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HAHN–BANACH TYPE EXTENSION

THEOREMS ON p–OPERATOR SPACES

JUNG-JIN LEE

(Communicated by Z.-J. Ruan)

Abstract. Let V ⊆W be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem asserts
that every completely contractive map ϕ : V → B(H) has a completely contractive extension
ϕ̃ : W → B(H) , where B(H) denotes the space of all bounded operators from a Hilbert space
H to itself. In this paper, we show that this is not in general true for p -operator spaces, that
is, we show that there are p -operator spaces V ⊆ W , an SQp space E , and a p -completely
contractive map ϕ : V → B(E) such that ϕ does not extend to a p -completely contractive
map on W . Restricting E to Lp spaces, we also consider a condition on W under which
every completely contractive map ϕ : V → B(Lp(μ)) has a completely contractive extension
ϕ̃ : W → B(Lp(μ)) .

1. Introduction to p -operator spaces

Throughout this paper, we assume 1 < p, p′ < ∞ with 1/p + 1/p′ = 1, unless
stated otherwise. For a Banach space X , we denote by Mm,n(X) the linear space of all
m×n matrices with entries in X . By Mn(X) , we will denote Mn,n(X) . When X = C ,
we will simply use Mm,n (respectively, Mn ) for Mm,n(C) (respectively, Mn(C)). For
Banach spaces X and Y , we will denote by B(X ,Y ) the space of all bounded linear
operators from X to Y . We will also use B(X) for B(X ,X) . The �p direct sum of n
copies of X will be denoted by �n

p(X) .

DEFINITION 1.1. Let SQp denote the collection of subspaces of quotients of Lp

spaces. A Banach space X is called a concrete p-operator space if X is a closed
subspace of B(E) for some E ∈ SQp .

Let E ∈ SQp . For a concrete p -operator space X ⊆ B(E) and for each n ∈ N ,
define a norm ‖ ·‖n on Mn(X) by identifying Mn(X) as a subspace of B(�n

p(E)) , and
let Mn(X) denote the corresponding normed space. The norms ‖ · ‖n then satisfy

D∞ for u ∈ Mn(X) and v ∈ Mm(X) , we have ‖u⊕ v‖Mn+m(X) = max{‖u‖n,‖v‖m} .

Mp for u ∈ Mm(X) , α ∈ Mn,m , and β ∈ Mm,n , we have ‖αuβ‖n � ‖α‖‖u‖m‖β‖ ,
where ‖α‖ is the norm of α as a member of B(�m

p , �n
p) , and similarly for β .
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When p = 2, these are Ruan’s axioms and 2-operator spaces are simply operator
spaces because the SQ2 spaces are exactly the same as Hilbert spaces.

As in operator spaces, we can also define abstract p -operator spaces.

DEFINITION 1.2. An abstract p-operator space is a Banach space X together
with a sequence of norms ‖ · ‖n defined on Mn(X) satisfying the conditions D∞ and
Mp above.

Thanks to Ruan’s representation theorem [8], we do not distinguish between con-
crete and abstract operator spaces. Le Merdy showed that this remains true for p -
operator spaces.

THEOREM 1.3. [6, Theorem 4.1] An abstract p-operator space X can be isomet-
rically embedded in B(E) for some E ∈ SQp in such a way that the canonical norms
on Mn(X) arising from this embedding agree with the given norms.

EXAMPLE 1.4.

a. Suppose E and F are SQp spaces and let L = E ⊕p F , the �p direct sum of E
and F . Then L is also an SQp space [4, Proposition 5] and the mapping

x �→
[

0 0
x 0

]

is an isometric embedding of B(E,F) into B(L) . Using this we can view
B(E,F) as a p -operator space. Note that Mn(B(E,F)) is isometrically iso-
morphic to B(�n

p(E), �n
p(F)) .

b. The identification Lp(μ) = B(C,Lp(μ)) ⊆ B(C⊕p Lp(μ)) gives a p -operator
space structure on Lp(μ) called the column p-operator space structure of Lp(μ) ,
which we denote by Lc

p(μ) . Similarly, the identification Lp′(μ) = B(Lp(μ),C)
gives rise to p -operator space structure on Lp′(μ) which we denote by Lr

p′(μ)
and call the row p-operator space structure of Lp′(μ) . In general, we can define
Ec and (E ′)r for any E ∈ SQp , where E ′ is the Banach dual space of E .

Note that a linear map u : X → Y between p -operator spaces X and Y induces
a map un : Mn(X) → Mn(Y ) by applying u entrywise. We say that u is p -completely
bounded if ‖u‖pcb := supn ‖un‖ < ∞ . Similarly, we define p -completely contractive,
p -completely isometric, and p -completely quotient maps. We write CBp(X ,Y ) for
the space of all p -completely bounded maps from X into Y .

To turn the mapping space CBp(X ,Y ) between two p -operator spaces X and
Y into a p -operator space, we define a norm on Mn(CBp(X ,Y )) by identifying this
space with CBp(X ,Mn(Y )) . Using Le Merdy’s theorem, one can show that CBp(X ,Y )
itself is a p -operator space. In particular, the p -operator dual space of X is defined to
be C Bp(X ,C) . The next lemma by Daws shows that we may identify the Banach dual
space X ′ of X with the p -operator dual space CBp(X ,C) of X .



