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A NECESSARY AND SUFFICIENT CONDITION FOR POSITIVITY OF
LINEAR MAPS ON M; CONSTRUCTED FROM PERMUTATION PAIRS

HAILI ZHAO AND JINCHUAN HOU

(Communicated by F. Kittaneh)

Abstract. A necessary and sufficient condition for a D-type map @z, z, on 4 x 4 matrices
constructed from a pair of arbitrary permutations {7;,m } to be positive is obtained.

1. Introduction

Denote by M,, = M,,(C) the algebra of all n x n complex matrices and M, the
set of all positive semi-definite matrices in M,. A map L : M, — M, is positive if
L(M;) C M, . The positive maps are important objects both in mathematics and quan-
tum information theory, see [1, 2, 3,4, 6,7,8,9, 10, 11, 12, 13, 15].

Suppose ®p : M,, — M, is a linear map of the form

(aij) — diag(fi, f2, .-, fu) — (aij) (L.1)

with (f1,f2,.,fu) = (a11,a22,...,ann)D for an n x n nonnegative matrix D = (d;;)
(i.e., djj =2 0 for all i, j). The map ®p of the form Eq. (1.1) defined by a nonnegative
matrix D is called a D-type map [9]. The question of when a D-type map is positive
was studied intensively by many authors and applied in quantum information theory to
detect entangled states and construct entanglement witnesses (ref., for instance, [9, 14]
and the references therein).

A very interesting class of D-type maps is the class of maps constructed from
permutations.

Assume that 7 is a permutation of (1,2,...,n). Recall that the permutation matrix
Pr = (pij) of m is a n x n matrix determined by

1 if i=n()),
Pij = p o .
0 if i#n(j).
The well-known Choi map W : M3 — M3 defined by

ap ap as ajpt+aszxz  —amp —a3
asy ax axy | — —ap; axp-+tajy —axs
azy az ass —asj —az as+axn
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is clearly a D-type map induced from the permutation (1,2,3) — (2,3,1).

Recall also that a subset (iy,...,i;) C {1,2,...,n} is an [-cycle of the permutation
mif w(ij) =ij4q for j=1,...,1—1 and 7(i;) = i; . Note that every permutation 7 of
(1,...,n) has a disjoint cycle decomposition & = (1} )(m,) - - - (7,), that is, there exists a

set {F;}!_, of disjoint cycles of m with U]_,Fy ={1,2,...,n} such that my = |r, and
7(i) = m,(i) whenever i € Fy. Let  be a permutation of (1,2,...,n) with disjoint cycle
decomposition (7;)--- (m,) such that the maximum length of 7; is equal to > 1 and
P= (51'7:(‘/)) is the permutation matrix associated with . For ¢ >0, let ®; z : M, — M,
be the D-type map of the form in Eq. (1.1) with D = (n—1¢)I,, +¢Py. It is shown in [9]
that @,  is positive if and only if 0 <7 < 7. Thus ®p with D = (n—2)I, + Py + Py
is not positive if 7 < 2. This fact reveals that, in general, a D-type map with D =
(n—2)I,+ Py, + Py, is not a positive map.

Motivated by the above result, it was discussed in [16] the D-type maps con-
structed from a pair of permutations, that is,

q)"JTlJTz = q)Dnl T with D7T177t2 - (n - 2)In + P7T1 + Pﬂza (1 -2)

and the question that under what conditions that @, z, 5, of the form Eq. (1.2) are
positive. A notion of the property (C) for pairs of permutations was introduced in
[16] (see Definition 3.2 below), and it was proved that, if {7, 7} has property (C),
then the D-type map @, r, r, : M, — M, with n > 3 is positive. The property (C) is
characterized for {m;,m,}, and a criterion is given for the case that 7; = n” and m, =
n?, where 7 is the permutation defined by 7 (i) =i+ 1 mod n and 1 < p < g <n. The
results in [16] allow us to construct many new positive maps. However, the property (C)
is only a sufficient condition for @, 7, 7, to be positive. So, it is natural and interesting
to ask the following.

PROBLEM 1.1. What is the necessary and sufficient condition for ®, 7, z, to be
positive?

The purpose of this paper is to give an answer to the above problem for low dimen-
sion cases, that is, the case n € {3,4}. Since the results in [9], we always assume in this
paper that 7y # m, and, neither ) nor 7, is the identity permutation. Furthermore, we
denote by (7, M) the length of the pair {7, m,} of permutations defined by

I(my, ) = max{#F : F is a minimal common invariant subset of 7,7 }.

In other words, /(m;, ) is the cardinality of the minimal common invariant subset of
m; and m, which has the largest number of elements.
The following are the main results.

THEOREM 1.2. Let m and m be two distinct permutations of (1,2,3,4) that
are not the identity, and let @g, z, : M4(C) — My4(C) be the D-type map defined by
D =214+ Py + Py, . Then @, g, is positive if and only if either

) (7, mp) =2, or

(ii) I(my, m) = 3 and the following two conditions hold:

(1) if i is not the fixed point of both m; and my, then (i) # m(i);
(2) if my and m have no common fixed points and if there exist distinct i, j such
that {m, (i), m (i)} = {m1(j), m(j)}, then neither m; nor m has fixed points.
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THEOREM 1.3. Let m; and m, be two distinct permutations of (1,2,3) that are
not the identity, and let @y, 7, - M3(C) — M3(C) be the D-type map defined by D =
L+ Py, + Pr,. Then @y, g, is positive if and only if w1 (i) # m (i) holds for any i.

The paper is organized as follows. In Section 2 we recall some preliminary in-
equalities from [16] that are needed in the remain part of the paper. Section 3 deals
with the case that n =4, {m,m,} has the property (C). A easy characterization of
{m,m} to have the property (C) is given and, based on this, in Section 4, for any pair
of permutations of (1,2,3,4), some criteria for @z, r, : M4y — My to be positive are
established. The final section completes the proofs of Theorems 1.2 and 1.3.

2. Preliminary inequalities

In this section, we first recall some inequalities proved in [16].

