results as
listed below have also been obtained. (We refer to a wonderful book [22] by Sinclair
and Smith for a survey of Hochschild cohomology theory for von Neumann algebras
and proofs of most of the following results.)

() HX(A,.#) =0 for k > 2 if the type II; central summand in the type decompo-
sition A = M & M, & M, P Mo of the von Neumann algebra .# satisfies
Moy QK = M, , Where Z is the hyperfinite type 111 factor ([2]).
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(i) H*( ,.4) =0 for k=2 if ./ isatypell; von Neumann algebra with a Cartan
subalgebra and separable predual ([3], [18], [23], [24]); it was shown later in [1]
that H*(.# ,.#) = 0 if ./ is atype 11| factor with a Cartan masa.

(i) H*(,.#) =0 for k > 2 if .# is atype I factor satisfying various technical
properties related to its action on L (. ,tr) ([18]).

(v) HY(M ,#) =0 for k> 2 if .4 is atype Il factor with Property T" ([4]).

V) H*( M@ Mo, M\ @.4>) = O if both .#, and .#> are type II; von Neumann
algebras ([19]).

A motivation of this paper is to generalize the listed result (iv) in [4] for type II;
factors with Property I' to general type II; von Neumann algebras with certain prop-
erties. Recall Murray and von Neumann’s Property I" for type II; factors as follows.
Suppose ' is a type Il factor with a trace T. Let ||-||2 be the 2-norm on </ given
by |lal|» = v/7(a*a) for any a € of . Then </ has Property T if, given € > 0 and
ai,ap,...,a; € o, there exists a unitary u € o/ such that

(a) t(u)=0;
(b) |lua;—ajul><e, ¥Y1<j<k.

An equivalent definition of Property T for a type Il factor </ was given by
Dixmier in [9]. Suppose < is a type Il factor with atrace T. Let || -||» be the 2-norm
on o given by ||lall, = \/t(a*a) for any a € o/ . Then </ has Property T if, given
neN, € >0 and ay,ay,...,a; € &, there exist n orthogonal equivalent projections
{P1,P2y---,Pn} in & with sum I such that

|piaj—ajpil|> <&, vi<i<nl<j<k

In the paper, we extend Dixmier’s equivalent definition of Murray and von Neu-
mann’s Property I" to general von Neumann algebras as follows.

DEFINITION 3.1. Suppose .# is a type II| von Neumann algebra with a predual
M. Suppose that ¢ (., %) is the weak-* topology on .# induced from ./Z;. We
say that .# has Property I' if and only if V ay,ay,...,a;y € .4 and ¥V n € N, there exist
a partially ordered set A and a family of projections

{pa:1<i<mAeA}C.H
satisfying

(i) Foreach A € A, {p11,P24,---,Pua} is a family of orthogonal equivalent projec-
tions in .# with sum /.

(i) Foreach 1 <i<mand 1 <<k,

liin(l?ma i—aipip)"(pnaj—ajpj) =0  in o(4,.4;) topology.
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We note that Definition 3.1 coincides with Dixmier’s definition (and Murray and
von Neumann’s definition) when .# is a type 11 factor (see Corollary 3.5). The fol-
lowing theorem is our main result of this paper, which gives a generalization of an
earlier result in [4].

THEOREM 6.4. Suppose # is a type Il| von Neumann algebra with separable
predual. If .# has Property T, then the Hochschild cohomology group

HYt, M) =0, Vk=2.

The proof of Theorem 6.4 follows the similar line as the one in [4] besides that
new tools from direct integral theory for von Neumann algebras need to be developed.

The organization of this paper is as follows. In section 3, we introduce a defini-
tion of Property I" for type II; von Neumann algebras. In section 4, by applying the
technique of direct integrals to .# , we will construct a hyperfinite subfactor % such
that the relative commutant of % is the center of .# and % satisfies the additional
property of containing an asymptotically commuting family of projections for .# . In
section 5, we will prove a Grothendick inequality for % -multimodular normal multilin-
ear maps. Then, in section 6, we combine these results obtained in section 4 and section
5 to show that for a type I} von Neumann algebra .# with separable predual, if .#
has Property T, then every bounded k-linear % -multimodular separately normal map
from .#* to .4 is completely bounded, which implies the triviality of the cohomology
group H*(.# ,.#') by Theorem 3.1.1 and Theorem 4.3.1 in [22].

2. Preliminaries

2.1. Hochschild cohomology

In this subsection, we will recall a definition of continuous Hochschild cohomol-
ogy groups (see [22]).

Let .# be a von Neumann algebra. We say that a Banach space 2" is a Ba-
nach . -bimodule if there is a module action of .# on both the left and right of 2
satisfying

lm& ] < [lmll[]]

and

1Emll < 1] llml]

forany me . #,E € .

For each integer k > 1, we denote by .Z*(.#,2") the Banach space of k-linear
bounded maps ¢ : .#* — 2. For k=0, we define .Z°(.#, %) tobe 2 . Then we
can define coboundary operators 9% : L (., X ) — LXN (., 2) as follows:
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(i) when k > 1,forany ¢ € X4, 2 ),a1,a,...,a; € M,

8k¢(a17a2,...,ak+1) :a1¢(a2,...,ak+1)
k
+ 3 (=Df¢(ay,...,ai-1,aiais1, ... ,axs1)
i=1

+ (=D g (ar,... ap)ag -

(ii) when k=0, forany & € 2" ,ac .4, d°E(a) = ak —&a.

It’s easy to check that 9¥9*~! = 0 for each k > 1. Thus Imd*~! (the space of
coboundaries) is contained in Kerd* (the space of cocycles). The continuous Hochschild
cohomology groups H*(.#,2") are then defined to be the quotient vector spaces
Ker&k/lm8k_1,k >1.

2.2. Direct integral

The concepts of direct integrals of separable Hilbert spaces and von Neumann
algebras acting on separable Hilbert spaces were introduced by von Neumann in [26].
General knowledge on direct integrals can be found in [26], [16]. Here, we list some
lemmas which will be needed in this paper.

LEMMA 2.1. ([16]) Suppose .# is a von Neumann algebra acting on a sepa-
rable Hilbert space H. Let 2 be the center of . . Then there is a direct integral
decomposition of M relative to %, i.e., there exists a locally compact complete sepa-
rable metric measure space (X, L) such that

(i) H is (unitarily equivalent to) the direct integral of {H; :s € X} over (X,u),
where each Hj is a separable Hilbert space, s € X .

(ii) A is (unitarily equivalent to) the direct integral of { .M} over (X,1), where
M is a factor in B(Hs) almost everywhere. Also, if A is of type I,(n could
be infinite), 11|, Il .. or 111, then the components #y are, almost everywhere, of
type I, 111, Il or 111, respectively.

Moreover, the center % is (unitarily equivalent to) the algebra of diagonalizable op-
erators relative to this decomposition.

The following lemma gives a decomposition of a normal state on a direct integral
of von Neumann algebras.

LEMMA 2.2. ([16]) Suppose H is the direct integral of separable Hilbert spaces
{H} over (X,u), 4 is a decomposable von Neumann algebra on H (i.e every oper-
atorin M is decomposable relative to the direct integral decomposition, see Definition
14.1.6 in [16]) and p is a normal state on A . There is a positive normal linear func-
tional ps on M for every s € X such that p(a) = [y ps(a(s))dp for each a in A . If
M contains the algebra € of diagonalizable operators and p|g_yE is faithful or tra-
cial, for some projection E in A , then py| E(s).#,E(s) 18, accordingly, faithful or tracial
almost everywhere.
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REMARK 2.3. From the proof of Lemma 14.1.19 in [16], we obtain that if p =

Z oy, on ./ , where {y,} is a sequence of vectors in H such that 2 lyall? =1 and

n=1

oy is defined on .# such that w,(a) = (ay,y) forany a € .4,y € H then ps can be
chosentobe ¥ ®, () foreach s€X.
1

n=

REMARK 2.4. Let # = [, @ Mdu and H = [, @ H,du be the direct integral
decompositions of (.# ,H) relative to the center % of ./ . By the argument in section
14.1 in [16], we can find a separable Hilbert space K and a family of unitaries {U; :
H; — K;s € X} such that s — Usx(s) is measurable (i.e. s — (Uyx(s),y) is measurable
for any vector y in K) for every x € H and s — Usa(s)U; is measurable (i.e. s —
(Usa(s)U{y,z) is measurable for any vectors y,z in K) for every decomposable operator
a€B(H).

PROPOSITION 2.5. Let .# be atype Il von Neumann algebra acting on a sepa-
rable Hilbert space H. Let M = [y @ Mdp and H = [y, @ Hdu be the direct integral
decompositions of # and H relative to the center 2 of M . Suppose K is a Hilbert
space and {U, : Hy — K} is a family of unitaries as in Remark 2.4. Denote by %
the unit ball of B(K) equipped with the x-strong operator topology. Suppose p is a
faithful normal tracial state on A . Then there is a family of positive, faithful, normal,
tracial linear functionals ps on M5 (almost everywhere) such that

(a) p(a)= [yps(a(s))du forevery ac M ;
(b) for any ag € M , there exists a Borel [ -null subset N of X such that the maps
(s,b) = ps((ao(s)Us bUs — U bUsao (s))" (ao (s)Ug bUs — UgbUsao (s)))

and
b) — ps(U;bUs)

(s,
are Borel measurable from (X \N) x % to C.

Proof. If p is afa1thfu1 normal, tracial state on /// then there exist a Sequence of
vectors {y,} C H with 2 lyal|? = 1 such that p = 2 oy, . Take p; = Z @, (5) for

every s € X. By Remark 2 3, we know, for s € X almost everywhere, p; 1s a posmve
faithful, normal, tracial linear functional on .#; and

@:/mmm@‘ Vae . @.1)
X
Foreach n € N,

@:Awm@@ml Vae .
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Consider the maps ¢,,y;, : X x B — C:
Bn(s,0) = @y, (5) ((ao(s)Us bU; — Uy bUsao(s))" (ao (s)U; bUs — U bUsao(s)))
and
Vn(s,b) = @y, (5 (U;bUs).
We have

Bn(s,0) = @y, (5) (a0 (5)Us bUs — U bUsao (s))" (ao(s)Us bUs — U bUsao(s)))
= ((aosU; Uy — U bUsao ()" (ao(s)U; bU; — Uy bUsao(s))yu(s), ya(s))
= (ao(s)U; bUsyn(s), ao(s)Us bUsyn(s))
— {ao(s)Uy bUsyn(s), Ug bUsao(s)yn(s))
— (U;bUsag(s)yn(s), a0 (s)U; bUsyn(s))
+(Us bUsao (s)yn(s), U bUsao(s)yn(s))
= (bUsyn(s), Usag(s)Uy Usao(s) Uy bUsyn(s))
— (Usao(s)U; bUyyn(s),bUsag(s)U; Ugyu(s))
— (bUsao (5)U Usyn(s), Usao (s)Uy bUsyn(s))
+ (Usao(s)U Usyn(s),b*bUsao (s)U; Usyn(s))-

By the choice of the family {U; : s € X} in Remark 2.4, the maps

s — Usao(s)U; (2.2)
s — Usah(s)U; (2.3)
from X to B(K) and
s — Usyn (S)

from X to K are measurable. Therefore by Lemma 14.3.1 in [16], there is a Borel
u-null subset N, ; of X such that, restricted to X \ N, 1 , the maps (2.2) and (2.3) are all
Borel maps. It follows that the map ¢, is a Borel map from (X \ N, ;) X £.

Since @y, () (UybUs) = (bUsyu(s), Usyn(s)) , the map (s,b) — @, 5 (U;bUy) from
X x # to C is measurable by the choice of {Us:s € X} in Remark 2.4. By Lemma
14.3.1in [16], there exists a Borel p -null subset N, » of X such that the map

Yn 't (S7b) - (Dyn(s)(US*bUS)

is Borel measurable from (X \ N, 2) x % to C.
By the discussions in the preceding paragraphs, the maps

On 2 (5,0) — @y, (5)((ao(s)Us bUs — Uy bUsao (s))* (ao(s)U; bUs — UgbUsao(s)))

and
Yt (S,b) - wyn(s)(UijV)
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are Borel measurable from (X \ N,) x % to C, where N, =N, 1 UN, > is a p-null
subset of X .

Since ps = Y Wy, (5)» We obtain that
n=1

(5,0) = ps((ao(s)Us bUs — USbUsao(s))" (ao(s)Uy bUs — USbUsa(s))) — (2.4)

and
(S,b) HpS(Us*bUS) (25)

are Borel measurable from (X \ N) x % to C, where N = U,enN, is a Borel p-null
subset of X . By (2.1), (2.4), and (2.5), we complete the proof of the proposition. [

3. Property I for type II; von Neumann algebras

In this section, we will introduce Property I' for general von Neumann algebras
and discuss some of its properties.

Murray and von Neumann’s Property I' for a type II| factor is defined as follows.
Suppose < is a type 11| factor with a trace T. Let ||-||2 be the 2-norm on <f given
by |lall» = v/t(a*a) for any a € o/ . Then </ has Property T if, given € > 0 and
ai,ap,...,a; € o, there exists a unitary u € o/ such that

(a) t(u)=0;
(b) |uaj—ajull, <e, V1< j<k.

An equivalent definition of Property T for a type Il factor </ was given by
Dixmier in [9]. Suppose < is a type Il factor with atrace T. Let || -||» be the 2-norm
on o/ given by ||al|» = \/t(a*a) for any a € <. Then </ has Property T if, given
neN, € >0 and ay,ay,...,a; € o, there exists n orthogonal equivalent projections
{P1:P2y---,pn} in & with sum I such that

|pia; —a;pill. <e, vi<i<nl<j<k

We introduce a definition of Property I" for a type II; von Neumann algebra as
follows.

DEFINITION 3.1. Suppose .# is atype Il von Neumann algebra with a predual
;. Suppose that o (.#, ;) is the weak-+ topology on .7 induced from .#;. We
say that .# has Property I" if and only if V ay,a2,...,a; € 4 and V n € N, there exist
a partially ordered set A and a family of projections

{pa:1<i<mAeA}CH
satisfying

(i) Foreach A € A, {p1a,P24,---,Pna} is a family of orthogonal equivalent projec-
tions in .# with sum 1.
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(i) Foreach 1 <i<mand 1 <<k,

liin(l?iw i—aipip)" (pnaj—ajpj) =0  in o(4,.4;) topology.

REMARK 3.2. Suppose that .# acts on a Hilbert space H. It is well-known
that o (.#,.#;), the weak-* topology, on the unit ball of .# coincides with the weak
operator topology on the unit ball of .# . (See Theorem 7.4.2 in [16])

Let .# be a countably decomposable type I1; von Neumann algebra with a faith-
ful normal tracial state p. Let || - ||» be the 2-norm on .# given by ||a||» = \/p(a*a),
Va € 4 . Let Hy = L>(.#,p). For each element a € .4 , we denote by a the corre-
sponding vector in H,, . Let 7, be the left regular representation of .# on H,, induced
by m,(a)(b) = ab,Ya,b € # . The vector I is cyclic for m,, where I is the unit of
A . Since that p is faithful, we obtain that Ttp is faithful.

The following result is well-known. For the purpose of completeness, we include
a proof here.

LEMMA 3.3. Let .# be a countably decomposable type 11| von Neumann alge-
bra acting on a Hilbert space H and p be a faithful normal tracial state on 4 . Let
| -1l be the 2-norm on A given by |a|, = \/p(a*a),Ya € A . Then the topology
induced by || - ||2 coincides with the strong operator topology on bounded subsets of

Proof. We claim that 7, is WOT —WOT continuous on bounded subsets of . .
To show this, we first suppose {a, } is a net in the unit ball (.#'); of .# such that

WOT—li{na;L =ac (H).

Then for any b,c € .4,

li;{nmp (a)mp (b) I, 7y (c) 1) = li)lt‘np(c*a,lb) =p(c*ab) = (my(a)my (b)1,my(c)1).
- (3.1
Since the vector [ is cyclic for 7, , we obtain from (3.1) that

li){n<np (al)xay> = <7TP (a)x7y>a V)C,y € HP'

Therefore WOT — li)an mp(ay) =mp(a) and m, is WOT —WOT continuous on bounded

subsets of .Z .

Since (.#); is WOT compact, the unit ball (7, (.#))1 = mp((A)1) is WOT
closed. By Kaplansky’s Density Theorem, 7, (.#) is a von Neumann algebra. Hence
m, from .4 onto m,(.#) is a *-isomorphism between von Neumann algebras. By
Theorem 7.1.16in [16], 7, is a *-homeomorphism from (.#); onto (7,(.#)); when
both are endowed with the strong operator topology.

Now we can prove the result. First suppose {b;} is a net in (.#); such that
SOT—li/{nb;L =0. Then SOT—li/{nbij;L =0. Since p is SOT -continuous on (.7 )1,
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li}{np(b;bl) = 0, which implies that li)an l65 1|2 = 0. On the other hand, suppose {c; }
isanetin (.#); such that 1i)1Ln||c;L||2 =0. Then for any a € .4 , H}ILIIHCAQHQ =0, and
hence
li}{rl(ﬂP(c;L)E, my(ca)a) = lim(my(a*cscpa)l, 1)
= li)Ian(a*c}‘Lc;La)
= lim 3
im el
=0.

Because {@ :a € .#} is norm dense in H,, it follows that SOT —limm,(c;) =0 in
1

B(Hp). Since m, is a homeomorphism from (.#); onto (m,(.#)); when both are
endowed with the strong operator topology, SOT —limc, =0 in B(H). O

COROLLARY 3.4. Let .# be a countably decomposable type 1l von Neumann
algebra with a faithful normal tracial state p. Then the following are equivalent:
(a) A has Property T (in the sense of Definition 3.1);

(b) Given any € > 0, any positive integer n and elements ay,ay,...,a; € M# , there
exist orthogonal equivalent projections py,pa,...,pn in A summing to I satis-

fying

|piaj —a;pill2p <&, 1<i<n, 1< j<k,

where the 2-norm ||-||2p on A is given by ||al|2, = \/p(a*a) forany a € A .

(c¢) For any faithful normal tracial state p on A, any € > 0, any positive integer
n and elements ay,ay, ... ,a; € M , there exist orthogonal equivalent projections
DP1,P2y---sPn in A summing to 1 satisfying

25 <& 1<i<n 1 <j<k,

25 =/ Pla*a) forany ac A .

Proof. We might assume that . acts on a Hilbert space H .

(a)= (b) It follows directly from Definition 3.1, Remark 3.2 and Lemma 3.3.

(b)=(a) Assume that (b) holds. Let n € N and ay,ay,...,a; € .4 . By (b), there
exists a family of projections

|piaj —a;p;

where the 2-norm || - ||2.5 on . is given by |la

pir1<i<mr>1} C A
satisfying

(1) foreach r > 1, pi,,por,...,pur s a family of orthogonal equivalent projections
in .# with sum I.
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(2) foreach 1 <i<nand 1 <<k,

lim P((piraj - ajpir)*(piraj - ajpir)) =0. (3.2)

r—oo

In order to show that .# has Property I", we need only to verify that the family of
projections {p;, : 1 <i<n;r> 1} satisfies condition (ii) in Definition 3.1. Actually,
combining equation (3.2) and Lemma 3.3, we know that, for each 1 <i<n and 1 <
J<k,as r— oo, pia;—ajp; convergesto 0 in strong operator topology. Therefore,
foreach 1 <i<nand 1 < j<k,asr—eo, (pjra;—ajpi)*(piraj—ajpir) converges
to 0 in weak operator topology and, whence in 6(.#,.#;) by Remark 3.2. Therefore,
. has Property T

(b)<(c) Suppose p; and py are two faithful normal tracial states on .# . By
Lemma 3.3, the 2-norms induced by p; and p, will give the same topology on bounded
subsets of . (since they both coincide with the strong operator topology on bounded
subsets of .#). Therefore (b) and (c) are equivalent. [J

COROLLARY 3.5. Suppose that A is a factor of type 11| with a tracial state t.
The following are equivalent:

(i) A has Property T in the sense of Definition 3.1.

(ii) .# has Property T in the sense of Dixmier (equivalently, of Murray and von
Neumann).

Proof. A type 11 factor is countably decomposable and 7 is the unique faithful
normal tracial state of .# . From Dixmier’s Definition of Property I for type II; factors
and Corollary 3.4, we know that (i) < (it). O

REMARK 3.6. Because of Corollary 3.5, from now on we will use Definition 3.1
as a definition of Property I for type II; von Neumann algebras.

In the rest of the paper, we will only consider von Neumann algebras with separa-
ble predual because direct integral theory is only applied to von Neumann algebras with
separable predual. Next proposition follows directly from Definition 3.1, Corollary 3.4
and the assumption that .# is a type II| von Neumann algebra with separable predual.

PROPOSITION 3.7. Let .# be a type Il| von Neumann algebra with separable
predual and p be a faithful normal tracial state on M . Then .# has Property T if
and only if for any n € N, there exists a family of projections {pir: 1 <i < n,r € N}
such that

(i) foreach r € N, {pir: 1 <i< n} is a set of n equivalent orthogonal projections
in A with sum I;

(ii) for each 1 <i<n, lim | pj,a—api|l» =0 forany a € A, where ||- ||, is the
r—oo0
2-norm induced by p on M .
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With the help of Proposition 3.7 and Corollary 3.4, we can directly get the next
corollary.

COROLLARY 3.8. Let .# be a type I} von Neumann algebra with separable
predual and p a faithful normal tracial state on A . Suppose {a;: j € N} is a
sequence of elements in /A that generates # as a von Neumann algebra. Then
M has Property T if and only if for any n € N, there exists a family of projections
{pir: 1 <i<n,reN} such that

(i) foreach r €N, {pir: 1 <i< n} is aset of n equivalent orthogonal projections
in A with sum I;

(ii) for each 1 <i<n and j €N, lim |pja;j—a;pi||» =0, where || -2 is the
r—soc0 E
2-norm induced by p on M .

EXAMPLE 3.9. Let @/ be atype Il factor with separable predual and <% a finite
von Neumann algebra with separable predual. Suppose @7 has Property I". Then the
von Neumann algebra tensor product 7| ® .o%5 is a type 11} von Neumann algebra with
separable predual and Property T".

REMARK 3.10. Let .# be a von Neumann algebra acting on a separable Hilbert
space H and 2 the center of .# . Suppose .# = [, @ Adu and H = [, S H,du
are the direct integral decompositions of .# and H over (X, u) relative to 2. Take a
countable SOT dense self-adjoint subset .% of .Z and let . be the set of all rational
x-polynomials (i.e, coefficients from Q + iQ) with variables from .% . We observe that
7 is countable and SOT dense in .# . Take {a;: j € N} to be the unit ball of .~7".
By Kaplansky’s Density Theorem, {a; : j € N} is SOT dense in the unit ball (.#);.
By Definition 14.1.14 and Lemma 14.1.15in [16], {a;(s) : j € N} is SOT dense in the
unit ball (.#;), for almost every s € X. In the rest of this paper, when we mention a
SOT dense sequence {a;j: j € N}of (.#), (or (.#')1), we always assume that this
sequence has been chosen such that {a(s) : j € N} is SOT dense in the unit ball (.#);
(or (A])) for almost every s € X .

LEMMA 3.11. Suppose H = [y @ Hydu is a direct integral of separable Hilbert
spaces and </ is a decomposable von Neumann algebra (see definition in [16]) over
H such that &/ = M, (C), the m x m matrix algebra over C for some m € N. Then
Ay = M,,(C) for almost every s € X .

Proof. Notice that <7 is also a finite dimensional C* -algebra. By Theorem 14.1.13
in [16] and the fact that <7 is separable, the map from o7 to <7 given by a — a(s) is
a unital *-homomorphism for almost every s € X. Since &7 = M,,(C), </ is simple.
Therefore <7 = M,,(C) for almostevery s € X. [

The following Proposition gives a useful characterization of a type II; von Neu-
mann algebra with Property T".
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PROPOSITION 3.12. Let .4 be a type I1| von Neumann algebra acting on a sep-
arable Hilbert space H and % the center of # . Suppose p is a faithful normal tracial
state on M and a 2-norm || |2 on A is defined by ||al|2 = \/p(a*a) forany a € M .
Suppose M = [, @ Msdu and H = [, @ Hd are the direct integral decompositions
of M and H over (X, ) relative to % . Then the following are equivalent:

(i) A has Property T.
(ii) There exists a positive integer ny > 2 such that

forany € >0, and any ay,ay,...,a; € M, there exist orthogonal equiva-
lent projections pi1, p2, ..., Pn, in A summing to I satisfying

Ipiaj—ajpila<e, — 1<i<ng1<j<k
(iii) M is a type Il factor with Property T for almost every s € X.

Proof. Since .# is atype II; von Neumann algebra, by Lemma 2.1, the compo-
nent . is a type 11 factor for almost every s € X. We may assume .Z is a type 11
factor with a trace 7; foreach s € X.

By Lemma 2.2, there is a positive faithful normal tracial linear functional ps on
M for almost every s € X such that p(a) = [y ps(a(s))dp for each a in 4. We
may assume p; is positive, faithful, normal and tracial for each s € X . Hence for each
s € X, ps is a positive scalar multiple of the unique trace 7, on the type II; factor .Z.

Let {a;: j € N},{d): j € N} be SOT dense subsets of the unit balls .2, (.Z");
of .4 and .#' respectively. By Proposition 14.1.24 in [16], we may assume that
(M) = (M) for every s € X and we use the notation . for both. By Remark
3.10, we may assume {a;(s) : j € N} and {a)(s) : j € N} are SOT dense in (),
and (#)]), forevery s€ X .

(1)=- (ii): The result is clear from Corollary 3.4, Corollary 3.5 and Remark 3.6.

(i))=- (iii): For this direction, we suppose (ii) holds. Notice that .# acts on a
separable Hilbert space, whence . is countably generated in strong operator topology.

By (ii), there exists a sequence of systems of matrix units {{el(rj) }73:1 r € N} such that
(A) for each r € N, we have

ny
2655) =1, (el(rj))* = eyl) and eyj)e,(:l) = Sjkeffl) forall 1 <i,j,k,I<ng.
i=1

(B) foreach 1 <i<ng, lim[le\”a—ael”||, =0 forany a € ..
F—00 ) )

By condition (A) and Lemma 3.11, there exists a t -null subset Ny of X such that, for
each r e N, {el(r,) (s)}%, is a system of matrix units such that 3, ef:.) (s) = Iy (the
identity in .#;) in .#; for each s € X \ Ny. In the following, we let

pi,,:el(ir) forall 1 <i<ng,reN.

Therefore, without loss of generality, we can assume that
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D {p1.+(5);p2,+(8),--,Pnyr(s)} is a set of ng equivalent orthogonal projections
with sum /i in .#; for every r € N and every s € X ;

(IT) foreach 1 <i < ng,

lim ||p;-a —api || =0 forany a € ./ .
F—c0

In the following we will use a diagonal selection process to produce a subsequence
{rm:meN} of {r:re N} and a p-null subset Xy of X such that

27s:O Vie{1,2,...,n0}ansteX\X0,
(3.3)

lim [|pi s, (s)aj(s) = aj(s)pin(s)
where the || - ||l2,s is the 2-norm induced by the unique trace 7, on each .Z;.
First, by Assumption (II), for each i € {1,2,...,n9},

lim [|p; ra1 — aipir|2
F—o0

= lim /. Ps((pir(s)ai(s) —ai(s)pir(s))" (pir(s)ai(s) —ai(s)pir(s)))du = 0.
Therefore there exists a y-null subset ¥; of X and a subsequence {rj, : m € N} of
{r:r e N} such that

Jim ps((piry, (s)a1 (s) = a1 (5)pin ()" (Piry (S)ar(s) —ar(s)pr,, (5))) =0

forany s € X\ Y; and any i € {1,2,...,n9}. Since p; is a positive scalar multiple of
the unique trace T, on the type Il factor .#;, we obtain
Jim [|pir,, (s)a1(s) = ar(s)pir , (9)ll2,s =0
forany i€ {1,2,...,n} and any s € X \ ¥}, where ||-||2,; is the 2-norm on . induced
by 1.
Again, there is a subsequence {r,, : m € N} of {ri,, :m € N} and a p-null
subset Y> of X such that

Jim [|pir, , (s)az(s) = a2(s)Pir , (5)l|2,s =0
forany i € {1,2,...,n0} and any s € X \ Y.

Continuing in this way, we obtain a subsequence {ry,, :m € N} of {ry_j,,:m e
N} and a p-null subset Y; for each k > 2, satisfying

hi?:o ||pl-7rk‘m (S)ak(s) - ak(s)pivrk‘m (S) 2,5 = 0

m

forany i € {1,2,...,n9} and any s € X \ ¥;. Now we apply the diagonal selection by
letting 7y, = 7y, for each m € N to these subsequences and obtain that

Jim [|pir, (s)aj(s) = a;j(s)Pin (s)]l2s =0 (3.4)
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forany i € {1,2,...,n9}, j €N and s € X \ Xy, where Xo = UgenY is a p-null subset
of X.

Since {a;: j € N} is SOT dense in the unit ball of .#; for each s € X, (3.4)
implies that, for any i € {1,2,...,n9}, s € X\ X and any a € .4,

lgrlc Hpi7rn1 (S)a - apiJm (s) 2,5 = 0. (3’5)

It follows from (3.5) and Assumption (I) that . is a type 11| factor with Property T'
for almost every s € X .

(iii) = (i1): Suppose . is a type II; factor with Property I" for almost every
s € X. We may assume that for every s € X, .# is a type II| factor with Property T".

By Remark 2.4, we can obtain a separable Hilbert space K and a family of uni-
taries {U; : Hy; — K;s € X} such that s — Usx(s) and s — Usa(s)U; are measurable
for any x € H and any decomposable operator a € B(H). Let & be the unit ball of
self-adjoint elements in B(K) equipped with the x-strong operator topology. Then it
is metrizable by setting d(S,T) = Yo 27" (||(S — T)ewm|| + [|(S* — T*)en||) for any
S.T € %, where {ey,} is an orthonormal basis of K. The metric space (4,d) is com-

plete and separable. Now let | =%, =...= %, =...= % and € = [] S, provided
leN
with the product topology of the *-strong operator topology on each B;. It follows that

% is metrizable and it’s also a complete separable metric space.

Replacing ap by a; for j € N, we apply Proposition 2.5 countably many times
and obtain positive, faithful, normal, tracial linear functionals p; on .#; (almost ev-
erywhere) and a Borel p -null subset N of X such that,

(1) p(a)= [y ps(a(s))du forevery a € A
(2) forany j € N, the maps
s = ps((a;jU;bUs — U bUsa(s))* (a;U; bU; — U bUsa(s))) (3.6)

and
s — py(UBUy) (3.7)

from X to C are Borel measurable when restricted to X \ N.

We denote by (s, (011,021, --,0n1,012,022,...,0u2,...)) anelementin X x €.
Since b — b* and b — b? are *-SOT continuous from % to A, the maps

(sa(thQle”7in7Ql27Q227~~~7Qn27~~~)) - Qitv (38)
(5,(Q11,021,-+-,001,012,02, - -, On2s - -.)) — O, (3.9
(5,(011,021,---,0n1,012,02,...,0m,...)) = Qj (3.10)

are Borel measurable from X X & to £.
By Remark 2.4, the map s — Usd;(s)U;" from X to % is measurable for every
j € N. Therefore, by Lemma 14.3.1 in [16], there exists a Borel -null subset N’ of
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X such that the map s — U;d;(s)U;" is Borel measurable when restricted to X \ N for
every j € N. Hence the maps

(S7 (Q117Q217'”7Qn17Q127Q227'”7Qn27' . )) - QitUSa}(s)Us*7 (311)
(S7 (Q117Q217'”7Qn17Q127Q227'”7Qn27' . )) - Usa/j(s)UjQit (312)

are Borel measurable when restricted to (X \ N') X ¢ forevery j € N.
Since the functionals ps are chosen such that the maps

s = pul(aUSBU; — U3 bUsa(s))* (a,USbU; — U3 bUsa ()

and
s P-\'(Us*bU-\')

are Borel measurable when restricted to X \ N, where N is a Borel p-null subset of X,
the maps

(5,(011,021,---,001,012,022,...,0m2,-..))
— ps((a;(5)U; QiUs — Uy Qi Usaj(s)) " (aj(s)Uy QuUs — U Qi Usaj(s)))  (3.13)

and

(5,(011,021,---,0n1,012,02, ..., 02, ..)) = ps(U; Qi Us) (3.14)

are Borel measurable when restricted to (X \ N) x ¢ for each j € N.
Take No = NUN'. Then we have the following claim.

Claim 3.12.1. Ny is a Borel [ -null subset of X and the maps (3.8)—(3.14) are
Borel measurable when restricted to X \ Ny.

Next we introduce the following subset 1 of (X \ Ny) X €.

Let 1 be a subset of (X \ No) X € that consists of all these elements

(S7(Q117Q217'”7Qn17Q127Q227'”7Qn27'"7QltaQ2t7"'7Qnt7"')) S (X\NO) X C

satisfying
(a) forany 1 <i<n,t €N,
Qi = Q; = 0; #0; (3.15)
(b) forany 1 <i<n,t,jeN,
0iUsd(s)Uy = Usd'y(s) Uy Qi (3.16)

(c) forany 1 <i<n,teN,1<j<y,

Ps((aj(s)U5 QiUs — Uy QirUsaj(s)) " (a(s)Us QuUs — U QuUsa(s))) < 1/1;
(3.17)
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(d) foranyteN,

ps(Ug*QltUs) ... = ps(Us*QntUs) and Qi +0x+...+ 0w =1. (3.13)

We have the following claim.
Claim 3.12.2: The set M is analytic.

Proof of Claim 3.12.2. By Claim 3.12.1, we know the maps (3.8)—(3.14) are Borel
measurable when restricted to X \ Ny. It follows that the set 1 is a Borel set. Thus by
Theorem 14.3.5in [16], i is analytic. The proof of Claim 3.12.2 is completed. [l

Claim 3.12.3: Let 1 be the projection of X x # onto X. Then w(n) =X\ No.
Proof of Claim 3.12.3. Let

(5,(011,021,---,0n1,012,02,- -, On25- -, Q11,021 - .-, Ot - - -))

be an element in 711. From the definitions of the set 717, it’s not hard to see that condition
(a) is equivalent to that each Qj is a nonzero projection. Since {a’f(s) 1 jEN} s
SOT dense in (.#"); for each s € X, condition (b) is equivalent to the condition that
U;QiUs € M. Notice that {a;(s) : j € N} is SOT dense in (.#); for each s € X,
condition (c) is equivalent to

ZILIgpS((aUS*QitUS - Us* QitUsa)* (aUs*QitUs - Us*QitUSa)) =0

for any a € .#;. Furthermore, ps is a positive scalar multiple of 7, on .Z; for each
s € X, it follows that condition (c) is equivalent to

lim [|aUy Qi Us — U QisUsal|2.s = 0

for any a € .#;. Moreover, (s,(Q11,0215---,0n1,012,022,...,0m2,...,01:,0,. .-,
O, ...)) satisfies condition (a) and condition (d) if and only if U;Q,,Us, U Q0 Us, ...,
U; Q. Us are n equivalent projections in .#; with sum I; for each n € N and each
tcN.

For each s € X, notice that ./, is a type Il factor with Property I". From the
argument in the preceding paragraph, there exist projections {UQ; U, : 1 <i < n,t €
N} in ., such that

(5,(011,021,---,0n1,012,022,- .-, On25- -, 011,025 - -, Oty .. .)) EX X E

satisfies conditions (a), (b), (c) and (d). Therefore the image of n under 7 is exactly
X \ No. The proof of Claim 3.12.3 is completed. [

Continue the proof of Proposition 3.12. By Claim 3.12.2 and Claim 3.12.3, 7 is
analytic and the image of 1 under 7 is X \ Ny. By Theorem 14.3.6 in [16], there is a
measurable mapping

s— W0, ....0%, 0,080, ..)
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from X \ Ny to % such that, for s € X \ Ny almost everywhere,

(5,008,000 .00 .08).....0l...))
satisfies conditions (a), (b), (c) and (d) (see (3.15), (3.16), (3.17) and (3.18)). By defin-
ing QE;) =0 forany t € N, 1 < i< n,s € Ny, we obtain a measurable mapping
s—(0,0%,....0%.01.08....0%...) (3.19)

from X to € such that such that, for s € X almost everywhere,

(s,(01),05),....00).08.08.....0%...))
satisfies conditions (a), (b), (c) and (d) (see (3.15), (3.16), (3.17) and (3.18)).
By (3.19), for any t € N, 1 < i < n and any vectors y,z € H, we have

(U7 0 Usy(s),2(s)) = (O Usy(s), Usz(s))

and thus the map
s = (U7 0 Uy (s),2(5))

is measurable. Since

Uz 08 Usy(s),2(5))] < ()l 12s)lI

the map s — (U; Qi Usy(s),z(s)) is integrable. By Definition 14.1.1 in [16], it follows
that

U0 Usy(s) = (pay)(s) (3.20)

almost everywhere for some p;y in H. For each ¢ € N, (3.20) implies that p;(s) =
US*QSS)US for almost every s € X. Therefore p; € .# for each t € N. Notice con-
ditions (a) and (d) together imply that Ungi)Uv,Ung)Uv,---,UfQ,({;)Uv are n or-
thogonal equivalent projections in .#; with sum I for each r € N. It follows that
Ples P2ty - P are n orthogonal equivalent projections in .# with sum I for each
t€N.

In order to show that .# has Property I, it suffices to show that for any i €
{1,2,...,n} and a € A,

tli_{gp ((apit - pita)*(apit - Pita)) =0. (3.2D
By condition (c), we obtain that foreach je N1 <i<nand s € X,

lim p, ((a(5)U; 0 U, = U7 0} Usaj(5))* (a(5) U 05 U = U7 05 U (5)) = 0,
(3.22)
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Fix i€ {1,2,...,n} and j € N. For each t € N, define a function f; : X — C such that

£i(s) = ps((a;()U; 00U, — U O Uy (5))* (ay (5)U; @ Uy — U7 03 Usa(5))).-
It follows from (3.22) that

lim £, (s) = 0 (3.23)

{—so0

almost everywhere. By Lemma 14.1.9 in [16], for each j € N, [|a;|| is the essential
bound of {||a;(s)| : s € X}. Therefore

1(a;(s)U; 0L Uy — U 0 Usa;(s))" (aj(s) U O3 Us — U O Usaj(s)) |

almost everywhere. Hence
0< fi(s) < 4llaj|*ps(L) (3.24)
almost everywhere. Furthermore,
[ HaslPpult)du = 4a Pp (1) = 4| <4, (3.25)
by the Dominated Convergence Theorem, it follows from (3.23), (3.24) and (3.25) that

tim | pu((a;(9)07 04U~ U; 0 Uiy 9))" (e (9)U; €U~ U2 04 Uiy () d =,

{—so0

(3.26)
Since pj(s) = U QS,S)US for almost every s € X, (3.26) implies
lim p((a;pic — piraj)* (a(j)pic — piraj)) = 0. (3.27)

From the fact that {a; : j € N} is SOT dense in the unit ball of .#, we obtain equation
(3.21) from (3.27). Thus .# is a type II; von Neumann algebra with Property I". [J

If ./ is atype II; von Neumann algebra, then by Lemma 6.5.6 in [16], for any
m € N, there is a unital subalgebra </ of .# such that &/ = M,,(C).

PROPOSITION 3.13. Suppose . is atype Il von Neumann algebra acting on a
separable Hilbert space H. Suppose further </ is a unital subalgebra of .# such that
A = M,y,(C) for some m €N. Let N = /"N . Then A has Property T if and
only if A has Property T.

Proof. By Lemma 11.4.11 in [16], 4 = @M = M,,(C)®.4". It is trivial to
see that if .4~ has Property I, then .# has Property I". Thus we only need to show
that Property I" of .# implies Property " of 4.
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Suppose .# has Property I'. Let # = [, @ #sdu and H = [, @ H,du be the
direct integral decompositions relative to the center 2" of .# . Since .# is a type 11,
von Neumann algebra with Property I", by Proposition 3.12, .Z; is a type II; factor
with Property T" for almost every s € X. We may assume .Z is a type 11| factor with
Property T" forevery s € X.

Since &7 = M,,(C), by Lemma 3.11, we may assume <% = M,,(C) for every
se€X.Since N =" NM, N, =N .Ms for almost every s € X . Then by Lemma
11.4.111in[16],

My = G @N; % My (C)D

for almost every s € X . Since . is a type 11 factor with Property T" for every s € X,
by Lemma 5.1 in [4], .45 has Property I" for almost every s € X . By a similar argument
as the proof of Proposition 3.12, we can conclude that .4” has Property I'. [

4. Hyperfinite II; subfactors in type II; von Neumann algebras

Let .# be a type 11| von Neumann algebra with separable predual and Property
I". We will devote this section to the construction of a hyperfinite type 11| subfactor &%
of . such that

D) Z'N# =%, where Z is the center of .# ;

(II) for any given ay,ay,...,a; € 4 ,n € N and € > 0, there exist orthogonal equiv-
alent projections py,p2,...,pn in Z with sum I such that

||p,-aj—ajp,-||2 <eg i=12,...; j=12,...k,

where the 2-norm || - ||, is given by ||a||» = \/p(a*a),Va € .4 for some faithful
tracial state p on .# .

LEMMA 4.1. Let .# be a type Il von Neumann algebra acting on a separable
Hilbert space H. Let m € N and </ be a unital subalgebra of . such that o/ =
My (C). Let N ="' NAM . Assume that M = [, B Msdu and H = [y @ H,du are
the direct integral decompositions relative to the center 2 of M . Assume that p is
a faithful normal tracial state on A and {ps:s € X} is a family of positive, faithful,
normal, tracial functionals as introduced in Lemma 2.2 and Proposition 2.5. If # has
Property T, then

Vai,ay,...,ar € A, Yn € N and Ve > 0, there exist a [ -null subset Xy of X
and a family of mutually orthogonal equivalent projections {p1,pa,...,pn} in
A with sum I such that,

ps((pi(s)aj(s) —a;(s)pi(s))" (pi(s)a;(s) —aj(s)pi(s))) <,

foralli=1,2,...,n, j=1,2,... .k, and s € X\ Xp.
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Proof. Since & = M,,(C) and A = .o/’ N.# ,by Lemma 11.4.11in [16], .# =
&/ ®.A . Then by the discussion in section 11.2 in [16], .4 is a type II{ von Neumann
algebra. Let {agh};’fhz | be a system of matrix units for .27. By Lemma 3.11, we may
assume that <7 = M,,(C) and ., = o/,®./4; for every s € X. We also assume that,
foreach s € X, {ag(s)}y),—, is a system of matrix units for /. By Proposition 3.12,
we may assume that . is a type 11| factor with Property I" for every s € X. Then by
Lemma 5.1 in [4], 45 is a type 1| factor with Property T" for every s € X .

Let {a}:r€ N} bea SOT dense subsetin the unitball .#] of .#". By Proposition
14.1.24 in [16], we may assume that (.#"); = (.#)" for every s € X and we use the
notation .7, for both. Therefore by Remark 3.10, we may assume {a.(s) : r € N} is
SOT dense in (#]); forevery s € X.

Take a separable Hilbert space K and a family of unitaries {U; : H; — K;s € X }
as in Remark 2.4 such that s — Ux(s) and s — Usa(s)U;" are measurable for any x € H
and any decomposable operator @ € B(H). Let # be the unit ball of B(K) equipped
with the *-strong operator topology. Since K is separable, & is metrizable by setting
d(S,T)=%7, 277 (I(S=T)ej||+ |(S*—T*)e;||) forany S,T € #, where {e;: j € N}
is an orthonormal basis for K. Then the metric space (%,d) is complete and separable.
Foreach 1 <i,j<n,let B;j=%. Take ¢ = [l %, equipped with the product

1<i,j<n
topology. It follows that & is a complete separable metric space.

By the choices of {U;}, we know that the maps s — Usa,.(s)U,", and s — Usag(s)U;
from X to B(K) are measurable for any r € N and any g,h = 1,2,...,m. By Lemma
14.3.1 in [16], there exists a Borel p-null subset N; of X such that the maps

(s,b) — bUsd.(s)U;, 4.1)
(s,b) — Usd.(s)U!b, 4.2)
(s,b) — bUsag,(s)Uy, (4.3)
(5,0) = Usagp(s)U; b 4.4)

are Borel measurable from (X \ N;) x % to B(K) for any r € N and any g,h =
1,2,...,m. Since p is a faithful normal tracial state, by Lemma 2.2, we may assume
that, for every s € X, there exists a positive, faithful, normal, tracial functional py; on
M such that p(a) = [y ps(a(s))du for any a € .4 . By Proposition 2.5, there is a
Borel p-null subset N, of X such that, for each j € {1,2,...,k}, the map

(5,0) = ps((U;bUsaj(s) — aj(s)U;bUs)* (U bUsaj(s) —aj(s)U;bUs))  (4.5)

is Borel measurable from (X \ Nz) x % to C. From the fact that each py is a positive,
faithful, normal, tracial functional on ., it follows that p; is a positive scalar multiple
of the unique trace 7, on .#; for each s in X \ N,.

Let N=N{UN,. Let N be the collection of all these elements

(p.E11,E12,...,Em) € (X\N) x €

such that
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(i) forall iy,iy,i3,is € {1,2,...,n},
Eii, =E;; and E;,Eii, = 8,iEii; (4.6)
(ii)
En+En+...+Em—1I; 4.7)
(iii) forall iy,i, € {1,2,...,n} and r € N,
Eii,Usa,(s)US = U, (s)U;Ej,iy; (4.8)
(iv) forall iy,ip € {1,2,....n} and g,h € {1,2,...,m},
Ei iy Usagn(s)U; = Usagn(s)U; Ej iy (4.9)
(v) forall i in {1,2,...,n} and j in {1,2,... k},

ps((Us EiiUsaj(s) — a;j(s)Uy EiUy)" (U EiUsaj(s) — aj(s)US EiiUs)) < €.
(4.10)
We have the following claim.

Claim 4.1.1. The set M is analytic.
Proof of Claim 4.1.1. The maps

(E11,Ev2, ... Em) — Eijiy,
(E117E127' . ’Enn) - Ei2i17
(E1,E12,... Enn) — Eiip Eigiy

(E117E127"'7Enn) _>E11 +E22++Enn

are continuous from % (with the product topology) to # (with the *-strong operator
topology). Therefore, we obtain that the maps

(S7E117E127' .- aEnn) — E

i1ips
*
S,E117E12,. .. 7Enn) - Ei2i17

(
(s,E\1,E1, ..., Ewm) — Eji, Eiiy,
(S,E117E12,...,Enn) —En+En+...+E;

are Borel measurable from (X \N) x € to & forall 1 < iy,iy,i3,is < n. From the fact
that the maps (4.1), (4.2), (4.3) and (4.4) are Borel measurable from (X \ Nj) x & to
B(K) and the map (4.5) is Borel measurable from (X \ M) x £ to C, it follows that
the following maps

(s,E11,E12,...,Enp) —>Eili2U5a/r(s)U:‘7

S,E11,E12, ..., Enn) — Usd,(s)U;Ej 1,

S,E11,E12,...,Ew) = Ej i, Usagn(s)Uy,

$,E11,E12,...,Enn) = Usag(s)U; Ejy i,
)

(
(
(
(8;E11,Ena, -, Enn) — ps (U5 EiiUsa(s)—aj(s)Ug EqUs)" (Ug EiiUsa(s)—a;j(s)Ug EiiUy))
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are Borel measurable when restricted to (X \N) x ¢ forall 1 <iy,i,i<n,1 < g,h<
m,r € N, and 1 < j < k. Therefore 7 is a Borel set. Thus 7 is analytic by Theorem
14.3.5 in [16]. This completes the proof of Claim 4.1.1. [

Claim 4.1.2. Let Tt be the projection of X X € onto X. Then (1) =X\ N.

Proof of Claim 4.1.2. Notice that an element (s,E11,E12,...,Ey) in (X\N) X €
satisfies conditions (i) and (ii) if and only if {Ej,;,}} ; _; is a system of matrix units for
a matrix algebra which is isomorphic to .#,(C). Condition (iii) is equivalent to that
U;E;,i,Us € 4. Condition (iv) is equivalent to that U}E; ;, U, € <7 .

By assumption, for each s € X, .#; and .4; are type 1I; factors with Prop-
erty I' and .4 = o @.45. Thus o' N .My = N;. It follows from the argument in
the preceding paragraph that, for each s € X, there exists a system of matrix units
{UENLWUs, UFEaUs, ..., UfEnUs} in A; such that (s,Ey1,El2,...,Eyy) satisfies con-
ditions (i), (ii), (iii), (iv) and (v). Therefore the image of 1 under 7 is exactly X \ N.
This completes the proof of Claim 4.1.2. [

Continue the proof of Lemma 4.1. By Claim 4.1.1 and Claim 4.1.2, n is analytic
and (1) = X \ N. By the measure-selection principle (Theorem 14.3.6 in [16]), there
is a measurable mapping

s — (E115:E12,55- - Enns)

from X \ N to € such that, for s € X \ N almost everywhere, (s,E11,E125,--.,Em.s)
satisfies conditions (i), (ii), (iii), (iv) and (v) (see (4.6), (4.7), (4.8), (4.9), and (4.10)).
Defining E;,;, s = 0 for s € N, 1 < ij,ip < n, we get a measurable map

s_>(E117S7E12,S7'”7E}’1n,s) (411)

from X to € such that, for s € X almost everywhere, (s,E11 5,E12,...,Enns) satisfies
conditions (i), (ii), (iii), (iv) and (v) (see (4.6), (4.7), (4.8), (4.9), and (4.10)).
From (4.11), for any 1 < ij,i» < n and any two vectors x,y € H, it follows

(USEiyiy sUsx(s),¥(5)) = (Eiyip,sUsx(s), Uss),
and the map s — (U, Ej, i, sUgx(s),y(s)) are measurable. Since
(U5 Eiyiy. sUsx(s),y(s))| < [Ix(s) [ |y (s)],

we know s — (UsE;j i, sUsx(s),y(s)) is integrable. By Definition 14.1.1 in [16], it fol-
lows that

U Ei i, sUsx(s) = (pi,ix)($) (4.12)
almost everywhere for some p;;,x € H. From (4.12), we have that
Piiy(8) = US Eyiy Uy (4.13)
for almost every s € X and thus p;,;, € .# . By condition (iv),

Us*EiliLSUS € JZ{\/



HOCHSCHILD COHOMOLOGY OF TYPE II| VON NEUMANN ALGEBRAS WITH PROPERTY I 529

Hence
Pii, EA'NM =N . (4.14)

Since conditions (i) and (ii) together imply that {Ei1i27-\'};'11 el is a system of ma-
trix units, by (4.13), we obtain that p11(s), p22(s),..., pu(s) are n orthogonal equiva-
lent projections in .#; with sum I; almost everywhere. Therefore (4.14) implies that
P11,P22,---,Pnn are n orthogonal equivalent projections in .4~ with sum /. For each
i€{1,2,...,n}, let p; = p;;. From condition (v), we conclude that py,ps,...,p, is
a family of mutually orthogonal equivalent projections in .4 with sum [/ satisfying,
Vi=1,2,...,n,Vj=1,2,...k,

ps((pi(s)aj(s)—aj(s)pi(s))" (pi(s)aj(s)—a;(s)pi(s))) < & fors€X almost everywhere.

This ends the proof of the lemma. [J
A slight modification of the proof in Lemma 4.1 gives us the next corollary.

COROLLARY 4.2. Let .4 be a type II| von Neumann algebra acting on a sep-
arable Hilbert space H. Let m € N and </ be a unital subalgebra of .# such that
A =My(C). Let N =o' "M . Assume that M = [y @ Msdu and H = [y @ H,du
are the direct integral decompositions relative to the center % of M . Assume that
M has Property T'. Then, Yay,az,...,ay € .#, Yn € N and Ve > 0, there exist a
w-null subset Xo of X and a family of mutually orthogonal equivalent projections
{P1:P2y---,Pn} in A with sum I such that

|pi(s)aj(s) —aj(s)pi(s))|l2s <&, Vi=1,2,...,n,Vj=1,2,... kand s € X \ Xy,

where || -||2,s is the 2-norm induced by the unique trace T, on M.

In [20], Popa proved that if <7 is a type II; factor with separable predual, then
there is a hyperfinite subfactor % of .27 such that %' N.o/ = CI. The following lemma
is essentially Theorem 8 in [25]. The proof presented here is based on the direct integral
theory for von Neumann algebras and is different from the one in [25].

LEMMA 4.3. ([25])) If # is a type 11| von Neumann algebra acting on a sep-
arable Hilbert space H, then there is a hyperfinite type 11| subfactor % of M such
that #' N.M = Z, where Z is the center of M .

Proof. By Lemma 2.1, .# can be decomposed (relative to its center) as a direct
integral [y @.#dp over a locally compact complete separable metric measure space
(X,u) and 4 is a type I1; factor almost everywhere. In the following we assume that
M is a type 1| factor for every s € X .

By Remark 2.4, we can obtain a separable Hilbert space K and a family of uni-
taries {Us : H; — K;s € X} such that the maps s — Usx(s) and s — Usa(s)U; are
measurable for any x € H and any decomposable a € B(H). Let 4 be the unit ball of
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B(K) with the *-strong operator topology. We observe that % is metrizable by setting
d(S,T) =371 27/ ((S=T)ejl| +(S*=T*)e;|) forany S,T € Z, where {e;: j € N}
is an orthonormal basis of K. Moreover, (%,d) is a complete separable metric space.
Let € = % x A equipped with the product topology. It follows that € is a complete
separable metric space.

Let {a):j € N} be a SOT dense subset of the unit ball (.#’);. By Lemma
14.1.24, we may assume that (.#"); = (.#;)' for every s € X and we use the notation
A for both. By Remark 3.10, we may assume further that {d/(s) : j € N} is SOT
densein (.#]); forevery s € X. Let {y;: j € N} be a countable dense subset in H. By
Lemma 14.1.3 in [16], the Hilbert space generated by {y;(s) : j € N} is Hy for almost
every s € X . Replacing {y;: j € N} by the set of all finite rational-linear combinations
of vectors in {y; : j € N} if necessary, in the following we assume that {y;(s) : j € N}
is dense in H, forevery s € X.

Fix an irrational number 6 € (0,1). We denote by (s,W,V) an element in X x
BxB=XxXE.

The maps W - WW* W - W*W,V - VV* V - V*V are x-SOT continuous
from % to %. The maps (W,V) — WV, (W,V) — ¢™9VW are continuous from &
with the product topology to % with the x-strong operator topology. Therefore the
maps

(s,W,V) — WW*, (4.15)
(5,W,V) = W*W, (4.16)
(s,W,V) = VV*, (4.17)
(s,W,V) = V'V, (4.18)
(s,W,V) =WV, (4.19)
(s,W,V) — "0y w (4.20)

are Borel measurable from X x 4" to %. By Remark 2.4, the maps
s — Usd',(s)U;
from X to B(K) and
s — Usy;(s)

from X to K are all measurable for each j € N.
Let
Q<X7Y7Z17Z27 .. >

be the collection of all *-polynomials in intermediate variables X,Y,Z;,Z,,... with
rational coefficients. It is a countable set. By Lemma 14.3.1 in [16], there exists a
Borel p-null subset N of X such that, Vj;,j» € N, Vf € Q(X,Y,Z,2Z,,...), the maps

(s, W,V) = WUd(s)U;, 4.21)
(s,W,V) — Usd;(s)U;W (4.22)
(s,W,V) — VU (s)Uy, (4.23)
(s, W,V) = Usd(s)U;V (4.24)
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are Borel measurable from (X \ N) x € to % and the map
(5., W,V) = [lf(W,VAUsd(s)U; : j € NDUyj, (5) = Usy o | (4.25)

is Borel meaurable from (X \ N) x € to C.
Now we introduce the set 1 as follows.
Let M be the collection of all these elements (s,W,V) € (X \N) x € satisfying

(i) WW*=W*W =VV* =V*V =1, where I is the identity in B(K);

(ii) WUd(s)U; = Uy (s)U;W and VUsd',(s)U; = Usd;(s)US'V for every j € N;
(iii) WV = 2™OVW ;
(iv) forall N, jy, jo» €N, there exists an [ in Q(X,Y,Z,Z,,...) such that

lf W, VAU (s)U; < j € N})Usyj, (s) = Usyj (s)l| < 1/N.

Claim 4.3.1. The set M is analytic.

Proof of Claim 4.3.1. Since the maps (4.15)—(4.25) are all Borel measurable when
restricted to (X \N) x €, n is a Borel set. By Theorem 14.3.5 in [16], 7 is analytic.
This completes the proof of Claim 4.3.1. [

Claim 4.3.2. Let Tt be the projection of X X € onto X. Then (1) =X\ N.

Proof of Claim 4.3.2. We observe that an element (s,W,V) satisfies conditions
(1), (ii) and (iii) if and only if U;WU, and U;VU; are two unitaries in .# such that
(UWU)(U;VUy) = ™8 (U VUy) (UWU;) . Since {y;(s) : j € N} is dense in H for
every s € X, condition (iv) is equivalent to the condition that the von Neumann algebra
generated by {U;WU,,U;VU} U{d)(s) : j € N} is B(H;).

Foreach s € X, .4, isatypell| factor with separable predual. By Popa sresultin
[20], there exists a type II; hyperfinite subfactor %) of .#; such that (Z%)' N .4, =
CI,. Notice a hyperfinite I1; factor always contains an irrational rotation C* -algebra
as a SOT dense subalgebra. Combining with the argument in the prededing para-
graph, we know that there exist two unitaries U WU, and USVU, in %) (where
W,V are unitaries in %) such that they generate %’( %) as a von Neumann algebra and
(s,W,V) satisfies conditions (i), (ii) and (iii). The condition (# 5) ) N My = (CI is
equivalent to the condition that the von Neumann algebra generated by Z) U M
is B(H,). Since UWU, and U;VUjs generate Z*) as a von Neumann algebra and
{d(s) : j € N} is SOT dense in the unit ball of .#{, the von Neumann algebra
W*(U*WUS7U VUs,{d)(s) : j € N}) generated by U;WUy, U VU; and {d(s) : j € N}
is B(Hy). Hence, from the argument in the preceding paragraph, it follows that (s,W,V)
satisfies satisfy condition (iv). Therefore the image of 1 under 7 is X \ N. This com-
pletes the proof of Claim 4.3.2. [

Continue the proof of Lemma 4.3. By Claim 4.3.1 and Claim 4.3.2, we know that
7N is analytic and (1) = X \ N. By the measure-selection principle (Theorem 14.3.6
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in [16]), there is a measurable map s — (Ws,Vs) from X \ N to ¢ such that (s, W;, V;)
satisfies condition (i), (ii), (iii) and (iv) for s € X \ N almost everywhere. Defining
Ws; =V, =0 forany s € N, we get a measurable map

s — (W, V) (4.26)

from X to € such that (s,Wy,Vy) satisfies condition (i), (ii), (iii) and (iv) for s € X
almost everywhere.
For any two vectors x,y € H, we have

(UWUsx(s),y(s)) = (WsUgx(s), Usy(s)). (4.27)
Combining (4.27) with (4.26), we know the map
s = (UyWsUsx(s),y(s))
from X to C is measurable. Since

(U WsUsx(s),y())| < [lx(s) Iy ()],

we obtain that
s — (U WUsx(s), y(s))

is integrable. By Definition 14.1.1 in [16], it follows that
Ui WUsx(s) = (Wx)(s)

almost everywhere for some Wx € H . Therefore

W (s) = U WUy (4.28)
for almost every s € X . Since conditions (i) and (ii) imply that U;W,Us is a unitary in

M, we obtain from equation (4.28) that W is a unitary in .# . Similarly we can find
another unitary V in .# such that

V(s) = U; VU (4.29)
for almost every s € X and thus, from condition (iii),
W(s)V(s) = ™0V ()W (s)
for almost every s € X. Therefore

WV =m0y w. (4.30)

Let Z) be the von Neumann subalgebra generated by U;W U and UV U, in
M. From condition (iv), we know that (%(‘))’ NM, = CI; for s € X almost every-
where.
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Let % be a von Neumann subalgebra of .# generated by two unitaries W,V .
From (4.28), (4.29) and (4.30), it follows that % is a hyperfinite type II; factor and
Ry =R for almost every s € X .

To complete the proof, we just need to show that Z' N.# = 2 . Suppose a €
A’ N.AM . Then a(s) € Z.N .M for almost every s € X . Since (%(‘))’HJ/ZS =ClI, and
Ry = R for almost every s € X, a(s) = ¢l for almost every s € X and thus a € &
Hence Z'N.M = 2. O

The following result is a generalization of Theorem 5.4 in [4] in the setting of von
Neumman algebras. The proof follows the similar line as the one used in Theorem 5.4
in [4].

THEOREM 4.4. Let A/ be a type 1| von Neumann algebra with separable pre-
dual and % be the center of M . Let p be a faithful normal tracial state on A and
|- |2 be the 2-norm on # induced by p. If .# has Property T, then there exists a
hyperfinite type 11| subfactor # of # such that

() ZNAM =2 ;

(Il) for any n € N, any elements ay,as,...,a; in A , there exists a countable collec-
tion of projections {pis,pars--.,pue :t € N} in Z such that

(i) foreacht € N, pi,po,...,pm are n orthogonal equivalent projections in
X with sum I;

(ii) tlim \piraj —ajpi|lo =0 forany i=1,2,....,n; j=1,2,... k.

Proof. Since .# has separable predual, by Proposition A.2.1 in [12], there is a
faithful normal representation 7 of .# on a separable Hilbert space. Replacing .#
by n(.#) and p by pon~!, we may assume that ./ is acting on a separable Hilbert
space H.

By Lemma 2.1, there are direct integral decompositions .# = [y @ .#;du and
H = [y Hidu of (.# ,H) relative to 2 over (X,u), where . is a type 11, factor for
almost every s € X. We assume that every .# is a type 11| factor. Notice that p is
a faithful, normal, tracial state on .# . From Lemma 2.2, we might assume there is a
positive, faithful, normal, tracial linear functional p; on . for every s € X such that

pla)= [ prla(s)an,  vae.s.

Let {¢; : i € N} be a sequence of normal states on .# that is norm dense in
the set of all normal states on .#. Let {b;: j € N} be a sequence of elements that
is SOT dense in the unit ball (.#), of .#. By Remark 3.10, we may assume that
{bj(s) : j € N} is SOT dense in the unit ball (.#Z;); of .#; forevery s € X.

Let T be the unique center-valued trace on .# such that 7(a) =a forall a € &
(see Theorem 8.2.8 in [16]).

We will show that there is an increasing sequence {< :t € N} of full matricial
algebras in A satisfying, forall t € N,
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(a) there exists a [L-null subset N; of X such that, for each 1 <1 <t, there exist |
equivalent orthogonal projections py,p2,...,p; in & with sum I satisfying

ps((pi(s)bj(s) = bj(s)pi(s))" (pi(s)bj(s) — bj(s)pi(s))) < 1/t
forany i=12...)1; j=12,...t; s€ X\N;

(b) let % be the unitary group of <% and dU; be the normalized Haar measure on
U . Then forany i,j=1,2,....t,
0. [ by~ w(b;)| < 1.

First, we observe that conditions (a) and (b) are satisfied by letting <} = C1 and
p1 =1. Now suppose <7_; has been constructed. Take 4] = <’ | N.# . By Lemma
11.4.11in [16], A = o, _1QRN].

Next, in order to construct .7, we will apply Lemma 4.1 t — 1 times. At the
first time, applying Lemma 4.1 to _; and the set {by,bs,...,b;}, we obtain two
equivalent orthogonal projections pi 1, p2,1 in .41 with sum / and a g -null subset N, |
of X such that

Ps((Pit(5)bj(s) = bj(s)pin ()" (Pin(s)bj(s) = bj(s)pia(s))) <1/t (431)

forany i=1,2; j=1,2,...,t, s€ X\ N;;. Note that p; j,p> are two equivalent
orthogonal projections in .47 with sum /. There is a unital subalgebra %, ; of .
such that %, | = M>(C) and py.1,p2.1 € %;.1. Take

= A 1QH, 1. (4.32)

Now suppose that o7 ;_; have been constructed for some 2 <! <t — 1. By applying
Lemma 4.1 to .« ;| and {by,b,,...,b;}, we can find [+ 1 equivalent orthogonal
projections pi;,p2j,...,Pi+1, in Jz{tfl_l N.# with sum I and a u-null subset N, ; of
X such that

Ps((pi(9)bj(s) = bj(s)pis(s))* (Pia(s)bj(s) = bj(s)pis(s))) <1/t (4.33)

forany i =1,2,...,1+1, j=1,2,...,¢, and s € X\ N;;. Again there is a unital
subalgebra %, of </, | N.# such that %, ; = M, (C) and py;,pas,...,Pi+11 €
%, . Take

S = 10 (4.34)
Now we let
Py = 11 (4.35)
and

N, =UZIN;;. (4.36)



HOCHSCHILD COHOMOLOGY OF TYPE II| VON NEUMANN ALGEBRAS WITH PROPERTY I 535

Then u(N;) = 0. By (4.31), (4.32), (4.33), (4.34), (4.35) and (4.36), %, contains sets
of projections satisfying condition (a).

Let A4 =% N.A. By Lemma 11.4.11 in [16], we know that .# = B,Q.N .
By the arguments in Section 11.2 in [16], .4 is a type II; von Neumann algebra, and
therefore, by Lemma 4.3, there is a hyperfinite subfactor . of .4 such that .’ N
N =24, where Z 4 is the center of 4. Hence (%,0.) N.M =CIQRZ y = Z .
Since . is a hyperfinite type II; factor, there exists an increasing sequence {.%, :
r € N} of matrix subalgebras of . whose union is ultraweakly dense in .¥ and thus
Uren%: R.F, is ultraweakly dense in %,®.7 . Let ¥, be the unitary group of %,®.%,
with normalized Haar measure dv,. Since (%;Q.5) N.# = % and 7T is a center-
valued trace on .# such that 7(a) = a for all a« € &, Lemma 5.4.4 in [22] shows
that 7(a) = rangc [y, vav*dv; ultraweakly for all a € .# . Since each ¢; is normal, there

exists 7 large enough such that
“Pi(/, vhjvidve —t(b)))| < /1, Vi j=1.2,....1. 4.37)
Now we let

M = %f@ﬁr.

Then .7 satisfies both conditions (a) and (b). The construction is finished.

Let Z C ./ be the ultraweak closure of U;cn.7 . It follows that % is a finite von
Neumann algebra containg an ultraweakly dense matricial C*-algebra. By Corollary
12.1.3in [16], Z is a hyperfinite type 11 subfactor of .Z .

Now fix n € N, € > 0 and elements aj,ay,...,a; in .#. We may first assume
that ||a;|| <1 forany 1 </ <k. Since {b;: j € N} is SOT dense in the unit ball of
A , there exist elements b;,,bj,,...,bj such that

lar—bjll2<e/3 (4.38)

forany 1 </ < k. Foreach integer r > max{n, ji, ja,..., jx} , by condition (a), there ex-
ista p-null subset N; of X and a set of n orthogonal equivalent projections {py, pa.,- . .,
Pnt} in % such that

Ps((Pit ()b (s) = bji (s)pir(5))" (Pir ()b, (5) = bji (s)pur(s)) < 1/t (4.39)

forall i € {1,2,...,n},1€{1,2,...,k},and s € X\ N,.
Take N = U;endV, . Then p(N) =0 and inequality (4.39) implies

}L%Ps((l?it (S)bjt (s) — bj, ($)pi(s))" (P (S)bjt (s) — bj, (s)pir(s)) =0 (4.40)

forall ie {1,2,...,n},1€{1,2,...,k},and s € X\ N. Forany fixed i € {1,2,...,n},
1e{1,2,...,k}, define function f; : X — C such that

fi(s) = ps((pi($)bji (s) = bjy(s)pit (8))" (Pir ()b (5) = by (5)pic (5))-

Then |f; (s)| < ps(41;) for almost every s € X . Since

/X Ps(4Ls)du = p(41) = 4,
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by the Dominated Convergence Theorem, (4.40) gives
Lim p((pubj, = bjipie)” (Pibj — bjpir)) =0
forall i € {1,2,...,n}, 1 € {1,2,...,k}. Hence there exists 7o € N such that
|pibj, —bjpill2 < €/3 (4.41)

forall i € {1,2,...,n}, 1€ {1,2,....k} and 7 > 19.
Therefore for any ¢ > 1y, it follows from (4.38) and (4.41) that

< Hpi;bj, _bjtpit||2+ | pir(a _bjz) — (@ _bjl)pitH2
< ||pibj, — bj,picll2 +2||a; — bj,||2
< €

\|pirar — aipir||2

forall i € {1,2,...,n}, 1 € {1,2,...,k}. Hence tlim \|piccs — aipir||2 = 0 for all i €

{1,2,....,n}, 1 €{1,2,... k}.

It remains to show that #'N.# = % . Suppose that a € Z'N.# and |a|]| = 1.
Since the sequence {b;: j € N} is SOT dense in the unit ball of .# , we can choose a
subsequence {bj, : | € N} that converges to a in the strong operator topology. There-
fore this subsequence converges to a ultraweakly. By the fact that 7 is ultraweakly
continuous, llim 7(bj,) = t(a) ultraweakly. Since a € #’, for each i € N,

0 byt =)l = 16 u(by —ayu'du)

< (0i((bj; — @) (bj, — )"

— 0

From the fact that the sequence {¢; : i € N} is norm dense in the set of normal states
on ./, we get that f% ubju*dy;, converges to a ultraweakly. By condition (b),

f%j ubju*du;, convergesto t(a) ultraweakly. Therefore a = 7(a) and thus a € 2.
1
Hence %' N.# = % . The proof is complete. [

5. Necessary inequalities

Suppose .# is a von Neumann algebra and .4 is a von Neumann subalgebra of
M. Amap ¢ : #* — B(H) is called .# -multimodular if, for any s € .4~ and any
ay,as,...,ay € M,

so(ay,az,...,ar) = o(say,az, ... ax),

Olay,an,...,ar)s = ¢(ay,az,...,as),

(b(al,ag,...,a,-s,a,-+1,...,ak) = (b(al,az,...,ai,sai+1,...,ak).
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For any n € N, the n-fold amplication ¢") : (M, (.#))* — M, (.#) of a bounded map
¢ : M~ — . is defined in [6] and [7] as follows: for elements (ag;)), (agjz-)), . (ag-{))
in M, (), the (i, j) entry of ¢ ((a})), (al?)),...,(al}))) is

() (2 (=1 (n)

X Olagnaga 0 g)
1<j1,J25 s Jn—1<n

A bounded map ¢ is said to be completely bounded if sup{|[¢) || : n € N} < co. When
neN

¢ is completely bounded, we denote || ||, = sup{||¢")| : n € N}.
neN
Let {e;;}};_; be the standard matrix units for M,(C). Then

10" (e11are11,er1azent, ... erragenn)|| < ||@|lar] - .- ||

forany aj,ap,...,a; in M, ().

If # is a type II| von Neumann algebra and n is a positive integer, M, (.#)
is also a type II; von Neumann algebra. In the rest of this section, we let 7, be the
center-valued trace on M, (.#) such that 7,(a) = a for any a in the center of M, (.#)
(see Theorem 8.2.8 in [16]). Let

(@) = (lal* +nla(a"a)|)! (5.1)

foreach a € M, ().
Replacing tr, by 7, in the proof of Lemma 3.1 in [4], we can obtain the next
lemma directly.

LEMMA 5.1. Let .4 be a type 11 von Neumann algebra acting on a Hilbert
space H. Suppose X is a hyperfinite type 11| subfactor of .# such that Z' N\ =
%, the center of M . Let 0 be a positive number and n be a positive integer. If
v M, (M) x My(#)— B(H") is a normal bilinear map satisfying

y(ac,b) =y(a,cb),a,b € My(M),c € My,(X)
and
[ (aerr,ennd)| < 0lall|[bll,a,b € My (A),

then
lw(a,b)|| < 01(a)y(b)
Sforany a,b € M, (M)

If Lemma 3.1 in [4] is replaced by the preceding Lemma 5.1, the proof of Theorem
3.3 in [4] gives us the following result.

LEMMA 5.2. Let .4 be a type 11 von Neumann algebra acting on a Hilbert
space H. Suppose ./ has a hyperfinite subfactor # such that Z' N\ .MM = %, the
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center of M . Fix k€ N. If ¢ : #* — B(H) is a k-linear . -multimodular normal
map, then

10 (ar,az,....a) || < 219 | va(ar) (@2) .- . Ya(ar)

forall ay,ay,...,ar € My(A) and n € N.

COROLLARY 5.3. Let . be atype Il von Neumann algebra and % the center
of M . Suppose X is a hyperfinite type Il subfactor of # such that #' N\.M = %,
the center of M . Let n,k € N. Suppose py,pa,...,pn are n orthogonal equivalent
projections in My, () with sum I and ¢ : #* — B(H) is a k-linear % -multimodular
normal map. Then

k
19 aipj.azpjy....arp;)ll < 249 |lllarllaz]] ... lax]

forany j=1,2,....n and any ay,ay,...,ax € My(A).
Proof. By Lemma 5.2, forany j=1,2,...,n,

10" (arpj,azpj,....axp )|l <229l mlarp ) mlaop;) ... laxpy).  (5.2)

Since pi,p2, ..., pa are orthogonal equivalent projections with sum 1, 7,(p;) = %I
for each j. Then forany 1 <i <k,

t(aip)) = (laipjl +nlt(pjaiaip;)|)'/?

< (llail))* +nllailPllza(py)I) 72

= V2 ail.

Therefore (5.2) gives

k
19 @ipj.azpjy....axp;)ll < 249 |lllarllaz]] ... lax]

forany j=1,2,...,n and any ay,ay,...,ay € M,(A). O

6. Hochschild cohomology of type II;, von Neumann algebras with separable
predual and property I

Let us recall some notations from [4]. Let Sy, k > 2, be the set of nonempty
subsets of {1,2,...,k}. Suppose ¢ : .#* — B(H) is a k-linear map, p is a projection
in .# and ¢ € S.

Define ¢, : .#* — B(H) by

¢G7p(a1,...,ak) = ¢(b1,b2,...,bk),

where b; = pa; — a;p for i € ¢ and b; = a; otherwise.
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Denote by (o) the least integer in . Define ¢ ,; : .#* — B(H) by changing
the i-th variable in ¢5 , from a; to pa;—a;p, 1 <i<I(0o), and replacing pa; — a;p
by p(pa;—aip) if i=1(0).

The following is Lemma 6.1 in [4].

LEMMA 6.1. ([4]) Let p be a projection in a von Neumann algebra M . Let
G,k > 2, be the set of k-linear maps ¢ : .#* — B(H) satisfying

p¢(a17a2a"'7ak>:¢(pa17a2a"'7ak) (61)

and
(P(alv'"7aip7ai+l7'”7ak) = ¢(a17'”7ai7pai+17"'7ak) (62)

forany ay,ay,....ap € M and 1 <i<k—1. Thenif ¢ €6,

pq)(alaazr"aak) _p¢(alp7"'7akp) = Z (_1)|0‘+1p¢0,l7(a1a"'7ak)'

oSk
Moreover, for each ¢ € Sy,

I(o)
Pos plai,... ar) = Z 0o pilar,az,... ax).
i=1

Let .# be a type 11 von Neumann algebra with separable predual. Suppose p
is a faithful normal tracial state on .# . Then by Lemma 3.3, the 2-norm induced by
p gives the same topology as the strong operator topology on bounded subsets of .7 .
The unit ball (.#), is a metric space under this 2-norm. Using a similar argument as
Section 4 in [4], we can get the joint continuity of ¢ on (AZ); X (M) X ... X (M)
in the 2-norm induced by p. Therefore we have the following lemma.

LEMMA 6.2. Let .# be a type I1| von Neumann algebra with separable predual
and ¢ : M* — B(H) be a bounded k-linear separately normal map. Let p be a faithful
normal tracial state on A . Suppose {p; :t € N} is a sequence of projections in M
satisfying (6.1), (6.2) and

Jim lpia—apiJ = 0
forany a € M , where |- |2 is the 2-norm induced by p. Then for any ay,ay,...,a; €
M, each ¢ € Sy, each integer i < 1(0) and each pair of unit vectors x,y € H,

1im<¢o‘,pt,i(alaa2a s 7ak)xay> = 07

{—so0

and
tli_{2<pt¢0'~,pt (al yeue vak)xvy> =0.

Proof. The proofis similar to the one of Lemma 6.2 in [4] and is skipped here. [

Now we have the following result.
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THEOREM 6.3. Let ./ be a type 1| von Neumann algebra with separable pre-
dual and Z be the center of M . Let p be a faithful normal tracial state on M
and || - ||2 be the 2-norm induced by p on 4 . Suppose X is a hyperfinite type 11
subfactor of # such that

() ZNM=2;

(11) for any n € N, any elements ay,ay,....,ay in A, there exists a countable collec-
tion of projections {pis,pars- -, pur :t € N} in Z such that

(i) foreacht €N, pi;,pa,...,pu are mutually orthogonal equivalent projec-
tions in Z with sum I, the identity in M ;

(ii) tlim \lpicas — arpie|l|, =0 forany i=1,2,...,n, [ =1,2,...,m.

Then a bounded k-linear % -multimodular separately normal map ¢ : #* — B(H) is
completely bounded and || ¢||,, < 2%||¢]|.

Proof. The proof is similar to the one for Theorem 6.3 in [4] and is sketched here
for the purpose of completeness.

Fix n € N and k elements by,by,...,by € My(A).

By condition (IT), we can find a family of projections {g; : 1 <i< n;r € N} in #Z
such that

(a) for each t € N, gy;,...,qn are n orthogonal equivalent projections in % with
sum /;

(b) tlim llgia — aqi||, =0 forany a € 4,1 <i<n
Let ¢}, = I, @ qir € M,(#) for each i and ¢. We obtain that

(a’) foreach t € N, ¢},,...,q,, are n orthogonal equivalent projections in M, (%)
with sum I, ®1I;

(b”) tli_{g b — bqly]|, =0 forany b e M,(#),1 <i<n.
Since ¢ is an Z-multimodular map, ¢ is an M, (%) -multimodular map. Assume

that .# acts on a Hilbert space H . For any two unit vectors x,y in H" and any 7 € N,
by Lemma 6.1,

<¢<">(b1, b, y)

= qu (b, br)x,y)
2 2 IO—‘JrIQ;t (()-()1 (b17~”7bk)x7y>+<2qgt¢(n)(blqu7"'7bkq;t)x7y>
i=10eS; i=1
Z Z lo.H_l‘l:t ((;,)1 (b1y-.-,b qul blqztv '7bk‘1;z)qgtx7y>'

i=loeSy
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Therefore
<¢(")(bl,“ 7 Z Zg |0"+1 /(ch (bh ,bk).x7y>
n
= (X419 (b1di - e ) g, ). (6.3)
i=1
Since {¢},,....,q,;} is aset of n orthogonal projections for each t € N, by Corol-
lary 5.3,

I qutq)(n)(bl‘l;tw”vbkq;t)‘l;tH < 1n<1ia<Xn||q§t¢(n)(b1q§t7...,bkqgt)qgtH
=1 Xlx
< 241o 1151l - [1Bx]- (6.4)

By Lemma 6.2, condition (b’) implies

1im (g} 9" (br,..,b)x,y) =0 (6.5)
foreach 1 <i<nand o €S.

Lettlng t — oo for both sides of (6.3), it follows from inequality (6.4) and equation
(6.5) that

(@ (b1, bi)x,y) <20l[1Ba]] - (1Bl
Since n,x,y were arbitrarily chosen, ||¢]|., <2F¢||. O

The following is the main result of the paper.

THEOREM 6.4. If .4 is a type II| von Neumann algebra with separable predual
and Property T, then the Hochschild cohomology group

HYt, M) =0, VYk=>2

Proof. By Theorem 4.4, there is a hyperfinite type I subfactor % of .# satis-
fying conditions (I) and (II) in Theorem 6.3.

Now consider the cohomology groups H*(.# ,.#). By Theorem 3.1.1 in [22], it
suffices to consider a k-linear % -multimodular separately normal cocycle ¢. Theo-
rem 5.3 shows that such cocycles are completely bounded. By Theorem 4.3.1 in [22],
completely bounded Hochschild cohomology groups are trivial. It follows that ¢ is a
coboundary, whence H*(.# ,.#) =0,k >2. [

The next result in [2] follows directly from Theorem 6.4 and Example 3.9.

COROLLARY 6.5. Suppose that # is a type II| von Neumann algebra with sep-
arable predual and #; is a type Il factor with separable predual. If .#> has Property
I, then the Hochschild cohomology group

Hk(//f1®//f2,///1®//f2)=0, k>2.
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In particular, if A is a type 1| von Neumann algebra with separable predual satisfy-
ing M= MK, where X is the hyperfinite 11 factor, then
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