HAHN-BANACH TYPE EXTENSION THEOREMS ON p-OPERATOR SPACES 677

LEMMA 1.5. [1, Lemma 4.2] Let X be a p-operator space, and let ϕ ∈ X ′ , the
Banach dual of X . Then ϕ is p-completely bounded as a map to C . Moreover,
‖ϕ‖pcb = ‖ϕ‖ .

If E = Lp(μ) for some measure μ and X ⊆ B(E) = B(Lp(μ)) , then we say
that X is a p -operator space on Lp space. These p -operator spaces are often easier
to work with. For example, let κX : X → X ′′ denote the canonical inclusion from
a p -operator space X into its second dual. Contrary to operator spaces, κX is not
always p -completely isometric. Thanks to the following theorem by Daws, however,
we can easily characterize those p -operator spaces with the property that the canonical
inclusion is p -completely isometric.

PROPOSITION 1.6. [1, Proposition 4.4] Let X be a p-operator space. Then κX

is a p-complete contraction. Moreover, κX is a p-complete isometry if and only if
X ⊆ B(Lp(μ)) p-completely isometrically for some measure μ .

2. Non-existence of p -Arveson-Wittstock-Hahn-Banach theorem

Let V ⊆ W be two operator spaces. Arveson-Wittstock-Hahn-Banach theorem
asserts that every completely bounded map ϕ : V → B(H) has a completely bounded
extension ϕ̃ : W → B(H) , where H is a Hilbert space. For p -operator spaces, the
following question naturally arises.

QUESTION 2.1. Let V ⊆ W be p -operator spaces and E an SQp space. Does
every p -completely bounded map ϕ : V → B(E) have a p -completely bounded ex-
tension ϕ̃ : W → B(E)?

To show that this question has a negative answer, let p 	= 2, and let E and Lp(Ω)
such that E is a Hilbert space embedding to Lp(Ω) . The existence of such E and
Lp(Ω) is guaranteed by, for example, [2, Proposition 8.7]. Let J : E ↪→ Lp(Ω) denote
the isometric embedding, then we can view E as a subspace of Lp(Ω) .

LEMMA 2.2. Let J be as above. With p-operator space structure Ec and Lp(Ω)c ,
J becomes a p-complete isometry.

Proof. From Example 1.4, we note that Mn(Ec)⊆Mn(B(C,E)) = B(�n
p, �

n
p(E)) .

For [ξi j] ∈ Mn(Ec) , the norm is given by

‖[ξi j]‖p = sup

{
n

∑
i=1

∥∥∥∥∥
n

∑
j=1

λ jξi j

∥∥∥∥∥
p

E

: λ j ∈ C,
n

∑
j=1

|λ j|p � 1

}
.

Since J is an isometry, ∥∥∥∥∥J
(

n

∑
j=1

λ jξi j

)∥∥∥∥∥
Lp(Ω)

=

∥∥∥∥∥
n

∑
j=1

λ jξi j

∥∥∥∥∥
E
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and it follows that

‖Jn([ξi j])‖p = sup

⎧⎨
⎩

n

∑
i=1

∥∥∥∥∥
n

∑
j=1

λ jJ(ξi j)

∥∥∥∥∥
p

Lp(Ω)

: λ j ∈ C,
n

∑
j=1

|λ j|p � 1

⎫⎬
⎭

= sup

⎧⎨
⎩

n

∑
i=1

∥∥∥∥∥J
(

n

∑
j=1

λ jξi j

)∥∥∥∥∥
p

Lp(Ω)

: λ j ∈ C,
n

∑
j=1

|λ j|p � 1

⎫⎬
⎭

= ‖[ξi j]‖p. �

Let Ẽ = C⊕p E . Let π : Ẽ → E denote the projection from Ẽ onto E and define
ϕ : Ec → B(Ẽ) and ψ : B(Ẽ) → Ec by

ϕ(ξ ) = Tξ , Tξ (λ ⊕p e) = 0⊕p λ ξ , λ ∈ C, e ∈ E

and

ψ(T ) = πT (1⊕p 0), T ∈ B(Ẽ)

(see the diagram below).

Lp(Ω)c
ϕ̃

��
Ec

J

��

ϕ ��
B(Ẽ)

ψ
��

It is then easy to check that ϕ and ψ are p -complete contractions with ψ ◦ϕ = idEc .
Suppose that ϕ : Ec →B(Ẽ) extends to ϕ̃ : Lp(Ω)c →B(Ẽ) . Define P : Lp(Ω)c → Ec

by P = ψ ◦ ϕ̃ , then it follows that P is a p -completely contractive projection onto Ec ,
meaning that E must be a 1-complemented subspace of Lp(Ω) . This is, however,
impossible, because it would imply that a Hilbert space E is isometrically isomorphic
to some Lp space with p 	= 2.