LEMMA 2.1. [16, Lemma2.1] Let s,M be positive numbers and f(uy,uz,...,uy)
be a function in m-variable defined by

1 1 1
+ o+
s+u;r  s+u S+ Uy

f(l/t17l/i2,...,um) —

on the region u; > 0 with uyuy...uy, =M™, i =1,2,....m. Then we have

_m _m__
rs2r=m4(m—r)M 2r—m
- _m_____ _m

(1) f has extremum values
S(S 2r—m M 2r—m )

with 5 < r < m at the points that

m 1 2r 1
r of u;s are (Szﬁ,f—,h) 7=m and others are (37 )77 ;
: m
(2) f may also achieve the extremum {3
N

2 .,
are u and others are >, in this case we must have s = M ;

u’

when m is even, at points 5 of u;s

(3) supf(ul,u27...,um):max{m;IMfM )

Consequently, we have

COROLLARY 2.2. Let s,M be positive numbers and f(uy,uy,u3,us) be a func-
tion in 4-variable defined by

£ ) 1 n 1 1 1
Ul,y.oyUy) =
b Td s+u;  s+ur s+uz  s+ug
on the region u; > 0 with uyuyuzuy = M™. Then,
3 4
Supf(ulau27u3aul’VL) - max{;7 H——M .
Moreover, all possible extremum values of f is bounded by max{ HL]W (sZi—XMZ) + %}

LEMMA 2.3. [16, Lemma 2.2] Let s be a positive number, n,k be positive
integers with s > k. Then for any nk positive real numbers {xp;,h = 1,2,....k;i =
1,2,...,n,} satisfying xpXpa...xpn = 1 for each h with 1 < h <k, we have

1
SO e X1, X021, Xk o5 X)) = Y [ R

n—1 n
< max{i— 2}
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Moreover, the extremum values of f are

=1l k>f+<n r)kr n .
6}” - (s—k)((s k)2r "+k2r n) [2} +1 é r< n;

== if n is even,
where [t] stands for the integer part of real number t.
The following corollary is immediate.

COROLLARY 2.4. Let

M-b

FXn, X401, ., X04) = ) .
i=1 2+xll+x21

Then, sup f = 5 3 and all extremum values of f is I on the region of x;; >0, i=1,2,3,4
and h = 1,2 with xpxpxp3xpe = 1.

3. Positivity of @y, z, on M, with {m;, m,} having property (C)

For any two permutations 7y and m of (1,2,3,4), let @g, 7, : M4(C) — My(C)
be the D-type map of the form

(aij)'—)diag(flaf2af37f4)_(aij)a (31)

where (f1 ,fz,f3,f4) (au,agz,a33,a44)D and D = 214 + P, + Py, with Pr, the per-
mutation matrix of m,, h=1,2.
The main purpose of this section is to show the following result.

PROPOSITION 3.1. Let ®g, 7, : M4(C) — My(C) be a D-type map defined by a
pair of permutations {m,m} as in Eq. (3.1). Then @y, 5, is positive if any one of the
following condition satisfied.

(i) my,m have two common fixed points.

(ii) 7y, have one common fixed point i, and m(j) # m(j) for any j #1i.

(iil) m (i) # mp (i) for any i and {m;(k), m (k) } = {71 (), m(j)} = {k, j} for some
distinct k, j.

(iv) For any i, m (i) # m(i) and, for any distinct k,j, {m (k),m(k)} # {m(j),
m(j)}-

The following conception was introduced in [16].

DEFINITION 3.2. [16, Definition 3.2] A pair {m,m} of permutations of (1,2,

..,n) is said to have property (C) if, for any given i € {1,2,. n} and for any j # i,

there exists 7, (j) € {71 (j), m(j)} such that {m,;(j):j=1, 2 —l,i+1,...,n} =

{1,2,...,i—1,i+1,...,n}, thatis, (@, (1),...,m,  (i—1),m ,+1(l+1) hn(n)) is
a permutation of (1,2,...,i—L,i+1,...,n).

To make the meaning of the property (C) clear, let us see some examples before go-

ing ahead. Let m; and m, be the permutations (1,2,3,4) — (2,3,4,1) and (3,4,1,2),
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respectively; then {7, } has the property (C). However the pair {py, p2 }={(2,3,4,1),
(4,1,2,3)} of permutations of (1,2,3,4) does not have the property (C). To see this,
take i = 1. One can not pick p,(2) € {p1(2),p2(2)} = {3,1}, pr;(3) € {4,2} and
pi(4) € {1,3} 5o that {py, (2). pne (3).n (4)} = {2.3.4}.

It was shown that for any n >3 and any pair {7, m} of permutations of (1,2,...,
n), the D-type map @, z, x, is positive if {m;,m,} has the property (C). Thus particu-
larly we have

PROPOSITION 3.3. Let @p, 7, : M4(C) — My(C) be a D-type map defined by a
pair of permutations {m,m} as in Eq. (3.1). If {m;,m} has the property (C), then
Dy, r, is positive.

Since the case one of 7} and 7, is the identity permutation reduces to the situation
had dealt with in [9], we may always assume in the sequel that m; # id and 7, # id.

By Proposition 3.3, to detect the positivity of a D-type map @z, 7, on My, it
is important to determine whether or not the pair {m,m} of permutations has the
property (C).

Let {m,m} be a pair of permutations on (1,2,...,n). Itis clear that the smaller
n is the easier to check the property (C) of {m;,m,}. This motivates us to decompose
the permutations into small ones. For a nonempty proper subset F of {1,2,...,n},
if m,(F) = F holds for all 7= 1,2, we say that F is an invariant subset of {7, m},
or, F' is a common invariant subset of m; and m,. Obvious, there exist disjoint min-
imal invariant subsets Fi,Fa,...,F, (r <n), of {m,m} suchthat 3! _,#F,=n (i.e.,
U._F;={1,2,...,n}). We say {Fi,F>,...,F;} is the complete set of minimal invari-
ant subsets of {m;,m}. Thus one can reduce the pair {m;,m,} of permutations into r
pairs {7y, Mo, }5_, of small ones, where 7, = 7|, . It is easily checked that {m;, 7, }
has the property (C) if and only if each of its sub-pairs {7y, T} has the property (C).

Now let us come back to the case of n =4. Let {F;}/_,, 1 <r <4, be the
complete set of minimal invariant subsets of {7}, }. Assume that #F < #F < ... <
#F,. It is clear that,
if =23, then #F| =#F, =1, #F3 =2, and hence {m;, m} has property (C) if and only
if one of 7; is the identity;
if r=2, #F) =1 and #F, =3, then {7, m} has property (C) if and only if for each
i€F, m(i) # m(i);
if r=2, #F) =#F, =2, then {m, m} has property (C) if and only if 7|r, # m|F,, s =
1,2, and equivalently, m; (i) # m,(i) for any i and {m;(k),m(k)} = {m(j), m(j)} =
{k,j} for some distinct , j.

