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Abstract. Let S be a nonempty set; and let A be a fixed C
∗
-algebra with state space s(A )

equipped with the relative weak
∗

topology inherited from the dual space A
#

of A . Let X be
the space of all functions x : S → A such that ϕ ◦ (x

∗
x) ∈ �

1
(S) for all ϕ ∈ s(A ) , and the map

ϕ → ϕ ◦ (x
∗
x) is weak

∗
to norm continuous from s(A ) to �

1
(S) . Elementary methods are used

to show that the space M of A -valued functions on S×S that define bounded operators on X

contains a closed subspace K such that the annihilator K
⊥

is an �
1

direct summand of the dual
space M

#
of M ; i.e., M contains an M -ideal. When A is specialized to the complex field,

this is a classical theorem of Dixmier. An analogue of the trace formula trace(AB) = trace(BA)
for a trace class operator A and a bounded operator B on a Hilbert space is proved.

1. Introduction

As defined in [1], a closed subspace J of a Banach space X is called an M -ideal
if the annihilator J

⊥
of J is an �

1
direct summand in the dual space X

#
of X . That

is each bounded linear functional f on X has a unique �
1

decomposition f = g+ h ,

where g = f
∣∣∣
J
, h

∣∣∣
J
≡ 0, and || f || = ||g||+ ||h|| . Dixmier [2] proved that the compact

operators form an M -ideal in the algebra of bounded operators on a Hilbert space. In
[4] it is proved that same is true for operators on the sequence spaces �

p
, 1 < p < ∞,

and c0 . Many more examples have been constructed over the years. Most are related
to operators. Smith and Ward [7] proved that each M -ideal in a C

∗
-algebra is in fact

an ideal, and an M -ideal in a Banach algebra must be a subalgebra. Much of the
recent work on M -ideals can be found in [3]. With a fixed C

∗
-algebra A , we will use

elementary methods to construct a Banach algebra of A -matrix operators on a certain
A -valued function space that contains an M -ideal. The Banach algebra constructed is
not a C

∗
-algebra.

Mathematics subject classification (2010): Primary 46A20; Secondary 47L50, 47L10, 47L75.
Keywords and phrases: C

∗
-matrix operator, Banach algebra, M -ideal.

1
This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education,

Thailand.
2
Work done during a sabbatical leave from Central Michigan University, visiting Silpakorn University and Ubon

Ratchathani University. I thank J. Rakbud and T. Wootijirattikal and their department for their warm hospitality during my
visit.

c© � � , Zagreb
Paper OaM-09-35

571

http://dx.doi.org/10.7153/oam-09-35


572 T. WOOTIJIRATTIKAL, S.-C. ONG AND J. RAKBUD

For a fix a nonempty set S , denote by F (S) , or simply F if no ambiguity, the
family of all finite subsets of S directed by set inclusion. For a function x from S to a
Banach space X , the sum ∑

s∈S

x(s) is said to converge to x ∈ X ([5, p. 25]) if the net of

finite partial sums,

{
∑
s∈F

x(s)

}
F∈F (S)

, converges to x . When this is the case we write

∑
s∈S

x(s) = x. That is,

x = ∑
s∈S

x(s) iff lim
F∈F (S)

∣∣∣∣∣
∣∣∣∣∣x− ∑

s∈F
x(s)

∣∣∣∣∣
∣∣∣∣∣= 0.

All the classical sequence spaces �
p

have their generalized versions �
p
(S) of spaces of

real- or complex-valued functions defined on S .
Fix a C

∗
-algebra A with identity 1 and state space s(A ) (consisting of all states

on A , that is all positive linear functionals ϕ with ||ϕ || = ϕ(1) = 1 [5, p. 257]).
With the relative weak

∗
topology it inherits from the dual space A

#
of A , s(A ) is

a compact Hausdorff space [5, p. 257]. Let X be the Banach space �
2

∗u(S,A ) of
A -valued functions x : S → A such that the map ϕ �→ ϕ ◦ (x

∗
x) is weak

∗
to norm

continuous from s(A ) to �
1
(S) [10]. A function A : S× S → A is said to define an

operator on X if for each x ∈ X ,

(Ax)(s) := ∑
t∈S

A(s,t)x(t) converges in A , for each s ∈ S ; and Ax ∈ X .

An A -valued function A on S× S that defines an operator on X is called an A -
matrix operator. Each A -matrix operator is automatically bounded, and the space
M := M (X ) of all A - matrix operators is a Banach algebra [10, Theorem 3.4].
We will show that M contains an M -ideal. (There are Banach spaces of A -valued
functions constructed from operators which contain M -ideals [8, 9]. But elements in
those spaces are not operators and there are no apparent way of defining product of the
elements.)

2. Notation and preliminaries

With a fixed nonempty set S , for each p ∈ [1,∞) , denote by �
p
(S) := �

p
(S,C) the

space of complex-valued functions on S that are p -th power absolutely summable over
S . The norm on �

p
(S) is given by,

||x||
p
=

[
∑
s∈S

|x(s)|p
]1/p

x ∈ �
p
(S).

The proofs for the classical �
p

spaces can be easily adapted to show that each �
p
(S) is

a Banach space with this norm.
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A C
∗
-algebra A with identity 1 and state space s(A ) will also be fixed along

with the set S . Each ϕ ∈ s(A ) defines a semi-inner product: 〈a, b〉
ϕ

= ϕ(b
∗
a) , for

a,b ∈ A [5, p. 256]. The induced semi-norm is ||a||
ϕ

=
√
〈a, a〉

ϕ
, for a ∈ A . Given

functions x,y : S → A , the product xy is defined pointwise: xy(s) = x(s)y(s) for
s ∈ S . So is the involution

∗
(the unary adjoint operation on A ): x

∗
(s) = (x(s))

∗
for

s ∈ S . For each G ⊆ S , xG denotes the function xG(s) = x(s) for s ∈ G and xG(s) = 0
for s ∈ S \G , i.e., xG = χGx , where χG is the characteristic function of G .

We summarize results from [10] that will be used here. Let X = �
2

∗u(S,A ) be the

set of all functions x : S→A such that ϕ ◦(x
∗
x)∈ �

1
(S) for all ϕ ∈ s(A ) , and the map

ϕ �→ ϕ ◦ (x
∗
x) from s(A ) to �

1
(S) is weak

∗
to norm continuous. (This is equivalent

to uniformity (in ϕ ∈ s(A )) of the convergence of the sum of the functions ϕ ◦ (x
∗
x) ;

thus the subscript u in the notation.) Then, X = �
2

∗u(S,A ) is a Banach space with the
norm

||x||2 := sup
ϕ∈s(A )

∣∣∣∣∣∣ϕ ◦ (x
∗
x)
∣∣∣∣∣∣

�
1(S)

= sup
ϕ∈s(A )

(
∑
s∈S

||x(s)||2
ϕ

)
.

The larger space of all functions x : S → A such that√
ϕ ◦ (x∗x) = ||x(·)||

ϕ
∈ �

2
(S) for all ϕ ∈ s(A )

(without continuity), is denoted by �
2

∗(S,A ) , which is also a Banach space with the

same norm above. It is clear from the definition that �
2

∗(S,A ) ⊇ X = �
2

∗u(S,A ) , and
the inclusion is in fact proper. Alternate descriptions of memberships of the spaces
�

2

∗(S,A ) and X = �
2

∗u(S,A ) are given below.

THEOREM 1. [10, Propositions 5.1-2] Let x∈ A
S

(the space of functions from S
to A ). Then

(i) x ∈ �
2

∗(S,A ) iff sup
F∈F

∣∣∣∣∣
∣∣∣∣∣∑s∈F

(x
∗
x)(s)

∣∣∣∣∣
∣∣∣∣∣< ∞; and

(ii) x ∈ �
2

∗u(S,A ) = X iff ∑
s∈S

(x
∗
x)(s) converges in A .

The following proposition shows some resemblance of the pairs (�
2

∗u(S,A ), �
2

∗(S,A ))
and (�

1
, �

∞
) , in that each bounded linear functional on X has a unique Hahn-Banach

extension to all of �
2

∗(S,A ) .

PROPOSITION 2. For each g ∈ X
#
= [�

2

∗u(S,A )]
#

(the dual space of X ), there

is a function g̃ : S → A
#

such that

ĝ(x) = ∑
s∈S

[g̃(s)](x(s)) converges for all x ∈ �
2

∗(S,A ) .
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Furthermore ĝ ∈ [�
2

∗(S,A )]
#

with ĝ
∣∣∣
X

= g, and ||ĝ|| = ||g|| .

Proof. Let g∈X
#
. For each s∈ S , define [g̃(s)](a)= g(es(a)) , where (es(a))(s)=

a and (es(a))(t) = 0 for t 
= s . Then

|[g̃(s)](a)| � ||g|| ||es(a)|| = ||g|| ||a|| ,

and hence g̃(s) ∈ A
#
.

Since for each x ∈ X , we have lim
F∈F (S)

||x−xF|| = 0, thus, by continuity of g on

X and the definition of sums over the set S ,

g(x) = lim
F∈F (S)

g(xF) = lim
F∈F (S)

g

(
∑
s∈F

es(x(s))

)
= lim

F∈F (S)
∑
s∈F

g(es(x(s)))

= lim
F∈F (S)

∑
s∈F

g̃(x(s)) = ∑
s∈S

g̃(x(s)) = ĝ(x).

That is the sum that defines ĝ converges for all x ∈ X and ĝ = g on X .
Suppose that ĝ(x) does not converge for some x∈ �

2

∗(S,A ) . Then, by the Cauchy
criterion, there is an ε > 0 such that

∀ F ∈ F (S), ∃ G ∈ F (S \F) such that

∣∣∣∣∣∑s∈G

[g̃(s)](x(s))

∣∣∣∣∣ � ε .

Thus, inductively, there is a pairwise disjoint sequence {G1,G2, . . .} in F (S) such that∣∣∣∣∣∣ ∑
s∈Gk

[g̃(s)](x(s))

∣∣∣∣∣∣ � ε for each k ∈ N .

Let αk be the sum in the last expression without absolute value, and βk = k
−1

sgn(αk)
(where sgn(ζ ) = ζ/ |ζ | for ζ ∈ C\ {0} , and sgn(0) = 0). Define y : S → A by

y(s) =

⎧⎪⎪⎨⎪⎪⎩
βkx(s) if s ∈ Gk for some k ∈ N,

0 if s ∈ S \
[

∞⋃
k=1

Gk

]
.

We show that y ∈ X . Note that, by Theorem 1 (i), we have

M := sup
F∈F

∣∣∣∣∣
∣∣∣∣∣∑s∈F

(x
∗
x)(s)

∣∣∣∣∣
∣∣∣∣∣< ∞.

Let η > 0. From the convergence of

∞

∑
k=1

∣∣βk

∣∣2 M =
∞

∑
k=1

1

k2 M < ∞,
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there is a k0 such that
∞

∑
k=k0

∣∣βk

∣∣2 M < η . Let

F0 =
k0⋃

k=1

Gk, and F ∈ F (S \F0) .

Now the finiteness of F implies the existence of a κ ∈ N such that

F ∩
⎛⎝ ∞⋃

k=k0

Gk

⎞⎠⊆
κ⋃

k=k0

Gk.

Then we have, from the positivity of (y
∗
y)(s) for each s ∈ S ,∣∣∣∣∣

∣∣∣∣∣∑s∈F
(y

∗
y)(s)

∣∣∣∣∣
∣∣∣∣∣�

∣∣∣∣∣∣
∣∣∣∣∣∣

κ

∑
k=k0

∑
s∈Gk

(y
∗
y)(s)

∣∣∣∣∣∣
∣∣∣∣∣∣�

κ

∑
k=k0

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
s∈Gk

∣∣βk

∣∣2 (x∗
x)(s)

∣∣∣∣∣∣
∣∣∣∣∣∣

=
κ

∑
k=k0

∣∣βk

∣∣2 ∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
s∈Gk

(x
∗
x)(s)

∣∣∣∣∣∣
∣∣∣∣∣∣�

∞

∑
k=k0

∣∣βk

∣∣2 M < η .

Since η > 0 is arbitrary, this shows that

{
∑
s∈G

(y
∗
y)(s)

}
G∈F (S)

is a Cauchy net in A

and hence converges. Thus y ∈ X by Theorem 1 (ii), and hence

g(y) = ĝ(y) = ∑
s∈S

g̃(y(s)).

In particular, finite partial sums of g(y) are bounded [10]. On the other hand, we also
have

lim
k→∞

g(yG1∪G2∪...∪Gk
) = lim

k→∞

k

∑
j=1

g(yGj
) = lim

k→∞

k

∑
j=1

βj ∑
s∈Gj

g(x(s)) � lim
k→∞

k

∑
j=1

ε
j

= ∞.

This is a contradiction, and it shows that the sum that defines ĝ converges for every
x ∈ �

2

∗(S,A ) .
The boundedness of ĝ follows from a uniform boundedness argument. Define, for

each F ∈ F ,

ĝF(x) = ∑
s∈F

[g̃(s)](x(s)) for all x ∈ �
2

∗(S,A ) .

Let x ∈ �
2

∗(S,A ) and F ∈ F . Since xF ∈ X , g(xF) = ĝF(x), and hence

|ĝF(x)| = |g(xF)| � ||g|| ||xF|| � ||g|| ||x|| .
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That is

ĝF ∈ [�
2

∗(S,A )]
#

and ||ĝF||
[�2∗ (S,A )]#

� ||g||
[X ]#

for all F ∈ F .

Thus, for each x ∈ �
2

∗(S,A ) , we have, by definitions of ĝ(x), and the sum over an
arbitrary set,

|ĝ(x)| = lim
F∈F

∣∣∣∣∣∑s∈F

[g̃(s)](x(s))

∣∣∣∣∣ = lim
F∈F

|ĝF(x)|

� limsup
F∈F

||ĝF ||
[�2∗ (S,A )]#

||x|| � ||g||
[X ]#

||x|| ,

and hence
ĝ ∈ [�

2

∗(S,A )]
#
, and ||ĝ||

[�2∗ (S,A )]#
� ||g||

[X ]#
.

Since ĝ = g on X ,
||g||

[X ]#
� ||ĝ||

[�2∗ (S,A )]#
.

Therefore equality holds. �

An adaptation of the proof gives the following corollary, which will be used in the
proof of Proposition 13.

COROLLARY 3. Let h : S → A
#

be such that

f (x) = ∑
t∈S

[h(t)](x
∗
(t)) converges for all x ∈ X .

Then
f̂ (y) = ∑

t∈S

[h(t)](y
∗
(t)) converges for all y ∈ �

2

∗(S,A ),

and f̂ is a continuous conjugate linear functional on �
2

∗(S,A ) satisfying∣∣∣∣∣∣ f̂ ∣∣∣∣∣∣
[�2∗ (S,A )]#

= || f ||
[�2∗u(S,A )]#

.

Proof. Define f by

f (x) = f (x) = ∑
s∈S

(h(s))(x∗(s)) for all x ∈ X .

Then it is clear that f is a linear functional on X . A routine uniform boundedness
argument, as in the preceding proof, shows that f is a bounded linear functional on
X . Clearly h

∗
given by h

∗
(s) = [h(s)]

∗
(where, for each ψ ∈ A

#
, ψ∗

is defined by
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ψ∗
(a) = ψ(a∗) for a ∈ A [5]) is the representing function (from S to A

#
) of f in

Proposition 2; and hence

(̂ f )(y) = ∑
s∈S

[h
∗
(s)](y(s)) converges for all y ∈ �

2

∗(S,A ) .

The norm equality follows directly also from the proposition and the fact that || f || =∣∣∣∣∣∣ f ∣∣∣∣∣∣ . �

3. A -duality between �
2

∗(S,A ) and X = �
2

∗u(S,A )

The following are analogues of the well known fact that a complex-valued function
x on S belongs to �

2
(S) iff ∑

s∈S

x(s)y(s) converges for all y ∈ �
2
(S) .

THEOREM 4. [10, Theorem 5.3] Let a ∈ A
S
. Then

(i) ∑
s∈S

a(s)x(s) converges in A ∀ x ∈ �
2

∗(S,A ) iff a∗ ∈ �
2

∗u(S,A ) = X ; and

(ii) ∑
s∈S

a(s)x(s) converges in A ∀ x ∈ X = �
2

∗u(S,A ) iff a∗ ∈ �
2

∗(S,A ).

Uniform boundedness arguments can be used to show that in each case, if converges,
the sum defines a bounded linear operator Ta from the respective space to A , and the

operator norm is
∣∣∣∣a∗∣∣∣∣ . So there is an “A -duality” between the spaces �

2

∗(S,A ) and
X . We will further explore this phenomenon. An immediate consequence of this result
is that the following definition is meaningful.

DEFINITION 5. For (x,y) ∈ [�
2

∗(S,A )×X ]∪ [X × �
2

∗(S,A )] , define

〈〈x, y〉〉 = ∑
s∈S

y
∗
(s)x(s).

In particular 〈〈·, ·〉〉 is an A -valued inner product on X = �
2

∗u(S,A ) . We will see
in Lemma 16 that X with 〈〈·, ·〉〉 is, in fact, a Hilbert C

∗
-module over A [6, p. 4].

The state norm on A is defined by

||a||σ = sup
ϕ∈s(A )

|ϕ(a)| for all a ∈ A .

It is well-known ([5, p. 263]) that the state norm is equivalent to the C
∗
-norm on A :

||a||
σ

� ||a|| � 2 ||a||
σ

for all a ∈ A .

The following is another duality analogue. (It is routine to verify that this is exactly the
well known fact, when A is C .)



578 T. WOOTIJIRATTIKAL, S.-C. ONG AND J. RAKBUD

PROPOSITION 6. For each x ∈ �
2

∗(S,A ) , we have

||x|| = sup
{||〈〈x, y〉〉||

σ
: y ∈ X , ||y|| � 1

}
.

Proof. For each F ∈ F , since xF ∈ X , we have

||〈〈x, xF〉〉||σ = sup
ϕ∈s(A )

ϕ

(
∑
s∈F

x
∗
(s)x(s)

)
= sup

ϕ∈s(A )
∑
s∈F

||x||2ϕ = ||xF||
2
,

and hence
||x|| = sup

F∈F
||xF|| � sup

{||〈〈x, y〉〉||σ : y ∈ X , ||y|| � 1
}

.

But for each y ∈ X , we have

||〈〈x, y〉〉||
σ

= sup
ϕ∈s(A )

∣∣∣∣∣ϕ
(

∑
s∈S

y
∗
(s)x(s)

)∣∣∣∣∣� sup
ϕ∈s(A )

∑
s∈S

∣∣∣〈x(s), y(s)〉
ϕ

∣∣∣
� sup

ϕ∈s(A )
∑
s∈s

||x(s)||
ϕ
||y(s)||

ϕ
� sup

ϕ∈s(A )

[
∑
s∈S

||x(s)||2
ϕ

]1/2[
∑
s∈S

||y(s)||2
ϕ

]1/2

� ||x|| ||y|| . (1)

This implies that
||x|| � sup

{||〈〈x, y〉〉||
σ

: y ∈ X , ||y|| � 1
}

.

This together with the opposite inequality above, we have the equality. �

Since X ⊆ �
2

∗(S,A ) , Proposition 6 holds in particular for x ∈ X . As an imme-
diate consequence we also have the following.

COROLLARY 7. The map (x,y) �→ 〈〈x, y〉〉 is continuous from �
2

∗(S,A )×X to
A .

Proof. For (x,y),(x′,y′) ∈ �
2

∗(S,A )×X , we have from inequality (1) above,∣∣∣∣〈〈x, y〉〉− 〈〈
x′, y′

〉〉∣∣∣∣� ∣∣∣∣〈〈x, y〉〉− 〈〈
x′, y

〉〉∣∣∣∣+ ∣∣∣∣〈〈x′, y
〉〉− 〈〈

x′, y′
〉〉∣∣∣∣

=
∣∣∣∣〈〈x−x′, y

〉〉∣∣∣∣+ ∣∣∣∣〈〈x′, y−y′
〉〉∣∣∣∣

�2(
∣∣∣∣〈〈x−x′, y

〉〉∣∣∣∣
σ
+
∣∣∣∣〈〈x′, y−y′

〉〉∣∣∣∣
σ
)

�2(
∣∣∣∣x−x′

∣∣∣∣ ||y||+ ∣∣∣∣x′∣∣∣∣ ∣∣∣∣y−y′
∣∣∣∣). �

A function A : S×S → A is said to define an operator on X = �
2

∗u(S,A ) , if for
each x ∈ X and each s ∈ S , the sum

(Ax)(s) := ∑
t∈S

A(s,t)x(t) (2)
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converges in A and the function Ax , as defined in equation (2), is also in X . Such a
function A will be called an A -matrix operator on X . It follows from the uniform
boundedness principle that such an operator is automatically bounded. Denote by M
the space of all A -matrix operators on X . Then M is a Banach algebra of bounded
operators on X [10]. The following is an analogue of the adjoint of a bounded opera-
tor.

PROPOSITION 8. If A ∈ M and A
# ∈ A

S×S
is defined by A

#
(s,t) = (A(t,s))

∗
for

all (s, t) ∈ S×S , then A
#

is a bounded linear operator on �
2

∗(S,A ) , and ||A|| =
∣∣∣∣∣∣A#

∣∣∣∣∣∣ .
Proof. For each t ∈ S , since et(1) ∈ X , A(et(1)) ∈ X . If z = A(et(1)) , then z is

the function z(s) = A(s,t) for s ∈ S . For each y ∈ �
2

∗(S,A ) , by Theorem 4 (i),

∑
s∈S

A
#
(t,s)y(s) = ∑

s∈S

(A(s,t))
∗
y(s) = ∑

s∈S

(z(s))
∗
y(s) converges in A .

That is, for each y ∈ �
2

∗(S,A ) , A
#
y defined by

(A
#
y)(t) = ∑

s∈S

(A
#
(t,s))y(s) for all t ∈ S

is a well-defined function from S to A . Now we show that A
#
y ∈ �

2

∗(S,A ) for all y ∈
�

2

∗(S,A ) . Let x ∈ X and y ∈ �
2

∗(S,A ) . Since lim
F∈F

||x−xF||= 0, and A is continuous,

and 〈〈·, ·〉〉 is continuous in both variables (Corollary 7),

〈〈Ax, y〉〉 = lim
F∈F

〈〈AxF , y〉〉 = lim
F∈F

∑
s∈S

y
∗
(s) ∑

t∈F
(A(s,t))x(t)

= lim
F∈F

∑
s∈S

∑
t∈F

[(A(s,t))
∗
y(s)]

∗
x(t) = lim

F∈F
∑
s∈S

∑
t∈F

[A
#
(t,s)y(s)]

∗
x(t)

= lim
F∈F

∑
t∈F

∑
s∈S

[A
#
(t,s)y(s)]

∗
x(t) = lim

F∈F
∑
t∈F

[
∑
s∈S

(A
#
(t,s)y(s))

]∗

x(t)

=∑
t∈S

(A
#
y)

∗
(t)x(t) =

〈〈
x, A

#
y
〉〉

(converges)

It follows from Theorem 1 (i) that A
#
y ∈ �

2

∗(S,A ) , and hence A
#

is a bounded

A -matrix operator on �
2

∗(S,A ) . Furthermore, we also have

||A|| = sup
||x||�1

||Ax|| = sup
||x||�1

sup
||y||�1

||〈〈Ax, y〉〉||σ = sup
||x||�1

sup
||y||�1

∣∣∣∣∣∣〈〈x, A
#
y
〉〉∣∣∣∣∣∣

σ

= sup
||y||�1

sup
||x||�1

∣∣∣∣∣∣〈〈x, A
#
y
〉〉∣∣∣∣∣∣

σ
= sup

||y||�1

∣∣∣∣∣∣A#
y
∣∣∣∣∣∣= ∣∣∣∣∣∣A#

∣∣∣∣∣∣ . �
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For each A ∈ M and each G ⊆ S , denote by A
G| the function given by

A
G|(s,t) =

{
A(s,t) if t ∈ G,

0 if t /∈ G.

Similarly, AG is defined by

AG(s,t) =

{
A(s,t) if s ∈ G,

0 if s /∈ G.

We will also use AG� to denote (AG)
G| ; that is (AG� )(s,t) = A(s,t) if s,t ∈ G and

(AG� )(s, t) = 0 if (s, t) ∈ (S×S)\ (G×G) .
For each A ∈ M and each s ∈ S , denote by A(s, ·) the function from S to A

given by t �→ A(s, t) . The function A(·,t) is similarly defined for each t ∈ S .

LEMMA 9. Let A ∈ M , and G ⊆ H ⊆ S . Then

(i) AG ∈ M ,
∣∣∣∣∣∣AG

∣∣∣∣∣∣� ∣∣∣∣AH

∣∣∣∣� ||A|| ;

(ii) A
G| ∈ M ,

∣∣∣∣∣∣AG|

∣∣∣∣∣∣ �
∣∣∣∣∣∣AH|

∣∣∣∣∣∣� ||A||; and

(iii) AG� ∈ M ,
∣∣∣∣∣∣AG�

∣∣∣∣∣∣� ∣∣∣∣∣∣AH�
∣∣∣∣∣∣� ||A|| .