3. A predual of CBp(V,Mn)

In this section, we define a normed space structure on Mn(V ) whose Banach dual
is isometrically isomorphic to CBp(V,Mn) .

LEMMA 3.1. Let 1 < p, p′ < ∞ with 1/p+ 1/p′ = 1 . Let λ = {λ j}1� j�n be a
finite sequence in C . Then

‖λ‖�n
p
� n|1/p−1/p′| · ‖λ‖�n

p′
.
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Proof. There is nothing to prove if p = p′ = 2. If p > p′ , then ‖λ‖�n
p
� ‖λ‖�n

p′
�

n|1/p−1/p′| · ‖λ‖�n
p′

since n|1/p−1/p′| � 1. Finally, assume 1 < p < p′ and let q = p′
p > 1

and let q′ be the conjugate exponent to q . By Hölder’s inequality,

‖λ‖p
�n
p
�
(

n

∑
j=1

|λ j|pq

)1/q

·n1/q′ =

(
n

∑
j=1

|λ j|p′
)p/p′

·n1−p/p′

and hence ‖λ‖�n
p
� n|1/p−1/p′| · ‖λ‖�n

p′
. �

LEMMA 3.2. Let α = [αi j] ∈ Mn,r and β = [βkl ] ∈ Mr,n . Let 1 < p, p′ < ∞ with
1/p+1/p′ = 1 . Then we have

‖α‖B(�r
p,�

n
p) � ‖α‖p′ ·n|1/p−1/p′| and ‖β‖B(�n

p,�
r
p) � ‖β‖p ·n|1/p−1/p′|,

where

‖α‖p′ =

(
n

∑
i=1

r

∑
j=1

|αi j|p′
)1/p′

and ‖β‖p =

(
r

∑
k=1

n

∑
l=1

|βkl|p
)1/p

.

Proof. Suppose ξ = {ξ j}r
j=1 is a unit vector in �r

p . For each i , 1 � i � n , let

ηi =
∣∣∣∑r

j=1 αi jξ j

∣∣∣ , then by Hölder’s inequality, ηi �
(

∑r
j=1 |αi j|p′

)1/p′
and by Lemma

3.1, (
n

∑
i=1

η p
i

)1/p

� n|1/p−1/p′| ·
(

n

∑
i=1

η p′
i

)1/p′

� n|1/p−1/p′| · ‖α‖p′

and hence we get ‖α‖B(�r
p,�

n
p) � n|1/p−1/p′| · ‖α‖p′ . To prove the second inequality, let

γ = β T ∈ Mn,r , the transpose of β . Then by the argument above we have

‖γ‖B(�r
p′ ,�

n
p′ )

� ‖γ‖p ·n|1/p−1/p′|.

Since ‖γ‖B(�r
p′ ,�

n
p′ )

= ‖β‖B(�n
p,�

r
p) and ‖γ‖p = ‖β‖p , we get the desired inequality. �

Let V be a p -operator space. Fix n ∈ N and define ‖ · ‖1,n : Mn(V ) → [0,∞) by

‖v‖1,n = inf{‖α‖p′‖w‖‖β‖p : r ∈ N, v = αwβ , α ∈ Mn,r, β ∈ Mr,n, w ∈ Mr(V )},
(3.1)

where ‖ · ‖p′ and ‖ · ‖p as in Lemma 3.2.

PROPOSITION 3.3. Suppose that V is a p-operator space and n ∈ N . Then ‖ ·
‖1,n defines a norm on Mn(V ) .



680 J.-J. LEE

Proof. Suppose v1,v2 ∈ Mn(V ) . Let ε > 0. For i = 1,2, we can find αi , βi , and
wi such that vi = αiwiβi with ‖wi‖ � 1 and

‖αi‖p′ < (‖vi‖1,n + ε)1/p′ , ‖βi‖p < (‖vi‖1,n + ε)1/p . (3.2)

Let

α = [α1 α2], β =
[

β1

β2

]
, and w =

[
w1

w2

]
,

then ‖α‖p′
p′ = ‖α1‖p′

p′ +‖α2‖p′
p′ , ‖β‖p

p = ‖β1‖p
p +‖β2‖p

p , and ‖w‖� 1. Since v1 +v2 =
αwβ , it follows that

‖v1 + v2‖1,n � ‖α‖p′‖β‖p

(Young’s inequality) �
‖α‖p′

p′

p′
+

‖β‖p
p

p

=
‖α1‖p′

p′ +‖α2‖p′
p′

p′
+

‖β1‖p
p +‖β2‖p

p

p

(by (3.2)) <
‖v1‖1,n +‖v2‖1,n +2ε

p′
+

‖v1‖1,n +‖v2‖1,n +2ε
p

= ‖v1‖1,n +‖v2‖1,n +2ε.

Since ε is arbitrary, we get ‖v1 + v2‖1,n � ‖v1‖1,n +‖v2‖1,n .
For any c ∈ C , if v = αwβ , then we have cv = α(cw)β and hence ‖cv‖1,n �

‖α‖p′ |c|‖w‖‖β‖p . