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A SURVEY ON THE BÖTTCHER–WENZEL

CONJECTURE AND RELATED PROBLEMS
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Abstract. A fundamental fact in matrix theory is that the matrix multiplication is not commuta-
tive, i.e., there are square matrices X and Y such that XY �= YX . The difference XY −YX is
called the commutator (or Lie product) of X and Y . The commutator plays an important role in
diverse areas in mathematics, for instance, Lie group and Lie algebra theory, perturbation anal-
ysis, and matrix manifold computation. Böttcher and Wenzel proposed the following conjecture
in 2005 : for any real n×n matrices X and Y ,

‖XY −YX‖F �
√

2 ‖X‖F‖Y‖F ,

where ‖ ·‖F is the Frobenius norm. This survey is concerned with the proofs of this conjecture
and the study of its related problems.
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