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HAHN-BANACH TYPE EXTENSION
THEOREMS ON p-OPERATOR SPACES

JUNG-JIN LEE

(Communicated by Z.-J. Ruan)

Abstract. Let V.C W be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts
that every completely contractive map ¢ : V — Z(H) has a completely contractive extension
¢:W — B(H), where B(H) denotes the space of all bounded operators from a Hilbert space
H to itself. In this paper, we show that this is not in general true for p-operator spaces, that
is, we show that there are p-operator spaces V C W, an SQ, space E, and a p-completely
contractive map ¢ :V — Z(E) such that ¢ does not extend to a p-completely contractive
map on W. Restricting E to L, spaces, we also consider a condition on W under which
every completely contractive map ¢ : V — Z(L,(u)) has a completely contractive extension
W — BLy1)).

1. Introduction to p-operator spaces

Throughout this paper, we assume 1 < p,p’ < e with 1/p+1/p’ =1, unless
stated otherwise. For a Banach space X, we denote by M, ,(X) the linear space of all
m X n matrices with entries in X . By M,(X), we will denote M, ,(X). When X =C,
we will simply use M, , (respectively, M, ) for M, ,(C) (respectively, M,(C)). For
Banach spaces X and Y, we will denote by #(X,Y) the space of all bounded linear
operators from X to Y. We will also use #(X) for %(X,X). The ¢, direct sum of n
copies of X will be denoted by £},(X).

DEFINITION 1.1. Let SQ, denote the collection of subspaces of quotients of L,
spaces. A Banach space X is called a concrete p-operator space if X is a closed
subspace of #(E) for some E € SQ,,.

Let E € SQ,,. For a concrete p-operator space X C Z(E) and for each n € N,
define a norm || -{|, on M, (X) by identifying M, (X) as a subspace of Z(¢},(E)), and
let M, (X) denote the corresponding normed space. The norms || - ||, then satisfy

Deo for u € My(X) and v € My, (X), we have [[u @ v||y, ., cx) = max{|[ul[n, |[V[[m} -

My for ue My (X), a € My, and B € M,,,, we have |[auf||, < [[a||||ul/|B]l.
where [|o|| is the norm of o as a member of Z(£}},(}), and similarly for 3.
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When p =2, these are Ruan’s axioms and 2 -operator spaces are simply operator
spaces because the SQ» spaces are exactly the same as Hilbert spaces.
As in operator spaces, we can also define abstract p-operator spaces.

DEFINITION 1.2. An abstract p-operator space is a Banach space X together
with a sequence of norms || - ||, defined on M, (X) satisfying the conditions Z.. and
M above.

Thanks to Ruan’s representation theorem [8], we do not distinguish between con-
crete and abstract operator spaces. Le Merdy showed that this remains true for p-
operator spaces.

THEOREM 1.3. [6, Theorem 4.1] An abstract p-operator space X can be isomet-
rically embedded in JB(E) for some E € SQ, in such a way that the canonical norms
on M,,(X) arising from this embedding agree with the given norms.

EXAMPLE 1.4.

a. Suppose E and F are SQ, spaces and let L = E @, F, the £, direct sum of E
and F. Then L is also an SQ,, space [4, Proposition 5] and the mapping

is an isometric embedding of Z(E,F) into HA(L). Using this we can view
H(E,F) as a p-operator space. Note that M, (#(E,F)) is isometrically iso-
morphic to B(l)(E), L) (F)).

b. The identification L,(u) = #(C,L,(1)) € B(CP,L,(u)) gives a p-operator
space structure on L, (u) called the column p-operator space structure of L, (1),
which we denote by L, (1) . Similarly, the identification L, (u) = %(L,(1),C)
gives rise to p-operator space structure on L, (i) which we denote by L;,(u)
and call the row p-operator space structure of L,y (i) . In general, we can define
E€ and (E')" forany E € SQ,, where E’ is the Banach dual space of E.

Note that a linear map u : X — Y between p-operator spaces X and Y induces
amap u, : My(X) — M,(Y) by applying u entrywise. We say that u is p-completely
bounded if ||ul| pep = sup,, |lu|| < eo. Similarly, we define p-completely contractive,
p-completely isometric, and p-completely quotient maps. We write 6 %,(X,Y) for
the space of all p-completely bounded maps from X into Y.

To turn the mapping space ¢ %,(X,Y) between two p-operator spaces X and
Y into a p-operator space, we define a norm on M,(4%,(X,Y)) by identifying this
space with € #,(X,M,(Y)). Using Le Merdy’s theorem, one can show that €% ,(X,Y)
itself is a p-operator space. In particular, the p-operator dual space of X is defined to
be ¢ %,(X,C). The next lemma by Daws shows that we may identify the Banach dual
space X’ of X with the p-operator dual space ¢ %,(X,C) of X.
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LEMMA 1.5. [1, Lemma 4.2] Let X be a p-operator space, and let ¢ € X', the
Banach dual of X. Then ¢ is p-completely bounded as a map to C. Moreover,

ol pes = || @]]-

If E=L,(u) for some measure p and X C B(E) = B(L,(11)), then we say
that X is a p-operator space on L, space. These p-operator spaces are often easier
to work with. For example, let xx : X — X" denote the canonical inclusion from
a p-operator space X into its second dual. Contrary to operator spaces, Ky iS not
always p-completely isometric. Thanks to the following theorem by Daws, however,
we can easily characterize those p-operator spaces with the property that the canonical
inclusion is p-completely isometric.

PROPOSITION 1.6. [1, Proposition 4.4] Let X be a p-operator space. Then Kx
is a p-complete contraction. Moreover, Kx is a p-complete isometry if and only if
X CHAB(L,(u)) p-completely isometrically for some measure L.

2. Non-existence of p-Arveson-Wittstock-Hahn-Banach theorem

Let V C W be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem
asserts that every completely bounded map ¢ : V — %(H) has a completely bounded
extension @ : W — Z(H), where H is a Hilbert space. For p-operator spaces, the
following question naturally arises.

QUESTION 2.1. Let V C W be p-operator spaces and E an SQ, space. Does
every p-completely bounded map ¢ : V — Z(E) have a p-completely bounded ex-
tension ¢ : W — AB(E)?

To show that this question has a negative answer, let p # 2, and let E and Lp(Q)
such that E is a Hilbert space embedding to L,(€2). The existence of such E and
L,(Q) is guaranteed by, for example, [2, Proposition 8.7]. Let J : E < L,(€2) denote
the isometric embedding, then we can view E as a subspace of L,(Q).

LEMMA 2.2. Let J be as above. With p-operator space structure E€ and L,(Q)¢,
J becomes a p-complete isometry.

Proof. From Example 1.4, we note that M, (E€) C M, (#(C,E)) = Z(l},, L), (E)).
For [§;;] € M,,(E), the norm is given by

n

> A

J (i l/%i,/)

il = p{z

ZAJ'E(C, Z?Ljpgl}.

P
E J=1

Since J is an isometry,

I s

J=1

Ly(Q) E
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and it follows that

n n p n
In (DI = sup ¢ 311> A4 (&ij) 14 €C, Y I4P <1
i=1||j=1 Ly(Q) Jj=1
n n P n
= sup 2 J(Z)Lé,j> ZAjG(L 2|/lj\”<l
i=1 j=1 Ly(Q) Jj=1

= [lfgllP. O

Let E=C®,E. Let : E — E denote the projection from E onto E and define
¢©:E¢— B(E) and v : B(E) — E€ by

qo(é):Tg, Té(l@pE):O@plé7 ALeC, ecE

and
v(T)=nT(1%,0), TecB(E)

(see the diagram below).

Ly(Q)

RN

EC =———— (E)

It is then easy to check that ¢ and y are p-complete contractions with Yo ¢ = idge.
Suppose that ¢ : E — B(E) extends to ¢ : L,(Q)° — A(E). Define P: L,(Q)" — E¢
by P = yo @, then it follows that P is a p-completely contractive projection onto E°,
meaning that £ must be a 1-complemented subspace of L,(Q2). This is, however,
impossible, because it would imply that a Hilbert space E is isometrically isomorphic
to some L, space with p # 2.

3. A predual of €%,(V,M,)

In this section, we define a normed space structure on M, (V) whose Banach dual
is isometrically isomorphic to €.%,(V,M,).

LEMMA 3.1. Let 1 < p,p’ < oo with 1/p+1/p' =1. Let A ={A;}1<j<n be a
finite sequence in C. Then

/
2l < nP=PL 2,
P
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Proof. There is nothing to prove if p=p'=2.1f p > p', then [|A|[m < ||7L||/;;, <

nl/P=1P1 |||, since nl'/P=1/Pl > 1. Finally, assume 1 < p < p’ and let ¢ = %, > 1
P

and let ¢’ be the conjugate exponent to ¢. By Holder’s inequality,
n /g n p/v'
[ARS Aj|P4 -l = YL e/
o Fz,l |41 J; |41

and hence ||| < nlt/p=1/p']. Al . O
P

LEMMA 3.2. Let o = [oy;] € Ml and B = [Bu] € M. Let 1 < p,p’ < o with
1/p+1/p' = 1. Then we have

_ / _ /
el g ey < il -n PP and || Bl| oo ry < 1B -7 1P,

where

n r , 1/17, r n 1/17
ol = (ZZ |O<ij|”> and ||Bl, = (Z ZIBu”) :

i=1j=1 k=11=1

Proof. Suppose & = {éj};zl is a unit vector in £},. For each i, 1 <i<n, let

/ I/Pl
ni= ‘Z;zl 0, j), then by Holder’s inequality, 1; < (2;21 0|7 ) and by Lemma
3.1,

., 1/p . 1/p
(E nf”) < nlt/r=1irl. (2 n,-’”’) <l gl
i=1 i=1

and hence we get ||a

@) < nll/P=1/P ||| . To prove the second inequality, let
y= BT € M,,,, the transpose of 3. Then by the argument above we have

1Vlzaterany < Nyl /P70,
Since ||')/Hegg((/;/7g:/) = ||[3||,%(/;Z7,;;) and ||y]|, =||B||,, we get the desired inequality. [J
Let V be a p-operator space. Fix n € N and define || - |1, : M,(V) — [0,e0) by
[Vl =inf{[lecl[y[W[[IBllp:r €N, v=awP, o €M,,, BEMy, weM(V)},

3.1
where || ||,y and || ||, as in Lemma 3.2.

PROPOSITION 3.3. Suppose that V is a p-operator space and n € N. Then || -
||1.n defines a norm on M, (V).
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Proof. Suppose vi,v, € M,(V). Let € > 0. For i = 1,2, we can find o;, f3;, and
w; such that v; = aiw,-B,- with HWlH <1 and

Lt )P Bl < (Mvillia+)'. (3.2)

el < ([lvi

Let
o= [0 @), B={g;] and W:[WIWz]’

th P v 7 BIE = 11Bi |5+ | Ba]|%, and <15 _
en [e]l}y = lloall, +lleall . [IBIlp = lIBillp+ B2l and [jw]| < 1. Since vi+vs
awf, it follows that

it vallie < llefly 1Bl
/
el b
(Young’s inequality) < —2 + 11l
p p
P r
_ HOH||I,/+ ||062Hp/ N ||[31||£+ Hﬁz”?
4 P
v v +2e v + v +2¢
(by (3.2)) < 1l H/2”17" +|| lin+1valltn
p P
= [villta+Ivalli.+2e.
Since ¢ is arbitrary, we get ||vi +vall1, < [[villia+ vallin-

For any ¢ € C, if v = awf, then we have cv = o(cw)B and hence ||cv||i, <
||| lel[[wll[Bl|,- Taking the infimum, we get

leviiia < lellvlin. (3.3)

When ¢ # 0, replacing ¢ by 1/c and v by c¢v in (3.3) gives

lel][v In S ”CVHI,n; 3.4)

so (3.3) together with (3.4) gives |[cv||1,, = |c|||v||1,., Which is obviously true when
c=0.
Finally, suppose ||v||1, =0. To show that v = 0, it suffices to show that

vl < w22V ). (3.5)
Indeed, if v= awf with o € Ml,,,,, B € M., and w € M, (v), then

IvIF < [lel[wlllIB]
(by Lemma 3.2) < [|a[[,y - a2~ 120 flw][ - || B, nl' /27177
= PP ol - 1B
Taking the infimum, (3.5) follows. [
For a p-operator space V, let 7,(V) denote the normed space (M,,(V), || - [|1,1)-
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LEMMA 3.4. For a p-operator space V., F,(V) =M,(V') =€ AB,(V.M,) iso-
metrically.

Proof. The second isometric isomorphism comes from the definition of the p-
operator space structure on V’'. We follow the idea as in [3, §4.1]. Let f = [fj;] €
M, (V") =€%,(V,M,). Note that

1Al = sup{[[{(f; oDl : r € N, ¥ = [Wig] € M-(V), [|9]] < 1}

Let D”_ . denote the closed unit ball of E;X’, then

nxr

A1l = sup{[{{(f,7)n,E ) :r €N, F=[pu] € MA(V), |IF]| < 1, m €D, E €D}

= SUP{ > fiTa)nn s

i,j:k,l
/
n EDfom 3 EDZXI’}

= sup{

n EDﬁxrv é 6D£xr}~

creN, v=[iyl e M(V), ||V]| <1,

reN, = [\7]([} GMr(V), ||\7H <1,

D <fij7 D é(i,k)ﬁkm(j,z)>

ij=1 ki=1

Note that 3}, &(ix)Pun(j) is the (i, j)-entry of the matrix product avf3, where
Sy S Ny o N,
o= Do and B = e )

En1y S B -+ M)

IfIl = sup{

=sup{[(fv)]:v=aiB, [ <1, [lally <1, [IBll, <1}
= sup{[(f;)|: [Vll1n <1} (3.6)

Define the scalar pairing @ : M, (V') — Z,(V)' by f+ (f,-), then from (3.6) it follows
that @ is an isometric isomorphism. [

SO

n

Z <fij»(0“7ﬁ)ij>

i,j=1

APE< T fledly < 15 (1Bl < 1}

PROPOSITION 3.5. Let V. C W be p-operator spaces such that the inclusion
Tn(V) — Fh(W) is isometric. Then every p-completely contractive map @ :V —
B(Ly(Q)) has a completely contractive extension ¢ : W — FB(L,(Q)).

Proof. Following [3, Corollay 4.1.4, Theorem 4.1.5], it suffices to assume that
B(Lp(Q)) = B(L}) = M. 1f the inclusion i: Z,(V) — F(W) is isometric, then
by Lemma 3.4, the adjoint ' : €%,(W,M,) — € %,(V,M,), which is a restriction
mapping, is an exact quotient mapping. [J
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4. {,-polar decomposition

Let V C W be p-operator spaces. By Proposition 3.5, if the inclusion 7,(V) —
(W) is isometric, then every p-completely contractive map ¢ : V — #(L,(Q)) has
a completely contractive extension ¢ : W — Z(L,(Q)). In this section, we consider a
condition on W under which the inclusion .7,(V) — ,(W) is isometric. Recall that
the vector p-norm of x = (x,...,x,) € C" is defined by

" /p
Il = (ZX:‘”) :
i=1

If we identify M, with Z(¢3,¢}), the space of all bounded linear operators from ¢}
to ¢4, it is well known that every B € M,,, with r > n has a polar decomposition,
that is, B can be written as 8 = ©f8y, where T € M., has orthonormal columns, that
is, 7 is an isometry, and fy € M, is positive semidefinite [5, §7.3]. For p # 2 and
r > n, regarding M,.,, as %’(62,%), the space of all bounded linear operators from éz
to ¢, we ask if there is an £j-analogue of the polar decomposition. First of all, we
need to define what we should mean by polar decomposition when p # 2, because, for
example, if T : £, — £, then the adjoint T’ is from E;, to E;,, where 1/p+1/p' =1,
and therefore T'T is not defined, which in turn means we lose the concept of positive
(semi)definiteness. We use the definition below as a natural p-analogue of the polar
decomposition.

DEFINITION 4.1. Let r > n. We say that § € M, = B((}),(},) is {,-polar de-
composible if there is an isometry 7 € M., and an operator fy € M, suchthat B =7f3,.

In this case, we say that B = tf is an £, -polar decomposition of B . The set of all full

rank £, -polar decomposible r x n matrices is denoted by Mﬁﬁ) .

REMARK 4.2.

a. If r < n, then there is no isometry in M, = %({},,£},) and hence we only con-
sider the case r > n in Definition 4.1.

b. It is well known [5, §0.4] that rankAB < min{rankA,rank B} whenever AB is
defined for matrices A and B, so if B = 78y is an £, -polar decomposition of a
full rank r x n matrix f3, then

n=rank 8 < min{rank7,rank B} <n
and it follows that rank T = rank By = n. In particular, ) is nonsingular.

c. If B =1y is an £,-polar decomposition of f3, then B, = ||Bo||,, where |- ||,
is as in Lemma 3.2.

To give a characterization of £,-polar decomposible matrices, we begin with a
characterization of isometries from ¢}, to £},. Recall that for a vector x = (x1,...,%n),
we define suppx, the support of x, by suppx={i: 1 <i<m, x;#0}.
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LEMMA 4.3. Let 1 <p <eo, p#2,and r > n. Then t: ), — }, is an isometry if
and only if the columns of T have mutually disjoint supports with each vector p-norm
equal to 1.

"L']j
Proof. Let t;=| . | denote the 7™ column of an r x n matrix 7. If 7,..., T,

Trj
have mutually disjoint supports with each p-normequal to 1, then forany x = (x,...,x,)
€0y, we get

r n P n P
||Tx||£ = Z 2 T,-jxj = Z Z Tijxj'
i=1|j=1 k=liesuppt |j=1
n n
= 2 2 | Taxe|” = 2 | 2 | Tik|?
k=1icsupp 7y k=1 iesupp T
= [|x[I-

Conversely, suppose 7 : {), — £}, is an isometry. Since 7; = Te; for each j, where ¢;
denotes the unit vector in £}, whose only non-zero entry is 1 at the 7 place, it follows
that 7; is of norm 1. To show that columns of 7 have mutually disjoint supports, let
J # k and consider ¢; +-¢; in (7. Since |le; % el|, =2'/7, we get |7+ 5|} =2 and
the result follows from [7, Lemma 15.7.23]. O

REMARK 4.4. The result above remains true when p = 1.

Let V be a p-operator space. For v € M,,(V), we define

Vll2n = inf{ ]|y [ wl|[IBllp : F €N, v= 0w, a” e ML), B eMP) weM(V)},

4.1)
where a! denotes the transpose of o and
n r l/p/ r n l/p
/
el = (ZZ |O‘ijp> and Bl = (Z ZIBu”)
i=1j=1 k=11=1
PROPOSITION 4.5. Let V. C W be p-operator spaces. If |w||2,, = ||W]|1,, for all

w € M, (W), then the inclusion F,(V) — F,(W) is isometric.

Proof. Let v € M, (V). Itis clear that |[v]| 7,w) < [[V|| 7,v) - Suppose [[v|| 7,w) <
1, then by assumption, one can find r e N, v € M, ., B € M,.,,, and w € M,.(W) such
that v = owp, of e M5, B e MP), |laf, <1, |wl| <1, and ||B][, < 1. Let
B = 1Py (respectively, o = o) be £, ~(respectively, ¢},-) polar decomposition of 3
(respectively, o), and set w = 6" wt, then |||y, (w) < 1. Moreover, by Remark 4.2,
o and By are invertible and hence w = (o ) “'vB, ! € M, (V), giving that 1] pg,(v) <
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1. Since v = o wPo, |lef ||,y =letl|,» < 1, and ||Boll, = |Bl|, < I by Remark 4.2, it
follows that [|v[| 7,y < 1. O

For any v € M, (V), it is clear that ||v||; , < ||v[|2,» At this moment of writing, we
do not know of any nontrivial example of p-operator space V such that ||- |1, = ||-[|2.,n-
Itis not even clear whether || - ||2,, defines a norm on M, (V) for some p-operator space
V (see Remark 4.7). However, thanks to Lemma 4.3, we can give a characterization
of £, -polar decomposible matrices which may lead to finding a nontrivial example of
p-operator spaces V such that ||v||;, = ||v||2,, forall v e M,(V).

PROPOSITION 4.6. Let 1 <p <o, p£2,and r >n. Then B = S

— U —
M., = %’(62,%) is £,-polar decomposible if and only if there are uj, ,uj,,...,uj,, not
necessarily distinct, such that each u; (1 <i<r) is a scalar multiple of uj, for some
k, 1<k<n.

— ui —
Proof. Let B = : € M,,, = #(¢},£},). Suppose that there are
—_ Uy —
Uj ,Ujy,...,uj, (notnecessarily distinct) such that each u; (1 <i<r) is a scalar mul-

tiple of u, for some k, 1 <k < n. Rearranging rows of 8 with an appropriate permu-

tation if necessary, we may assume that 1 = j; < j» < j3z < --- < j, < r and that for

i with ji <7< jiy1, wi = cjuj, for some scalar ¢;. For each k, 1 <k < n, we define
P . .

A= <z.fk<i<jk+1 |c,-\1’> . Note that A; is well defined since ¢;, = 1. Define 7 € M,,,

and fy € M, by

[ 6‘12,1 0 0--- 0 T

622,1 0 0--- 0

Cjzflﬁ,l 0 0--- 0
0 Cjzz,z 0--- 0 _ llujl _
0 Cj2+12,20~~~ 0 h
: S : - xR =

T= : : Do : and fy= . ,

0 Cj3_12,20~~~ 0 :
: - — LW —
0 0 0 ¢jh
0 0 0-c¢jria

.0 0 0. chy |

then by Lemma 4.3, it follows that 8 = 73y is an £, -polar decomposition of f3.
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Conversely, assume that § = 7, is a p-polar decomposition of 3. To exclude
triviality, we may assume that 8 contains no rows of only zeros. Let 7, denote the ™
column of 7. By Lemma 4.3, supp 7 # 0 so we can pick j; € supp 7. Moreover, for
each i, 1 <i<r,there is exactly one k(i) such that i € supp T(;) and it follows that u;
is a constant multiple of u;, . [

REMARK 4.7. Let v; € M, (V) and v, € M,,(V) for some p-operator space V,
then one can easily show that |lcvi||2, = |c|||vi]|2,.. Moreover, the decomposition
vy = OClTwlﬂl and v, = OCzTWQﬁQ gives

=[]l [P e) a2

which, combined with Proposition 4.6, shows that ||[vi & va[24m < Vi |20+ [[V2ll2.m-
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