So, to detect whether or not {m;,m,} has the property (C), the only case left is
r=1, that is, {m;,m} has no proper invariant subsets. This will be done in the next
proposition.

PROPOSITION 3.4. Let 7y, m be two permutations of (1,2,3,4) having no proper
common invariant subsets. Then {m|,m} has property (C) if and only if the following
conditions are satisfied:

(1) Forany i, m (i) # m(i).
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(2) For any distinct i, j, {m (i), m (i)} # {m (), m(j)}.

Proof. Assume that {m;,m,} satisfy the conditions (1)-(2). For any i, we have to
show that we can choose one element in 7, (j) € {m1(j),m(j)} for each j# i so that
{nhj(j)aj 7é l} = {1727374} \ {l} :

Case (i). i € {m (i), m(i)}. Say m (i) = i; then obviously the choice {m;(j): j #
it ={1,2,3,4}\{i}.

Case (ii). i & {m (i), m(i)}.

Let ji,j» such that 7 (jo) =i =m(j1); then i & {ji,j2}. By the condition (2),
m (j1) # m(j2)-

If {7 (j1), m(j2)} = {mi (i), (i)}, then {m1 (j1), ma(j2) }U{mi(j) - j € {i. j1, j2}}
={1,2,3,4}\ {i} and we finish the proof.

In the sequel, assume that {m;(j;), m(j2)} # {m (i), m (i)}

If (j1) = m(i) or m(j2) = m (i), saying m(j2) = m (i), then we have {m(j2)}
U{m(j) : j € {i,jnt} = {m(j) : j # jo} = {1,2,3,4} \ {i}, and then the proof is
finished.

Thus we may assume that {7 (j;),m(j2)} N{m(i),m (i)} = 0. Take j3 so that
;3)=m(j1). As m(j1) # m(j2), we have j3 # ja. Since mi(j1) # ma (i), m (1) #
J1) =i, we have j3 & {i, ji, j2}. We claim that 7 (j3) # m»(j2). In fact, if 7 (j3) =
J2), then one gets {m(j1),m(j2)} = {mi(j3),m(j3)}. Itis clear that {i,m(j;),
m(j2)} has three distinct elements, {7;(j1),m(j2)} = {m(j3),m2(j3)} implies that
m (i) = m(i) € {1,2,3,4}\ {i,m(j1),m(j2)}, which contradicts to the condition (1).
Thus we get a set {m(j1),m(j2), 7 (j3)} of distinct elements, and hence {m(j;),
m(j2),m(j3)} = {1,2,3,4}\ {i}. So the conditions (1) and (2) imply that {m;,m,}
has the property (C).

Conversely, if any one of the conditions (1) and (2) is broken, then it is easily
checked that {m,m} cannot have the property (C). For instance, if (1) is broken,
then there is i such that m (i) = m(i) = j. As m and m have no proper com-
mon invariant subset, we must have j # i. It follows that j & {m(h),m(h);h # i}
and hence {m,m} does not have the property (C). If the condition (2) is broken,
then {m (i),m (i)} = {m(j),m(j)} for some i # j. If i € {m(i),m (i)}, saying
m (i) =i, then m(i) = m(j) # j as m and m, have no proper common invariant
subset {i,j}. This implies that j € {m;(h),my(h)} for each h € {1,2,3,4}\ {i,j} =
{h1,hp} and {m (h),m(h2)} = {m1(hy),m2(h2)}. Now it is clear that there exists
no choice of 7'(¢) € {m (¢),m(¢)} so that {7'(s) : 1 # j} ={1,2,3,4}\{j}. If r &
{m(¢),m(z)} foreach ¢ € {i,j}, then for any choice of 7'(r) € {m(r),m>(¢)}, at least
one of {m(i),m (i)} does not belong to {7'(z) : 1 # j}. Hence {m,m} has no the
property (C) if (2) is broken. [

S

(
(
(
(

Proof of Proposition 3.1. Obvious by Proposition 3.3, Proposition 3.4 and the
discussion before it. [

Before ending the section we list the following lemma which comes from [9] and
will be used frequently in Section 4.
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LEMMA 3.5. Suppose ©p : M, — M,, is a D-type linear map of the form

(aij) — diag(f1, f2, ... fn) — (aij) (3.2)

with (fi,f2,...fu) = (a11,a22,...,au)D for an n x n nonnegative matrix D = (d;;).
Then, ®p is positive if and only if, for any unit vector u = (uy,ua,...,u,)" € C", we

12
have fi(u)=3", dij‘uiF # 0 whenever u; # 0, and Zuﬁéo % <1

4. Positivity of @z, on M, with arbitrary {m,m}

By Proposition 3.3, a D-type map @y, 5, on 4 x 4 matrices constructed from a
pair of permutations {7, m} is positive if {m,m} has the property (C). However,
the property (C) is not a necessary condition. There are many examples that @y, 7, is
positive but {7, m,} doesn’t have the property (C).

EXAMPLE 4.1. Let 7, m, be permutations defined by 7;(1) =2, m;(2) =1,
7'[1(3) = 3, 7'[1(4) = 4; and 7'[2(1) = 2, 7'62(2) = 1, 7'[2(3) = 4, 7'[2(4) = 3. Clearly,
{m,m} does not have the property (C), but the D-type map D@, z, : M4 — My defined
by Eq. (3.2) is positive (See Proposition 4.2).

The purpose of this section is to discuss the positivity of @y, », for pair of arbitrary
permutations, which are basic to our proof of the main result Theorem 1.2.

Let {F;}._, be the set of all minimal common invariant subsets of {m,m}. As
m # m, we have r < 3; also, if r = 3, by the discussion before Proposition 3.5,
{m,m} must have property (C).

If r <2, then we have two cases: #F| =#F, =2 and #F| = 1, #F, = 3. We deal
with these two cases in Proposition 4.2 and Proposition 4.3 respectively.

PROPOSITION 4.2. Let Ty, 7 be two permutations of (1,2,3,4) with {F},F>}
the set of minimal common invariant subsets. If #F| = #I, = 2, then @y, 7, is positive.

Proof. Let Fy = {i,ix} and F» = {i3,is}. By Proposition 3.3, we may assume
that {7y, m} has no property (C). Thus, by Proposition 3.1 and the discussion before
Proposition 3.4, with no loss of generality, we may assume that

mi(iy) = o, mi(iz) = iy, mi(i3) = i3, mi(is) = iss
m(i1) = ia, m(iz) = iy, mi(i3) = ig, Wi (is) = i3,

where {i1,i,i3,is} = {1,2,3,4}. By Lemma 3.5, @y, 5, is positive if

Xi

(i) Hmy (i)

4
f(x17x27x37x4) = 21:1 2xi+x”1
X,

=3 +3
IWEF 2y by 4 Fomy ) | IS Ty i) Py i)

= — + 2 (4.1)

2)(,'1 +Xﬂ1 (i) +x”2(il) 2)(,'2 +x,[l (in) +Xﬂ2(i2) :
+ i + a
2Xf3 TXry (i3) Ty (i3) iy T (ig) T¥my(ig)
— ! ) + X3 + ‘4
- 2)(,'1 +2x,-2 2x,-2 +2X,‘l 2)(,'3 +X,'3 +X,'4 2Xi4 +X,'4 +x,-3 =
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holds for any point (x1,x2,x3,x4) with x; > 0 and x; +xy +x3+x4 = 1.

By Corollary 2.4, all possible extremum values of f are bounded above by 1. So,
the inequality (4.1) holds if f is also bounded above by 1 at the points that some x;s
are zero. Clearly, if there are at least two of x;s are 0, then, f(x1,...,x4) < 1. So, we
need check the case that only one of x;s is 0.

If x;, =0, or, if x;, =0, we get

Xi

4
f(xlax27x3’x4) = 21:1 2xi+xn:1

(i) Fomy (1)
_ 1 1 1
— §+ x,-4 + Xi3 X
34zt 344
‘13 14
by Lemma 2.1.
If x;; =0, or, if x;, =0, we have
fx1,52,x3,x4) = 3F i
1,A2,A3,44 =1 2xi+xn:1(i)+xn:2(i)
1

1 5
= — + —+3=z<1
24202 a4l 36
gt )
Therefore f(x1,x2,x3,x4) < 1 holds for all non-negative xj,...,xs € R with x; +
-+-+x4 = 1, and consequently, @, , is positive. [l

PROPOSITION 4.3. Let my,m be two permutations of (1,2,3,4) with {F},F»}
the set of minimal common invariant subsets. If #F1 = 1 and #IF, = 3, then ®p, 5, is
positive if and only if {m,m} has the property (C), that is, for any i € F», m (i) #
m(i).

Proof. Let F; ={i1} and F> = {i»,i3,i4}. By Proposition 3.3, we may assume
that {7y, m} does not have the property (C) and show that @, r, is not positive. Thus,
by Proposition 3.1 or the discussion before Proposition 3.4, there is at least one i € F,
so that 1 (i) = my (i) #i. As m; # M, , we may assume further that 7 (iy) = m(in) = i3.
So we have

m (i) = i1, m(i2) =13, m(i3) = ia, m(ia) = i2
and
m(i1) =i, m(iz) =13, m(i3) =iz, M(is) = is;
Now it is clear by Lemma 3.5 that @y, 7, is not positive whenever
F (1, x0,x3,%4) = i, T, ﬂnjk R

— h + 2
2xil +xik+xil 2)Ci2 +x,-3 j‘rxi3
i3 tiy
2)61'3 +x,-4 eriz 2x,~4 +_xi2 +x,~4 .
1 ) Xiz Xig

4 2xiy +2xi4 2xjy HXiy Xiy + 2y +Xip iy >

for some points (x1,xp,x3,%4) with x; > 0 and x; +xy +x3 +x4 = 1. This is true
because, if x;, = 0, then we have

f—l—i- 1 +1
4 2_;_;(’4 3’

3
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which is not bounded above by 1. For instance, taking x;, = %, X, =0, xi; = 11—0

1 1
andx,-4:m,thenfzz+ O

For the case r = 1, that is, [(7,m,) =4, we have

PROPOSITION 4.4. Assume the permutation pair {m;,m} of (1,2,3,4) has no
proper common invariant subsets. Then @, r, : My — My is positive if and only if the
following conditions are satisfied.

(1) 71(1) # mali) for any i;

(2) if there are distinct i, j, such that {m (i), 7 (i)} = {71 (j), m(j)}, then neither
7y nor m has fixed point.

Proof. Note that, if {m;, >} has the property (C), then (1) is satisfied.
Firstly, let us prove that if 7y, satisfy the conditions (1) and (2), then @y, 7, is
positive.
Assume (1) and (2); then, for any i, we have (i) # m (i) and i & {m (i), (i)} .
By Proposition 3.3 we may assume that {m;,m,} does not possesses the property (C).
Thus it follows that, there are iy,iy,i3,is € {1,2,3,4} with {i},i,i3,i4} = {1,2,3,4}
such that
{m (i), m(in)} = {m(i2), m(i2) } = {izia} (4.2)
{mi(i3), m(i3)} = {mi(is), ma(ia) } = {ir, i2}- '

By Lemma 3.5, the D-type map @y, z, is positive if and only if

f(x17x27x37x4 < 1

M-u

=1 2xi +xnl( i) % i)

holds for all non-negative xi,x2,x3,x4 € R with x; +---+x4 = 1. By Eq. (4.2), we
have

_ x4 X
f(xl7x27x37x4) - zl 1 —2x1+xn1(1)+xn2()
_ Xiy + Yiy + 4
20y Xy i) Py i) 2oy oy (i) +X7)?(i2) 5{("3)'””2( 2y T (i) Ty
_ Xiy Xip &} iy

- 2xil +x,~3 +x,~4 + 2x,~2 +x,~3 +x,-4 + 2)61'3 +x,-1 +x,-2 2x,~4 +xil +x,~2 :

x,-3 Xi

+ 2xiz g i3) iy)

By Corollary 2.4, it is easily seen that all extremum values of f are bounded above
by 1. For the values of f at points on the boundary of the region {(x1,x2,x3,%x4) : x; >
0,x1 +x2 +x3+x4 =1}, if at least two of x;s are 0, then obviously f(xy,x2,x3,x4) < 1.
Assume that only one of x;s is 0.

Consider the function

1 1 1 1 s t
2+s+t+2+%+2+,l R RN P I P

g(S,t):

where s >0 and 7 > 0. As

s+ 1)2t+1)+s(s+1+2)(2r4+1)+1(s+1+2)(25+ 1)
= 45’ +4st> + st +s° + 12+ ds+ 4t + 1,
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(25 + 1) (2t + 1) (s +14+2) = 457 +4st> + 125t + 25> + 26> + 55+ 5t +2
and 25t < s+ 12+s+141,itis easily checked that

(s—1)>+s+t+1

st == N e +12)

holds for any > 0 and s > 0. Applying the above inequality, we see that
if x; =0, then
f=34 W

1
I W
0 o ST

xl3

4B

if x;, =0, we get

[ S R -
=1 2t 1)y (i)
1 1

2434 Tt nm

xl l )(13 Xi4

if x;; =0, we get
f zz 1 2XI+xni( )er,,z()
14 T Yo
25 2+Xi2 2

<1

if x;, =0, we get
— v4 X
f=Xia 2xitaig (i) oy (i)
- 2+lxli + 2_;,_1‘& + " lll 2 < 1.
)Cll X,z \/13 Xl3

So we have shown that f(xj,x2,x3,x4) < 1 holds for any x; >0, i =1,2,3,4,
with x1 +x2 +x3 +x4 = 1. Therefore, @y, 7, is positive.

Conversely, we show that @z, 5, > 0 implies both (1) and (2) hold. To do this,
it suffices to show that any one of the following conditions (a) and (b) will imply that
@y, 7, 18 Ot positive:

(a) there is i such that m; (i) = m(i);

(b) if there are distinct i, j such that {m (i), m (i)} = {m (j),m(j)}, then m; or
m, has fixed point.

Since the proof of “(a)=> @z, z, is not positive™ is a little more complex, we first
treat the case (b).

CLAIM 1. (b)= ®p, z, is not positive.

Suppose that (b) holds. Because of (a), we may assume that 7y (k) # m, (k) for any
k=1,2,3,4. With no loss of generality, say m; has fixed points.

Case (i). m; has two fixed points. In this case m; and m, have the forms

m(in) =i, mi2) =i2, m(i3) =is, m(is) =1i3;
m(i) =13, m(ix)=is, m(i3)=1i1, mis)=is.
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Then we have
{m (i), (i)} = {mi(ia), ma(ia) }
and thus, by Lemma 3.5, @z, z, is not positive if

Xi

__ V4
f(x17x27x37x4) - 2111 2Xi+xnl(i)+xn2(i)

— Xil _|_ xiZ _|_ xi3 _|_ Xi4 (4 3)
2y iy (i) Ty i) PVip (i2)+x7)?(i2) 2xig +Xﬂ&(i3)+xﬂ2(i3) iy 0y (i) Ho (ig) ’
_ Xiy Xiy i iy

T 2x Xy g + 2xjy +Xip iy + 2xjy HXiy Xiy + 2y +Xiy i

> 1 for some point (xj,x3,x3,%4) with x; > 0 and x; +xp +x3+x4 = L.
Let x;; = 0; then x;, +x;, +x;, = 1 and, by Eq. (4.3),

_v4 Xi
f—Zizlw

O T¥m ()
=5+ B+ g
%
1 1 11 _ 9899
If we take xi; = 150555 Xiy = 105 and Xi, = 1 — 15000 — 195 = Toooo » then
f z’*l 2”’%1()“@()
Lt 100 Lol 11631 > 1.
3 + 9899 2+ 00

So, @y, r, is not positive.
Case (ii). m; has only one fixed point.
We check this case by considering six subcases.
Subcase (1). 7, m, have respectively the forms

m(i) =i, m(ix)=1i, m(i3)=is m(is)=id;
m(i) =13, m(ib)=1i, m(3)=iy mis)=1s

Then
{mi(in), m (i)} = {m(i2), m(i2)} = {i1,i3}
{m(i3), m(i3)} = {m(is), ma(ia) } = {in,ia}.

Thus @, 7, is not positive if

4 i
f(x17x27x37x4) = 2[:1 2Xi+x7r1)(ci)+x7r2(i)
_ Yiy Xiy Y3 Yiy
= + + + .
Zxiy Jrxm('l)ﬂﬂz( ) _inz +xm (iz)+x’)?(i2) 2xi3 Jrx”}c(."z»)J”C”z(tj) iy Hy (i) oy () (4.4)

_ Xy i i3 iy
T2, Xy g + 20y Xy iy + 2y iy iy + 2y +Xip iy

greater than 1 at some point.
Let x;, =0, we get

R Xi
f=%= 2xi+xni(i)+xﬂ2(i)
_ 1 1

“nm amty

Xil
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The following subcases (2)-(6) are dealt with similarly.
Subcase (2). m;,m, have respectively the forms

m (i) =1,
m(ir) =4,

Subcase (3).

my (i) = i1,
m (i) =i,

Subcase (4).

Subcase (5).

my (i) = i1,
m(iy) = ia,

Subcase (6).

m (i) =1,
m(iy) = i3,

my(iz) = i3,
m(ia) =1,
my(ia) = i3,
m(in) =4,
my(ia) = ia,
m(ia) =1y,
my(ia) = ia,
m(ia) = i3,
mi(ia) =4,
m(ia) = ia,

Therefore Claim 1 is true.

ﬂ:l(i3) :i47
m(i3) =i,
mi(i3) = ia,
ﬂ:l(i3) :i37
mi(i3) = ia,
ﬂ:l(i3) :i37
mi(i3) = ia,
mi(i3) =11,
ﬂ:l(i3) :i27
mi(i3) = ia,

my (i) = in;
m (i4) = i3.
m (i4) = in;
m (i4) = il.
m (i4) = i3;
m (i4) = i2.
m (i4) = i3;
my(ia) =iy
m(is) = i3;
my(ia) = i1

ﬁ, and x; = %, we get f~ 1.1631 > 1, as desired.

CLAIM 2. (a)=- @y, x, is not positive.

As m,m have no proper common invariant subsets, if there exists i such that
ﬂl(i) = TL'Q(i), then TL'h(i) 7é i,h=1,2.

Case (i). There are iy,i, such that my(i;) = m(i1) and 71 (iz) = m(in). We have
six different situations.

Subcase (1).

m(i) =i, m(ih)=1i, m(3)=i, m(ia)=is
m(i) =i, m(h)=1i, m(3)=is, m(ia)=1i1.

In this situation,

f(-xl ,X2,X3 7-x4) 21:1 2xi+x7rl(i) +x7[2(’_)

X X, Xi

4 (4.5)

_ 1 Xip
+ 2xiy 0y (i) Fom (ig)

2xiy (i) Fimy i) 2 T (i) Ty (i)
Xi Xj X

12 +
2x,~2 +2x,-3 2x,'3 +xi| +xiy

3
+ 2xi3 +xn1 (,-3)+x,[2(l-3)
Xi,

— al
= 2y, 2,

2x,~4 +x,~4 +xil :

Let x;, =0, we have
_v4 Xj
! . i it i) Hy
- X; + — + 3
2423
3
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: 1 1 __ 9899 :
Taklng Xiy = 10000 * Xis = 100 and Xiy = 10000 gives

—_v4 X
f= 2‘:1 2 i >+Xn2<i)1
7~ 132 1.
2+291809(2) T 00 M 3238 >
Then, by the Lemma 3.5, @z, , is not positive.

Subcase (2).

(i) =i, m(ix) =is, m(iz) =iy, m(is)=i3;
m(i) =i, M) =i, m(i3)=1i3, mis)=1;.

By Lemma 3.5, ®p is not positive if

—v4 X
f(-xl 7-x27-x37-x4) - 21:1 2Xi+x7[l (i)+x7[2(i)
iy Xiy i3 iy
= + 5 + 75 + 50 4.6
2xi; -?-xnl (il)+Xﬂ2E€:.l) 2xiy +x7‘lx(_"2)+x”2(i2) 2?_3 +X7 (i3) Ty (i3) 2xiy X (ig) Ty (i) ( )
— il iy i3 iy

2x;, +2x; 2x;, +2x; 2xi, +Xi, +X; + 22X, +Xi, +xi, "
1 2 2 4 3 1 3 4 3 1

> 1 at some points (xy,x2,x3,x4) with x; > 0 and x; +x, +x3+x4 = 1. Let x;, =0,
we get

_v4 Xj
f=2m zxt“lm()ﬂ?()
== + + x,3 .
242 Xlz %
. 1 1 9899
Taking xi; = 15000 > Xis = To5 @04 Xi, = Tooo0 21Ves
f= 2‘} I
i=1 2X’+x"11()+x7‘2()
oo + 3+ — ~ 1.3258 > 1.
2+29899 2+ 100

Subcase (3).
m(in) =i3, mi2) =is, miz) =i, m(is) =i
m(it) = i3, m(i2) =is, m(iz) =iz, m(is) =1is.
In this subcase, @y, 7, is not positive if

Xi

_v4
f(x17x27x37x4) - 2111 2Xi+xnl(i)+xn2(i)

x,l x,z x,3 x,4
= 5= + 5= + 5= + 5= 4.7
2x;, X (i) T (1)) 2xiy +x7rlx(,"2)+xn2(i2) 2?_3 Ty (i) Py (i3) iy Ty (i) Hmy i) (4.7)
_ i i i iy

2x 1 +2)c,-3 2x,—2 +2x; 4 2x,-3 +xi) +xiy 2x; 4 HXiy i

> 1 at some points (x1,x2,x3,x4) with x; >0 and x; +xp +x3+x4=1.
Let x;; =0, we get

f= ) DR R
=1 2tz 1)y (i)
1

_ 1
-2 iy + Ny T
2425t 2hplei2
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Take x;, = %, Xj, = ﬁ and x;, = Then

100

_\v4 Xi
f_zi:”f“mg (i)
=l o+ g~ 1019 > 1.

Subcase (4).

m(i) =iz, m(ix) =10, m(i3) =iy m(is)=is;
m(ih) =13, m(ix) =i, m(i3)=1is, m(is)=is.

In this subcase we have to check

—v4 X
X1,X2,X3,X4) = 2i 1 7oy oo
f( 1,42,43, 4) 21_1 2xi+x7rl ) T ()
= My + Xiy + i3 + iy (4 8)
iy (i) Py i) 2V P (1) Py lig) R o () Py i3) P o i) P Gy)
— 1 2 3 iy
inl +2x,~3 2x,~2 +2,x,-1 Zx,-3 eriz +x,-4 + 2x,~4 +x,4 +x,~2

> 1 at some points (xy,x2,x3,x4) with x; >0 and x; +xp +x3+x4=1.
Letting x;, = 0, we get

_ yv4 Xi
- z1211 2t g )+x7f2()

= —=—+ —|— .
24253 2474 3
o 3

1 R | .
10000 Yis = o0 and xi = 10000’ then

f=xk 2)‘1*}%() 0

LGl
= ot HE A 1328 1

If x;, =

Subcase (5).

m(in) =14, m2) =i, m(i3) =i, m(is)=13;
m(it) =is, m(i2) =i, m(iz) =i3, m(is) =1ia.

@y, 7, is ot positive because the function

171 2x; +x,,1 (i ) +xﬂ2( i) . . .
— Xiy + Xiy + iy + iy
inli_rx’fl("l)er”Z%_l) 2xi2+x”lx(,"2)+x”2("2) 2ﬁ3+xn1 (i) Ty (i3) Zx,-4+x,[l(,-4)+xn2(
_ i i i3 iy
T 2xy+2x, 0 2xi,+2x + 2xjy +Xip +Xiy + 2, HXiy Xiy

(4.9)

is)

has value ~ 1.3258 > 1 at the point of x;, = fasss, x;, =0, Xi; = 15555 and Xi, = 755 -
Subcase (6).

mi(in) =is, mi2) =i3, miz) =i, m(is) =i
m(i) =is, mm(ix) =103, m(i3)=1iy, m(is)=1;.
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@y, 7, is not positive in this subcase because

Xi

_ 1
ek +’fm< e T o iy) Ty ) N
+ 2 + - + - 4.10
2;{'2 Ty (i )+xﬂ2( ) i +))CC7?1 (i3) Ty (i3) x_zxi4 Ty (ig) TV (i) ( )
i i ia

= 2)6,-1+2)c,-4 2x,2+2x,3 + 2x,-3 X3y iy + 2x,-4 iy iy

achieves its value ~ 1.019 > 1 at the point of x;, = 1(9)0 = ﬁ , Xi; =0 and x;, = 19—0.
Case (ii). There is only one i such that 7 (i) = m (i )
We have twelve subcases.
Subcase (1).
m(i) =i, m(ix) =103, m(i3)=is, m(is)=ip;
m(i) =i, mm(ix)=is, m(i3)=1i1, m(is)=is.
In this case
flxn,x0,x3,04) = 3, - = al
e B )T i) i ) )
+ o + i iy (4.11)
iy Hry (i )+x7f2( ) 2X'3+Xﬂ1()63)+x7f2( ) iy Ty (i) Ty (i) ’
Xiy + Xy + 3 + Xigy
2x,1 +2)c,2 2x,—2 Xy iy 2x,-3 +Xi, Xy 2x,-4 ERTRE .
If we let x;, = 0, then
_ 4 X 1 1 1
f=1%in 2xi+xn1<i>+xnz<i> 2433 i3 +3 ’4 * 2+¥ + 2+§Q'
[ 13 14
— 0y =1, _— 98
Take xi; = xi, = 1505 Xiy = 190 » WE g€t
=34, = 1o +2x1.16>1.
1= 2x,+x,,l( )+xﬂ2( i) 1+ 3
So @y, 7, is not positive.
Subcase (2).
mi(in) =ia, mi2) =i3, m(i3) =1is, mis)=1ip
m(i) =i, mp)=i, m(i3)=i, m(is)=is
Then
flxn,x0,x3,04) = 3, - = 1
e B )T i) i T ) )
+ o + by iy (4.12)
iy H¥m (i )+xﬂ2( ) 2x’3+xﬂ1(x“>)+x7f2( ) PN T (ig) Ty ig) ’
X; X i3 Xiy

= 2x,-1 +2)c,-2 + 2x,—2 i3 iy + 2x,-3 iy +xig + 2x,-4 iy iy

Let x;, =0, we get

% 1y 1 1
f=xh 2ty <>+Xn o2t nm
X’3 )Cl4
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Itis then clear that x;, = g, x;, = 15 and X;; = 1 — 155 — 15 = 155 gives
1 1
4 o 14 + ~1.144 > 1.
f=2i it ) Hme) 2 3449 3+qg
Subcase (3).
m(i) =i, m(ix) =103, m(i3)=1i, m(is)=is
m(i) =i, m(ia) =i, m(i3)=1i3, mis)=1;.
We have
_v4 Xi _ Xiy
X1,X2,X3,X4) = D =
f( 1,425 3_” 4) 2171 2x,—+x,[ (i)+xﬂ2(i) 2X’-1+Xﬂ1(j(1_)+x7f2(il)
+ Xiy + i3 iy
2x,-2 +x,[l (i) +x7r2 (in) 2)(,3 +Xﬂ1 (XS)+X,[2( ) 2x,-4 +x,[l (ig) +xﬂ2 (ia)
Xi| Xiy i3 Xiy
2x,1 +2)c,2 2x,—2 Xy iy 2x,-3 Xy iy 2x,-4 X, iy :
Letting x;, = 0 gives
=3t =13 ! !
g - X; X,
= 2xt+xn1<>+xnz<) 2 Sy

So, taking x;, = ..

S O
100> Yia = 10 @

I _ 89
T00 — 10 — 100 > ONC gets

=14 1 L ~1.155>1
f zl—l 2x,+xnl()+xn2() 2 + 3+819 + 3+1170 . .
Subcase (4).
m(i) =i, m(ix) =103, m(i3)=1i, m(is)=is
m(it) =ia, m(i2) =i, m(iz) =is, m(is) =1i3.
Then we have
_v4 X _ Xiy
X1,X2,X3,X4) = 2 =
fox,03,0) = Xy 2Xi+xn}c(i)+xn2(i) 2xiy gy ()ig)""xnz(il)
+ Xiy i3 iy
2x,-2 +x,[l (i2)+x7r2(i2) 2)(,'3 +Xﬂ1()i[3)+x7r2(i3) 2x,-4 +x,[l (i4)+xn2(i4)
i xiz i3 Xi
2x,1+2x,2 2x,—2 +xiy X3 2x,-3 x| Xy 2x,-4 +xiy iy
Let x;, =0, we get
_1 1 1
e v i
13 1 14
Th . 1 1 L 1 1 _ 9
en taking x; = 500 Xis = 735 and x;, = 1‘%‘% = m,wehave

_ v4 Xi _ 1 9 1
f=S ny gy =2 Tt 2 1021 > L

Subcase (5).

my(iy) = iz,
m (i) =1,

my(in) = ia,
m(ix) =1y,

mi(i3) = i3,
m (13) = i47

m(ia) =i;
m (i4) = i3.

(4.13)

(4.14)
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For this subcase we have

_v4 Xi _ Xiy
X1,X2,X3,X4) = i =
flrn,x2,03,34) Ziz1 2x,~+x,[}((,-) Trmy) 2% ()ig)ﬂlrz(il)
+ o) i + Y (4.15)
2xiy Ho (i) Ty () Hoi3 Py (1) Pmy (i3)  2Xig T4y (i) Ty i) ’
_ My Xiy + Xi + iy
- inl +2x,~2 2x,~2 +x,~4 +xil Zx,-3 +x,-3 +x,-4 2x,~4 +xil +x,~3 :

It is clear that, if x;, = 0, then
4
Xi
f P p—
; 2x; + X (i) + Xy i)

1

1 1
Ty

1

5+ X X;

2 343 24742
13 14 14

Thusifwetakex,-4:19—0,x,-l:21—0andx,-3:21—0,weget

1 1 9
=—4+—+—=1.021>1.
f 2+21+19

Subcase (6).
m(iz) =ia, m(i3) =iz, m(is) =11
m(i3) =i, m(is) = iy

m (i) =1,
m(ix) = i3,

m(iy) = ia,

In this subcase we have
_v4 X _ Xiy
f(xlaxZax37x4) - 21:1 2Xi+xn}c(i)+xn2(i) 2)(,'1 +Xﬂ1 (Q_)+x”2(il)
3 iz
+ 5= 4.16
Zx;t_ X0y (i) ¥y (i) ( )

Xi
+5 : .
iy T (1) Py (i) iz Hiy ()ig?)+x”2(i3)
Xi) i3 iy
2y +Xiy tXiy 2xjy +Xig i 2y HXiy iy

il

= 2x,-1 -i-2)(,'2

Then letting x;; =0 and x;, = 7 gives

Subcase (7).
m(iy) =i, m(ia) =is, m(i3)=1i,
m(iz) =iy, m(i3) =13,

m(iy) = ia,

In this subcase we have
4 Xi
X1,X0,X3,X4) = 2| AT
Flnx2,x3,%) = Fiy i (i) Ty i) % (4.17)
4 N

xi2 x,3 +
2x,~3 iy X7 2x,'4 +xiy iy

* Zxip iy Xy

_ Xiy
_2xil+2xi2
Then. taki 0.y =L x.=Llandx =1-—-L _L_ 8 t
en, taking x;, =0, xi; = 155, %i; = 15 and x;, = 00— 10 = 100> W€ g€
~1.144 > 1.