Proof. (i) For x ∈ X , since (AG)x = (Ax)G , and
∣∣∣∣xG

∣∣∣∣ � ||xH || � ||x|| by the defi-

nition of the norm, we have AG ∈ M with
∣∣∣∣∣∣AG

∣∣∣∣∣∣� ∣∣∣∣AH

∣∣∣∣� ||A|| .
(ii) First note that (A

G|)x = A(xG) = (A
H|)(xG) for each x ∈ X and G ⊆ H ⊆ S .

Let ε > 0. There is a unit vector x ∈ X such that
∣∣∣∣∣∣AG|

∣∣∣∣∣∣− ε <
∣∣∣∣∣∣(AG|)x

∣∣∣∣∣∣ . Thus∣∣∣∣∣∣AG|

∣∣∣∣∣∣− ε <
∣∣∣∣∣∣(AG|)x

∣∣∣∣∣∣ =
∣∣∣∣A(xG)

∣∣∣∣= ∣∣∣∣∣∣(AH|)(xG)
∣∣∣∣∣∣� ∣∣∣∣∣∣AH|

∣∣∣∣∣∣ ∣∣∣∣xG

∣∣∣∣� ∣∣∣∣∣∣AH|

∣∣∣∣∣∣ .
(iii) For each ε > 0, there is a unit vector x∈X such that the following first inequality
holds, and hence the ones that come after it by definitions and routine verifications:∣∣∣∣∣∣AG�

∣∣∣∣∣∣− ε <
∣∣∣∣∣∣(AG�)x

∣∣∣∣∣∣= ∣∣∣∣∣∣(AG�)(xG)
∣∣∣∣∣∣= ∣∣∣∣[A(xG)]G

∣∣∣∣� ∣∣∣∣[A(xG)]H
∣∣∣∣

=
∣∣∣∣(AH)(xG)

∣∣∣∣= ∣∣∣∣(AH)[(xG)]H
∣∣∣∣= ∣∣∣∣∣∣(AH�)(xG)

∣∣∣∣∣∣� ∣∣∣∣∣∣AH�
∣∣∣∣∣∣ . �

4. The space K

We introduce the subclass K of the class M of A -matrix operators and prove
some elementary properties of K in this section. Analogous to the special case A =
C , we define

K :=
{

A ∈ M : lim
F∈F (S)

∣∣∣∣∣∣A−AF�
∣∣∣∣∣∣= 0

}
.
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Notice that this is a coordinate dependent equivalent formulation of the compact opera-
tors on a Hilbert space, when the C

∗
-algebra is taken to be C . Now we establish some

of the familiar properties of the compact operators for K that will be used later.

LEMMA 10.

(i) The subspace K is (operator norm) closed in M .

(ii) If A ∈ M and t ∈ S , then A{t}| ∈ K .

(iii) If A ∈ M and G ∈ F , then A
G| ∈ K .

Proof. (i) Let {An} be a sequence in K such that ||An−A||→ 0 for some A∈M .
Let ε > 0. There is an N such that

||An−A|| < ε
3

for all n � N .

Since AN ∈ K , there is an F0 ∈ F such that∣∣∣∣∣∣(AN)F� −AN

∣∣∣∣∣∣< ε
3

for all F0 ⊆ F ⊆ F .

Let F0 ⊆ F ∈ F . We have∣∣∣∣∣∣AF� −A
∣∣∣∣∣∣� ∣∣∣∣∣∣AF� − (AN)F�

∣∣∣∣∣∣+ ∣∣∣∣∣∣(AN)F� −AN

∣∣∣∣∣∣+ ||AN −A||

<
∣∣∣∣∣∣(A−AN)F�

∣∣∣∣∣∣+ ε
3

+
ε
3

< ε.

Thus lim
F∈F

∣∣∣∣∣∣AF� −A
∣∣∣∣∣∣= 0, and hence A ∈ K .

(ii) Since y := (A{t}|)(et(1)) = A(et(1)) ∈ X , we have

lim
F∈F

||y−yF|| = 0.

Thus for each ε > 0, there is an Fε ∈ F such that

||y−yF|| < ε for all Fε ⊆ F ∈ F .

Let Fε ∪{t} ⊆ F ∈ F ; and let x ∈ X . Then∣∣∣∣∣∣∣∣[A{t}| −
(
A{t}|

)
F�

]
x

∣∣∣∣∣∣∣∣= ||(y−yF)(x(t))|| � ||y−yF|| ||x(t)|| < ε ||x|| ,

and hence

∣∣∣∣∣∣∣∣A{t}| −
(
A{t}|

)
F�

∣∣∣∣∣∣∣∣� ε for all Fε ∪{t} ⊆ F ∈ F (S) . Therefore A{t}| ∈ K .

(iii) For each x ∈ X , and each s ∈ S ,

[(A
G|)x](s) = ∑

t∈G

A(s,t)x(t) = ∑
t∈G

[A{t}|x](s) =

[(
∑
t∈G

A{t}|

)
x

]
(s),
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that is A
G| = ∑

t∈G

A{t}|. Let N be the number of elements in G and ε > 0. By part (ii),

for each t ∈ G , there is an Ft ∈ F such that∣∣∣∣∣∣∣∣A{t}| −
(
A{t}|

)
F

∣∣∣∣∣∣∣∣< ε
N

for all Ft ⊆ F ∈ F .

Let Fε =

[⋃
t∈G

Ft

]
∪G . Then Fε ∈ F , and if Fε ⊆ F ∈ F , we have

∣∣∣∣∣∣∣∣AG| −
(
A

G|

)
F�

∣∣∣∣∣∣∣∣=
∣∣∣∣∣
∣∣∣∣∣∑t∈G

[
A{t}| −

(
A{t}|

)
F�

]∣∣∣∣∣
∣∣∣∣∣� ∑

t∈G

∣∣∣∣∣∣∣∣A{t}| −
(
A{t}|

)
F�

∣∣∣∣∣∣∣∣< ε.

Therefore A
G| ∈ K . �

PROPOSITION 11. If {Gn}n∈N
is a pairwise disjoint sequence in F , {An}n∈N

is

a bounded sequence in M such that (An)Gn| = An , and {αn}n∈N
is an �

2
sequence, then

A :=
∞

∑
n=1

αnAn ∈ K .

By assumption, each An is adjointable, i.e., A
#

n
is a matrix operator on X .

Proof. Let ε > 0 and sup
n∈N

||An||= sup
n∈N

∣∣∣∣∣∣A#

n

∣∣∣∣∣∣< M < ∞ . There is an N ∈ N such that

∞

∑
n=N

|αn|
2
<
( ε

M

)2

. Let x ∈ X and m > k � N . Let B =
m

∑
n=k

αnAn .∣∣∣∣∣
∣∣∣∣∣
[

m

∑
n=k

αnAn

]
x

∣∣∣∣∣
∣∣∣∣∣= ||Bx|| = sup

||y||�1

y∈�
2
∗ (S,A )

||〈〈Bx, y〉〉||
σ

= sup
||y||�1

y∈�
2
∗ (S,A )

∣∣∣∣∣∣〈〈x, B
#
y
〉〉∣∣∣∣∣∣

σ

� sup
||y||�1

y∈�
2
∗ (S,A )

||x||
∣∣∣∣∣∣B#

y
∣∣∣∣∣∣ .

For each n ∈ N and y ∈ [�
2

∗(S,A )]1 , since

(A
#

n
y)(s) = (A

#

n
){s}y = ((An){s}|)

#
y = (0)

#
y = 0 for all s ∈ S \Gn ,

the sequence
{

A
#

n
y
}

n∈N

has the pairwise disjoint sequence {Gn} as supports, and

hence, ∣∣∣∣∣∣B#
y
∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ m

∑
n=k

αnA
#

n
y

∣∣∣∣∣
∣∣∣∣∣�

[
m

∑
n=k

|αn|
2
∣∣∣∣∣∣A#

n
y
∣∣∣∣∣∣2]1/2

�
[

m

∑
n=k

|αn|
2
∣∣∣∣∣∣A#

n

∣∣∣∣∣∣2 ||y||2]1/2

�
[

m

∑
n=k

|αn|
2

]1/2

M ||y|| < ε.
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From the previous inequality, we have ||Bx|| � ||x||ε . Since x ∈ X is arbitrary, ||B|| �
ε . From arbitrariness of m > k � N , we see that the sequence of partial sums of (the
sum that defines) A is a Cauchy sequence and since each partial sum is in K , we have
A ∈ K . �

Note also that if ||An||� M for all n , then, from the proof we also have the estimate

||A|| � M

[
∞

∑
n=1

|αn|
2

]1/2

.

5. Extension from K to M

First we show that each element of K
#
is given by a double sum, and has a unique

Hahn-Banach extension to M . (Recall that X = �
2

∗u(S,A ) and M is the set of all
A -matrix operators on X .)

LEMMA 12. Let x ∈ �
2

∗(S,A ) and s ∈ S . Define Bs,x : S×S → A by

Bs,x(u,v) =

{
(x(v))

∗
if u = s,

0 otherwise,
for (u,v) ∈ S×S

Then
Bs,x ∈ M , and

∣∣∣∣Bs,x

∣∣∣∣� 2 ||x|| .

Proof. For each y ∈ X , since

[Bs,xy](u) =

{
〈〈y, x〉〉 if u = s,

0 otherwise,
for all u ∈ S;

from inequalities (1) in the proof of Proposition 6,∣∣∣∣Bs,xy
∣∣∣∣= ||〈〈y, x〉〉|| � 2 ||〈〈y, x〉〉||

σ
� 2 ||y|| ||x|| .

Therefore Bs,x ∈ M with
∣∣∣∣Bs,x

∣∣∣∣ � 2 ||x|| . �

We note in this connection that if x ∈ �
2

∗(S,A ) \X , then B
#

s,x
es = x /∈ X . Thus

B
#

s,x
/∈ M and hence M is not a C

∗
-algebra with the most natural adjoint operation

#
.

PROPOSITION 13.

(i) For each f ∈ K
#
, there is a unique function f̃ : S× S → A

#
such that

f (A) = ∑
s∈S

∑
t∈S

f̃ (s,t)(A(s,t)) for all A ∈ K . (3)
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Furthermore,

f̂ (A) := ∑
s∈S

∑
t∈S

f̃ (s,t)(A(s,t)) converges for all A ∈ M ,

and f̂ is a bounded linear functional on M with
∣∣∣∣∣∣ f̂ ∣∣∣∣∣∣

M
#
= || f ||

K
#
.

(ii) Conversely if g : S×S → A
#

has the property that

∑
s∈S

∑
t∈S

g(s,t)(A(s,t)) converges for all A ∈ K ,

then the double sum defines a bounded linear functional on K (and hence on
M ).

Proof. (i) For (s,t) ∈ S× S and a ∈ A , let E(s,t)(a) be the function on S× S
defined by

[E(s,t)(a)](u,v) =

{
a if (u,v) = (s,t)
0 if (u,v) 
= (s,t)

Then a straightforward calculation shows that

E(s,t)(a) ∈ K and
∣∣∣∣∣∣E(s,t)(a)

∣∣∣∣∣∣= ||a|| .

Thus, for each f ∈ K
#

and each (s,t) ∈ S×S ,

( f̃ (s,t))(a) = f (E(s,t)(a)) (a ∈ A )

is a well defined functional on A . Since∣∣∣( f̃ (s,t))(a)
∣∣∣ � || f ||

∣∣∣∣∣∣E(s,t)(a)
∣∣∣∣∣∣� || f || ||a|| ∀ a ∈ A ,

f̃ (s,t) ∈ A
#
, and f̃ is a map from S×S to A

#
.

To see the convergence of the inner sum, we first show that it converges for “rows”
associated with functions from X as in Lemma 12. For each x ∈ X = �

2

∗u(S,A ) and
each s ∈ S , let Bs,x be as in Lemma 12. Then Bs,x ∈ M , and

lim
F∈F

∣∣∣∣∣∣Bs,x− (Bs,x)F�
∣∣∣∣∣∣= lim

F∈F

∣∣∣∣∣∣Bs,x −Bs,xF

∣∣∣∣∣∣= lim
F∈F

∣∣∣∣∣∣Bs,(x−xF )

∣∣∣∣∣∣
� lim

F∈F
2 ||x−xF|| = 0.

Thus Bs,x ∈ K , and hence f (Bs,x) exists. From the continuity of f ,

f (Bs,x) = lim
F∈F

f (B
s,(xF )) = lim

F∈F
f

(
∑
t∈F

B
s,(x{t})

)
= lim

t∈F
f

(
∑
t∈F

E(s,t)(x
∗
(t))

)
= lim

F∈F
∑
t∈F

[ f̃ (s,t)]((x(t))
∗
) = ∑

t∈S

[ f̃ (s,t)](x
∗
(t)) = ∑

t∈S

[ f̃ (s,t)](Bs,x(s,t)).
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That is, for each s ∈ S ,

∑
t∈S

[ f̃ (s,t)](x
∗
(t)) converges for all x ∈ X .

Notice that for each A ∈ K and each s ∈ S , the function (A(s, ·))∗ ∈ X , and hence

f (A{s}) = ∑
t∈S

[ f̃ (s,t)](A(s,t)) for each s ∈ S .

By linearity the same is true for each F ∈ F (S) in place of the singleton set {s} .
Continuity of f and the fact that

∣∣∣∣A−AF

∣∣∣∣= ∣∣∣∣∣
∣∣∣∣∣[A−AF�

]
(S\F)

∣∣∣∣∣
∣∣∣∣∣� ∣∣∣∣∣∣A−AF�

∣∣∣∣∣∣
imply that f (A) is given by the double sum in (3) for each A ∈ K .

Let A ∈ M . For each s ∈ S , since A{s} ∈ M , and, as a function on S , A{s}(s, ·)
has the property that〈〈

x, (A{s}(s, ·))
∗〉〉

= (Ax)(s) converges in A for each x ∈ X ,

thus (A{s}(s, ·))
∗ ∈ �

2

∗(S,A ) by Theorem 4 (ii). It then follows from Corollary 3 that

the inner sums all converge for each A ∈ M ; i.e.,

∑
t∈S

( f̃ (s, t))(A(s,t)) converges for all A ∈ M and all s ∈ S .

Suppose the outer sum for f̂ does not converge for some A ∈ M . Then by Cauchy
criterion, there are an ε > 0 and a sequence {Fn}n∈N

of pairwise disjoint (finite) sets in
F (S) such that ∣∣∣∣∣∑s∈Fn

∑
t∈S

[ f̃ (s,t)](A(s,t))

∣∣∣∣∣ � 2ε for all n ∈ N .

For each n , the finiteness of Fn gives rise to a finite Gn ∈ F (S) such that∣∣∣∣∣∑s∈Fn

∑
t∈Gn

[ f̃ (s,t)](A(s,t))

∣∣∣∣∣ � ε.

Let αn be the sum in the last expression without absolute value, and βn = sgn(αn)
n . Define

B(s, t) =

⎧⎪⎨⎪⎩
βnA(s,t) if (s,t) ∈ Fn×Gn for some n ∈ N

0 if (s,t) ∈ (S×S)\
[

∞⋃
k=1

(Fk ×Gk)

]
.
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Note that B = ∑∞
n=1 βn

(
AFn

)
Gn|

, and each
(
AFn

)
Gn|

is adjointable with

∣∣∣∣∣
∣∣∣∣∣
[(

AFn

)
Gn|

]#∣∣∣∣∣
∣∣∣∣∣=

∣∣∣∣∣∣∣∣(AFn

)
Gn|

∣∣∣∣∣∣∣∣� ||A|| .

Since

[(
AFn

)
Gn|

]#

=
(
[A

#
]
Fn|

)
Gn

, and the sequence {Fn} is pairwise disjoint in F (S) ,

B ∈ K by Proposition 11.

On the other hand, since
∞

∑
k=1

1
k

= ∞ , for each M , there is a κ ∈ N such that

n

∑
k=1

1
k

>
M
ε

for all n � κ . Let F =
κ⋃

k=1

Fk . Then

∑
s∈F

[
∑
t∈S

[ f̃ (s,t)](B(s,t))

]
=

κ

∑
k=1

∑
s∈Fk

∑
t∈Gk

[ f̃ (s, t)](βkA(s,t))

=
κ

∑
k=1

1
k

∣∣∣∣∣∣∑s∈Fk

∑
t∈Gk

[ f̃ (s, t)](A(s,t))

∣∣∣∣∣∣ > M.

That is
f (B) = ∑

s∈S
∑
t∈S

[ f̃ (s,t)](B(s,t)) diverges.

This contradicts B ∈ K . Therefore the double sum must converge for all A ∈ M .
Now we use a uniform boundedness argument to show that f̂ ∈ M

#
. For each

fixed s ∈ S , and each F ∈ F (S) , define

gs,F(A) = ∑
t∈F

f̃ (s,t)(A(s,t)) for all A ∈ M .

Then ∣∣gs,F(A)
∣∣� ∑

t∈F

∣∣∣ f̃ (s,t)(A(s,t))
∣∣∣ � ∑

t∈F

∣∣∣∣∣∣ f̃ (s,t)∣∣∣∣∣∣ ||A(s, t)||

= ∑
t∈F

∣∣∣∣∣∣ f̃ (s,t)∣∣∣∣∣∣ ∣∣∣∣∣∣E(s,t)(A(s,t))
∣∣∣∣∣∣� ∑

t∈F
|| f ||

∣∣∣∣∣∣(A{s}){t}|
∣∣∣∣∣∣� ∑

t∈F
|| f || · ||A|| ;

and hence gs,F ∈ M
#

with
∣∣∣∣gs,F

∣∣∣∣� (Card F) · ||f|| . Since, for a fixed s ∈ S ,

∑
t∈S

f̃ (s,t)(A(s,t)) converges for all A ∈ M ,

the net of finite partial sums
{
gs,F(A)

}
F∈F (S)

is bounded and thus there is an MA such

that
∣∣gs,F(A)

∣∣� MA for all F ∈F (S) . Uniform boundedness principle implies that there
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is an M such that
∣∣∣∣gs,F

∣∣∣∣ � M for all F ∈ F (S) . Thus the functional gs defined by

gs(A) = ∑
t∈S

f̃ (s,t)(A(s,t)) (A ∈ M )

is bounded:

||gs(A)|| = lim
F∈F (S)

∣∣gs,F(A)
∣∣� limsup

F∈F (S)

∣∣∣∣gs,F

∣∣∣∣ ||A|| � M ||A|| ∀ A ∈ M .

Using the convergence of the outer sum for f̂ , a similar uniform boundedness argument
shows that f̂ (A) = ∑

s∈S

gs(A) is bounded on M .

Let F ∈F (S) and A ∈M . For each G ∈F (S) ,
∣∣∣∣∣∣AG�

∣∣∣∣∣∣� ||A|| by Lemma 9, and

AG� ∈ K ,

∣∣∣ f̂ (AF)
∣∣∣ =

∣∣∣∣∣∑s∈F
∑
t∈S

[ f̃ (s,t)](A(s,t))

∣∣∣∣∣ = lim
G∈F (S)

∣∣∣∣∣∑s∈F
∑
t∈G

[ f̃ (s,t)](A(s,t))

∣∣∣∣∣
= lim

G∈F (S)

∣∣∣ f ([AF ]G�)
∣∣∣= ∣∣ f (AF)

∣∣� || f || ∣∣∣∣AF

∣∣∣∣� || f ||
K

#
||A|| .

Therefore∣∣∣ f̂ (A)
∣∣∣= lim

F∈F (S)

∣∣∣∣∣∑s∈F
gs(A)

∣∣∣∣∣ = lim
F∈F (S)

∣∣∣ f̂ (AF)
∣∣∣� || f ||

K
#
||A|| for all A ∈ M .

That is
∣∣∣∣∣∣ f̂ ∣∣∣∣∣∣

M
#
� || f ||

K
#
. But since f̂ = f on K , we see that

∣∣∣∣∣∣ f̂ ∣∣∣∣∣∣
M

#
= || f ||

K
#

must

hold. Uniqueness of the function f̃ : S×S → A
#

is clear from the construction.
(ii) This follows from a uniform boundedness argument similar to the one used in

the preceding proof, and is omitted. �
An immediate consequence of this proposition is that we may, and will, just treat

K
#

as a subspace of M
#
.

The trace formula, trace AB= trace BA , for a trace class operator A and a bounded
operator B on a Hilbert space has the following generalization.

PROPOSITION 14. Let ξ : S×S → A
#

be a function such that

g(A) = ∑
s∈S

∑
t∈S

[ξ (s,t)](A(s,t)) converges for all A ∈ K .

Then

∑
s∈S

∑
t∈S

[ξ (s, t)](A(s,t)) = ∑
t∈S

∑
s∈S

[ξ (s,t)](A(s,t)) for all A ∈ M .
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Proof. Uniform boundedness arguments similar to that used in the proof of Propo-
sition 13 (i) show that g defines a bounded linear functional on K . Note that for each
A ∈ M and each t ∈ S , A{t}| ∈ K . By Lemma 10,

∑
s∈S

[ξ (s, t)](A(s,t)) converges for each A ∈ M and each fixed t ∈ S .

For each G ∈ F , define

hG(A) = ∑
t∈G

∑
s∈S

[ξ (s,t)](A(s,t)) = ∑
s∈S

∑
t∈G

[ξ (s,t)](A(s,t)) (A ∈ M ).

Again a uniform boundedness argument can be used to show that hG ∈ M
#
. We claim

that
{
hG

}
G∈F

is a Cauchy net in M
#
. For otherwise, by the Cauchy criterion, there is

an ε > 0 such that for all G ∈ F , there are HG,KG ∈ F such that G ⊆ H := HG, G ⊆
K := KG , and

∣∣∣∣∣∣h
H
−h

K

∣∣∣∣∣∣ � 2ε . Thus there is an A := A
G ∈ [M ]1 (the closed unit ball

of M ) such that ∣∣∣h
H
(A)−h

K
(A)

∣∣∣ =
∣∣∣h

[H\K]
(A)−h

[K\H]
(A)

∣∣∣> ε.

Denote by

α = sgn
[
h

[H\K]
(A)−h

[K\H]
(A)

]
; and let B = α[A(H\K)| −A(K\H)|].

Then, since (H \K)∩ (K \H) = /0 , we see that

||B|| �
∣∣∣∣∣∣(B)(H\K)|

∣∣∣∣∣∣+ ∣∣∣∣∣∣(B)(K\H)|

∣∣∣∣∣∣= ∣∣∣∣∣∣A(H\K)|

∣∣∣∣∣∣+ ∣∣∣∣∣∣A(K\H)|

∣∣∣∣∣∣
�2 ||A|| � 2.

Note that, a straightforward calculation reveals that hF1
(C

F2|
) = hF1∩F2

(C(F1∩F2)|) for all

C ∈ M and all F1,F2 ∈ F ; consequently,

h
[H�K]

(B) =h
[H�K]

(α[A(H\K)| −A(K\H)|])

=
∣∣∣h

(H\K)
(A)−h

(K\H)
(A)

∣∣∣ > ε.

Since H,K ⊇ G , H�K = (H \K) ∪ (K \H) ⊆ S \G. Note also that the sum in
the previous expression involves only A(s,t) with t ∈ H�K , and that hH�K(A) =
hH�K(A(H�K)|) = g(A) if A = A(H�K)| .

This shows that, under the assumption that
{
hG

}
G∈F

is not a Cauchy net, there
are an ε > 0, and (with the set G above in each step taken to be the set in the previous
step) a pairwise disjoint sequence {Hn}n∈N

⊆ F (in place of the H�K above), and a
sequence {Bn}n∈N

⊆ M bounded by 2 in norm, such that

Bn = (Bn)(Hn)| and g(B
n
) = h

Hn
(B

n
) > ε for all n ∈ N .
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By Proposition 11, B :=
∞

∑
n=1

1
n
Bn converges in K . On the other hand, since g(Bn) =

h
Hn

(Bn) > ε for each n ∈ N , we have

g(B) =
∞

∑
n=1

g(Bn)
n

>
∞

∑
n=1

ε
n

= ∞.

This contradicts the fact that g(A) converges for each A ∈ K .
Therefore {hF}F∈F is a Cauchy net in M

#
, and hence there is an h ∈ M

#
such

that lim
F∈F

||hF −h||
M

#
= 0.

Let A ∈ K . For each G ∈ F , (since AG − (AG)F� = (A−AF� )G for all F ∈ F ,

and
∣∣∣∣∣∣BG

∣∣∣∣∣∣� ||B|| for all B ∈ M ) we have AG ∈ K and hence

g(AG) = ∑
s∈G

∑
t∈S

[ξ (s,t)](A(s,t)) = lim
F∈F

[
∑
t∈F

∑
s∈G

[ξ (s,t)](A(s, t))

]
= lim

F∈F
hF(AG) = h(AG).

For A ∈ K , since∣∣∣∣∣∣(A−AG)x
∣∣∣∣∣∣= ∣∣∣∣Ax− (Ax)G

∣∣∣∣= ∣∣∣∣∣∣(Ax)
S\G

∣∣∣∣∣∣= ∣∣∣∣∣∣[(A−AG�)x]
S\G

∣∣∣∣∣∣� ∣∣∣∣∣∣(A−AG�)x
∣∣∣∣∣∣

�
∣∣∣∣∣∣A−AG�

∣∣∣∣∣∣ ||x|| for all x ∈ X ,

lim
G∈F

∣∣∣∣∣∣AG−A
∣∣∣∣∣∣� lim

G∈F

∣∣∣∣∣∣A−AG�
∣∣∣∣∣∣= 0. By the continuity of g and h ,

g(A) = lim
G∈F

g(AG) = lim
G∈F

h(AG) = h(A).