1 1 1 1 1 1
f: _+ X7 + X — A T + 10
2 Mgkt 2034 34
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(i) =ip, m(ix) =is, m(iz) =iy, m(is)=i3;
m(i) =i, m(i)=1i, m(i3)=1is, mis)=1;.
Then we have
4 X
Fx1,x2,x3,%4) = Xy m
X Xiy Xiy Xiy
2x’l +2x + Zx,-z +x,~4 +x,~3 + 2x,~3 +xil +x,~4 + Zx,-4 +xil +x,-3 :

1

1 98

[ =0, Xy =X, = 15 =1L _ L _ 98
If xiy =0, xi; = xi, = 155 and x;, = 1 — 155 — 700 = 700> We get

1 1
: : 0+3

_ 1
f=mmt

xiz X'2

Subcase (9).

el v
s T

m(in) =ia, mi2) =i, m(iz)=1i3, m(is) =is
m(it) =i, m(i2) =i3, m(iz)=1is, m(ig) =11
Obviously, we have
_ 4 X
Fx1,x2,x3,%3) = ¥y W
Xiy + Xin i3 + iy
2x’l +2x Zx,-z +xil +x,~3 2x,~3 +x,~3 +x,~4 Zx,-4 +x,-4 +x,-1 :

Now if we take x;, =0, x;; = ﬁ, Xj, = 10(1)—00, and x;, = 190000, then
f= 3= T i~ 1163 > 1
2+ 3+;;‘L 37498 3y 3
Subcase (10).
m(in) =ia, mi2) =i, m(iz) =1i3, m(is) =is
m(i) =i, mm(ix)=is, m(i3)=1i1, mis)=13
Clearly,
f =¥ w e |
Xi ) Xl3 Xiy

= 2, +2x,

If x;, =0, we get

_ 1 1
f=2k Zxitay ()+x7f2() “nmtitom

20y i) iy + 2y iy i) +

1

: 1
Letting xi; = 15000+ Yis = T and x;, = 15500 » We get

f=

iy iy
9899
4 Xi
ziil 2x,+xn ()+xn2()
b+ 4+ i < 1163 > 1.

2+ 9599 B

~1.16 > 1.

2x,~4 +x,~4 +x,~3 :

(4.18)

(4.19)

(4.20)
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Subcase (11).

m(in) =i, ma) =11, mi3)=1is, mis)=13;
m(ih) =i, mip)=i, m(i3)=i, m(is)=is

For this case we have

PO
/= i=1 2xl+xn1( )ﬂﬂz() . . (4 21)
xll )Clz + ,3 + xl4 .
2x,1+2x,2 2x,'2 Xy iy 2)61'3 iy Xy 2x,~4+x,~4+x,~3 .
. _ _ 1 _ 1 _9
Thus, if x;, =0, x;, = 500 Xis = 20 and x;; = To» We get
f= 2+ﬁ++@:§+f—9+%z1.021> 1.
2pgbyct 343
13 13 14
Subcase (12).
m(i) =i, m(ix) =i, m(i3)=is, m(ig)=i3;
m(i) =i, M) =i, m(i3)=1i3, mis)=1;.
Then we have
f zl 1
2x,+xﬂ ()erﬂ 0)
%) Ry xiy X, (4.22)

- 2x,-1+2x,~2 2x,-2 +axi) Xy + 2)6,-3 Xy iy + 2x,~4+x,~3 +xj)

- R T & s
If x;, =0, xi; = 55, Xi; = 55 and x;, = 15, we get

1, 1 9 __
f=3+: x,4+ =i+H+p~1.021> 1

1
PABRGT
By the Lemma 3.5, for subcases (1)—(12) of Case (ii), @, z, is not positive, either.
Hence we have proved that if there exist i such that m; (i) = (i) # i, then Dy, 1,
is not positive. So, @y, 7, is positive implies that there is no i so that 7 (i) = m (i) # 1,
this finishes the proof of Proposition 4.4. [

5. Proofs of the main results

Now we are in a position to complete the proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Note that, by the assumption, 71 and 7, are not the identity
permutation and 7y # m, . Still denote by {F;}’_, the set of minimal common invariant
subsets of 7; and m, and denote by (7, ) the length of {7, m}, i.e., I(m,m) =
max{#F}|_,.

If I(m;, m) =2, then @y, 5, is always positive. In fact, /() = 2 implies either
r =3, in this situation one of my,m, is the identity; or r = 2 with #F; = #F, =2, in
this situation we apply Proposition 4.2.
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If I(m,m) =3 with #F; = 1, then by Proposition 4.3, @y, 5, is positive if and
only if for any i € F; we have 7 (i) # m(i), and in turn, if and only if the condition
(1) in (ii) holds. Since m,m, has a common fixed point, the condition (2) in (ii) holds
emptily. Hence the theorem is true for this case.

If [(m),m) =4, then m, T, have no common fixed point. By Proposition 4.4, it
is obvious that @y, z, is positive if and only if (1) and (2) in (ii) hold. [J

Proof of Theorem 1.3. As m,m, are not the identity, {7, } has the property
(C) if and only if m; (i) # mp(i) for any i = 1,2,3. Thus by [16], 7 (i) # m (i) for any
i=1,2,3 implies that @, , : M3 — M3 is positive. Conversely, if there is some i1 €
{1,2,3} so that ﬂl(il) = ﬂz(il), then 7'L'1(i1) = ﬂz(il) =i € {iz,i3} = {1,2,3} \ {il}.
Thus, with no loss of generality, we may assume that

mi(iy) =i, m(i2) =43, m(iz)=in;
m(i1) =1, m(h)=1i, m(i3)=1i.

It follows from Lemma 3.5 that @y, z, is not positive if

—v3 Xi
f(xl 7x27x3) - 21:1 xiJ,»xnl (i)erﬂz(i)
— Xiy Xiy + Xiy
- xi) +2x;, Xiy +Xi) +Xig 2xiy i)

is greater than 1 at some point. This is the case because letting x; = 0 gives

Xiy + Xiy 2

which has supremum % >1. O
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