That is h
∣∣
K

= g on K . From the convergence ||hF −h||
M

#
→ 0, we also have, for each

A ∈ M ,

h(A) = lim
F∈F

hF(A) = lim
F∈F

∑
t∈F

∑
s∈S

(ξ (s,t))(A(s,t)) = ∑
t∈S

∑
s∈S

(ξ (s,t))(A(s, t)).

Let ĝ be the unique extension of g to all of M , as in Proposition 13. Then

ĝ(A) = ∑
s∈S

∑
t∈S

(ξ (s,t))(A(s,t)) for all A ∈ M .

For A ∈ M and G ∈ F (S) ,

(ĝ−hG)(A) =ĝ(A)−hG(A) = ∑
s∈S

∑
t∈S

(ξ (s,t))(A(s,t))−∑
s∈S

∑
t∈G

(ξ (s, t))(A(s,t))

= ∑
s∈S

∑
t∈S\G

(ξ (s,t))(A(s,t)) = ∑
s∈S

∑
t∈S

(ξ̃ (s,t))(A(s,t)),
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where ξ̃ (s, t) = ξ (s, t) if (s,t) ∈ S× (S\G) and ξ̃ (s,t) = 0 otherwise. By Proposition
13 again, we have

lim
G∈F (S)

∣∣∣∣ĝ−hG

∣∣∣∣
M

#
= lim

G∈F (S)

∣∣∣∣∣∣[g− (hG)|K ]̂
∣∣∣∣∣∣

K
#
= lim

G∈F (S)

∣∣∣∣g− (hG)|K
∣∣∣∣

K
#
= 0.

Thus ĝ = lim
G∈F (S)

hG = h . Hence, for all A ∈ M , we have as asserted,

∑
s∈S

∑
t∈S

[ξ (s, t)](A(s,t)) =ĝ(A) = h(A) = ∑
t∈S

∑
s∈S

[ξ (s,t)](A(s,t)). �

6. The Hilbert C
∗
-module X and adjointable matrix operators

In this section we will use the fact that X = �
2

∗u(S,A ) is a Hilbert C
∗
-module

to establish a bound for the norm of block diagonal matrix operators, which will be
used in the Dixmier decomposition theorem (Theorem 19). In a Hilbert space we have

||x+ y||2 = ||x||2 + ||y||2 for orthogonal vectors x and y ; in particular for x, y ∈ �
2
(s)

with disjoint supports; i.e., x(s)y(s) = 0 for all s ∈ S . However, this is not true for
functions in X = �

2

∗u(S,A ) or �
2

∗(S,A ) , as the following example shows.

EXAMPLE 15. With A = C[0,1] and S = N , there are x,y ∈ X with disjoint

supports (i.e., for all n ∈ N , x(n) = 0 or y(n) = 0) such that ||x+y||2 < ||x||2 + ||y||2 .

Proof. Define x,y : N → A by

(x(1))(t) =

⎧⎨⎩1−2t for 0 � t � 1
2

0 for 1
2 < t � 1;

(y(2))(t) =

⎧⎨⎩0 for 0 � t � 1
2

2t−1 for 1
2 < t � 1;

and x(n) = 0 for all n 
= 1 and y(n) = 0 for n 
= 2. Then, since x(1) and y(2) are
self-adjoint elements in A ,

||x+ y||2 = sup
ϕ∈s(A )

[ϕ((x(1))
2
)+ ϕ((y(2))

2
)] = sup

ϕ∈s(A )
ϕ((x(1))

2
+(y(2))

2
)

=
∣∣∣∣∣∣(x(1))

2
+(y(2))

2
∣∣∣∣∣∣= 1 < 2 = ||x||2 + ||y||2 . �

The Pythagorean property implies that the norm of a block diagonal matrix oper-
ator is the maximum of the norms of the blocks. The result remains true for operator
matrices on X . The following is a proof of this fact by using properties of the Hilbert
C

∗
-module X = �

2

∗u(S,A ) [6, p. 4].

LEMMA 16.

(i) The space X = �
2

∗u(S,A ) (with the A -valued inner product 〈〈·, ·〉〉 ) is a Hilbert
C

∗
-module over A .
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(ii) Each adjointable matrix operator A on X is right A -linear.

(To have the A -valued inner product linear in the second argument as in [6], just
define 〈〈x, y〉〉

1
= 〈〈y, x〉〉 for all x,y ∈ X .)

Proof. (i) Let x ∈ X and a ∈ A . Let ε > 0. Since ∑
s∈S

x
∗
(s)x(s) converges in

A , there is an Fε ∈ F (S) such that∣∣∣∣∣
∣∣∣∣∣∑s∈F

x
∗
(s)x(s)

∣∣∣∣∣
∣∣∣∣∣< ε

||a||2 +1
for all Fε ⊆ F ∈ F (S) .

If Fε ⊆ F ∈ F (S) , then∣∣∣∣∣
∣∣∣∣∣∑s∈F

a
∗
x
∗
(s)x(s)a

∣∣∣∣∣
∣∣∣∣∣=

∣∣∣∣∣
∣∣∣∣∣a∗

[
∑
s∈F

x
∗
(s)x(s)

]
a

∣∣∣∣∣
∣∣∣∣∣� ∣∣∣∣∣∣a∗∣∣∣∣∣∣ ∣∣∣∣∣

∣∣∣∣∣∑s∈F

x
∗
(s)x(s)

∣∣∣∣∣
∣∣∣∣∣ ||a||

= ||a||2
∣∣∣∣∣
∣∣∣∣∣∑s∈F

x
∗
(s)x(s)

∣∣∣∣∣
∣∣∣∣∣< ε.

Thus

∑
s∈S

a
∗
x
∗
(s)x(s)a converges in A , and hence xa ∈ X .

That 〈〈·, ·〉〉 is an A -valued inner product on X is routine to check. Therefore X is an
A -module (this is in fact an example in [6]).

(ii) This follows from the distributive property of the multiplication on A . For if
x ∈ X an a ∈ A , we have, for each s ∈ S ,

[A(xa)](s) = ∑
t∈S

[A(s,t)((x(t))a)] = ∑
t∈S

(A(s,t)x(t))a = ((Ax)(s))a. �

Denote by L(X ) the set of all adjointable A -linear bounded operators on X .
Then L(X ) is a C

∗
-algebra with the operator norm [6, p. 8]. A routine verification

reveals that the adjoint operation on the adjointable A -matrix operators coincides with
the

#
operation here. For convenience of reference we state the following lemma in the

form that is more suitable in our situation.

LEMMA 17. [6, Lemma 4.1 (p. 32)] Let T be an A -linear bounded operator on
X . Then T is positive element of L(X ) iff 〈〈Tx, x〉〉 � 0 for all x ∈ X .

LEMMA 18. Let A ∈ M . For each x ∈ X ,

〈〈Ax, Ax〉〉 � ||A||2 〈〈x, x〉〉 in A .
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Proof. By Lemma 16, X = �
2

∗u(S,A ) is a two-sided Hilbert C
∗
-module. For each

F ∈ F (S) , A
F | is adjointable with adjoint (A

F |)
#

(though A may not be adjointable),

and hence (A
F |)

#
(A

F |) is adjointable. For each x ∈ X ,〈〈
(A

F |)
#
(A

F |)x, x
〉〉

=
〈〈

(A
F |)x, (A

F |)x
〉〉

� 0 in A .

Thus (A
F |)

#
A

F | is positive in the C
∗
-algebra L(X ]) by Lemma 17. Since∣∣∣∣∣∣(AF |)x

∣∣∣∣∣∣= ||A(xF)|| � ||A|| ||xF|| � ||A|| ||x|| ∀ x ∈ X ,

||A||2− (A
F |)

#
(A

F |) is a positive element in the C
∗
-algebra L(X ) . Applying Lemma 17

again, with the opposite implication, we have also, for each x ∈ X ,

0 �
〈〈

[||A||2− (A
F|)

#
(A

F |)]x, x
〉〉

=
〈〈
||A||2 x, x

〉〉
−
〈〈

(A
F |)

#
(A

F |)x, x
〉〉

= ||A||2 〈〈x, x〉〉−
〈〈

(A
F |)x, (A

F |)x
〉〉

= ||A||2 〈〈x, x〉〉− 〈〈A(xF), A(xF)〉〉

That is 〈〈A(xF), A(xF)〉〉 � ||A||2 〈〈x, x〉〉 for all F ∈ F (S) and all x ∈ X . Since

lim
F∈F (S)

||xF −x|| = 0 for all x ∈ X , and 〈〈·, ·〉〉 is continuous in both variables,

we have

〈〈Ax, Ax〉〉 = lim
F∈F (S)

〈〈A(xF), A(xF)〉〉 � lim
F∈F (S)

||A||2 〈〈x, x〉〉 = ||A||2 〈〈x, x〉〉 �

7. A decomposition theorem for M
#

Now we are ready to prove a decomposition theorem analogous to the Dixmier
decomposition theorem for the pair K and M ; i.e., K is an M -ideal in M . As
a subspace of the set of adjointable matrix operators M0(= L(X )∩M ), K is an
M -ideal, by a theorem of Smith and Ward [7], simply because the space M0 is a C

∗
-

algebra and K is an ideal in M0 . However, M properly contains M0 and M is not
a C

∗
-algebra, as noted following the proof of Lemma 12. It is not hard to show that if

J is an M -ideal in a Banach space X , and X is contained in a Banach space Y , then J
may not, in general, be an M -ideal in Y . However, in this case, we will show that K
is an M -ideal in M .

THEOREM 19. Each g∈K
#

has a unique Hahn-Banach extension, also denoted
by g, to all of M with ||g||

K
#
= ||g||

M
#
. For each f ∈M

#
, there are unique g∈K

#
(as

a subspace of M
#
, via the uniqueness of extensions) and h ∈ K

⊥
such that f = g+h

and || f || = ||g||+ ||h|| .
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Proof. Uniqueness of Hahn-Banach extension of g∈K
#
is immediate from Propo-

sition 13. Let f ∈ [M ]
#
. Then by Proposition 13, there is a map f̃ : S×S → A

#
such

that
g(A) = ∑

s∈S
∑
t∈S

[ f̃ (s,t)](A(s, t))

converges for all A ∈ M , and g = f on K . Let h = f − g . Then h = 0 on K
and f = g + h . Uniqueness is clear from the construction: for if another function
f ′ : S×S → A

#
satisfies

g′(A) = ∑
s∈S

∑
t∈S

[ f ′(s,t)](A(s,t))

converges for all A ∈ M and g′ = f on K , then, for each (s,t) ∈ S×S ,

[ f ′(s, t)](a) = g′(E(s,t)(a)) = f (E(s,t)(a)) = g(E(s,t)(a)) = [ f̃ (s,t)](a),

for all a ∈ A , and hence f ′ = f̃ .
Since || f || � ||g||+ ||h|| , it suffices to establish the nontrivial opposite inequality.

To that end, let ε > 0. There are A,B ∈ M such that

||A|| = ||B|| = 1, g(A) > ||g||− ε
6
, and h(B) > ||h||− ε

6
. (4)

From the convergence of g(A) to a positive number, there is an F1 ∈ F such that

ℜ

[
∑
s∈F

∑
t∈S

[ f̃ (s,t)](A(s,t))

]
> g(A)− ε

6
> ||g||− ε

3
∀ F ∈ F , F ⊇ F1.

From the finiteness of F1 and the convergence of the inner sums in the last expression,
there is a G1 ∈ F such that

ℜ

⎡⎣∑
s∈F1

∑
t∈G1

[ f̃ (s, t)](A(s,t))

⎤⎦ > ℜ

⎡⎣∑
s∈F1

∑
t∈S

[ f̃ (s,t)](A(s,t))

⎤⎦− ε
6

> ||g||− 2ε
3

. (5)

From the convergence of g(B) , there is a finite subset (of S ) F2 ⊇ F1 such that∣∣∣∣∣∣ ∑
s∈S\F2

∑
t∈S

[ f̃ (s,t)](B(s,t))

∣∣∣∣∣∣ <
ε
6
.

Since B−BF2
∈ M ,

∑
s∈S\F2

∑
t∈S

[ f̃ (s,t)](B(s,t)) = ∑
t∈S

∑
s∈S\F2

[ f̃ (s,t)](B(s,t)),
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by Proposition 14, hence there is a finite subset (of S ) G2 ⊇ G1 such that∣∣∣∣∣∣ ∑
t∈S\G2

∑
s∈S\F2

[ f̃ (s,t)](B(s,t))

∣∣∣∣∣∣ =

∣∣∣∣∣∣ ∑
s∈S\F2

∑
t∈S\G2

[ f̃ (s,t)](B(s,t))

∣∣∣∣∣∣ <
ε
6
. (6)

Let

A0 = (AF1
)
G1|

, B0 = (B−BF2
)− (B−BF2

)
G2|

, and C = A0 +B0.

Then inequalities (5) and (6) are, respectively,

ℜ(g(A0)) > ||g||− 2ε
3

, and
∣∣g(B0)

∣∣< ε
6
.

For each x ∈ X , since G1 ⊆ G2 , we have〈〈[
A0(xG1

)
]

F1

,
[
B0(xS\G2

)
]

S\F2

〉〉
= 0 and

〈〈[
B0(xS\G2

)
]

S\F2
,
[
A0(xG1

)
]

F1

〉〉
= 0,

since each pair of functions have disjoint supports. Thus, from Lemma 18,

〈〈Cx, Cx〉〉 =
〈〈
(A0 +B0)x, (A0 +B0)x

〉〉
=
〈〈
A0x, A0x

〉〉
+
〈〈
A0x, B0x

〉〉
+
〈〈
B0x, A0x

〉〉
+
〈〈
B0x, B0x

〉〉
=
〈〈

A0(xG1
), A0(xG1

)
〉〉

+
〈〈

A0(xG1
), B0(xS\G2

)
〉〉

+
〈〈

B0(xS\G2
), A0(xG1

)
〉〉

+
〈〈

B0(xS\G2
), B0(xS\G2

)
〉〉

=

〈〈[
A0(xG1

)
]

F1

,
[
A0(xG1

)
]

F1

〉〉
+

〈〈[
A0(xG1

)
]

F1

,
[
B0(xS\G2

)
]

S\F2

〉〉

+

〈〈[
B0(xS\G2

)
]

S\F2
,
[
A0(xG1

)
]

F1

〉〉
+

〈〈[
B0(xS\G2

)
]

S\F2
,
[
B0(xS\G2

)
]

S\F2

〉〉

=

〈〈[
A(xG1

)
]

F1

,
[
A(xG1

)
]

F1

〉〉
+

〈〈[
B(x

S\G2
)
]

S\F2
,
[
B(x

S\G2
)
]

S\F2

〉〉

�
〈〈

A(xG1
), A(xG1

)
〉〉

+
〈〈

B(x
S\G2

), B(x
S\G2

)
〉〉

�
〈〈

xG1
, xG1

〉〉
+
〈〈

x
S\G2

, x
S\G2

〉〉
�
〈〈

xG1
, xG1

〉〉
+
〈〈

x
S\G1

, x
S\G1

〉〉
=〈〈x, x〉〉
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For each ϕ ∈ s(A ) , we have

∑
s∈S

ϕ
(
(Cx)

∗
(s)(Cx)(s)

)
= ϕ

(
∑
s∈S

(Cx)
∗
(s)(Cx)(s)

)
= ϕ (〈〈Cx, Cx〉〉)

� ϕ (〈〈x, x〉〉) = ϕ

(
∑
s∈S

x
∗
(s)x(s)

)
= ∑

s∈S

ϕ
(
x
∗
(s)x(s)

)
� ||x||2 .

Thus
||Cx||2 = sup

ϕ∈s(A )
∑
s∈S

ϕ
(
(Cx)

∗
(s)(Cx)(s)

)
� ||x||2 ,

and hence ||Cx|| � ||x|| . Since x ∈ X is arbitrary, we have ||C|| � 1.
Now, since A0 ∈ K , h(A0) = 0. Since BF2

and (B−BF2
)
G2|

are in K , and h

vanishes on K ,

h(B0) = h(B−BF2
)−h

(
(B−BF2

)
G2|

)
= h(B).

These together with the inequality (4) we have

|| f || � | f (C)| = ∣∣g(A0)+g(B0)+h(A0)+h(B0)
∣∣� ∣∣g(A0)+h(B0)

∣∣− ∣∣g(B0)
∣∣

>ℜ
(
g(A0)+h(B0)

)− ε
6

= ℜ(g(A0))+ ℜ(h(B))− ε
6

> ||g||− 2ε
3

+ ||h||− ε
6
− ε

6
= ||g||+ ||h||− ε.

Since this argument holds for all ε > 0, we have || f ||� ||g||+ ||h|| . Combining this with
the triangle inequality, we have || f || = ||g||+ ||h|| as asserted. �
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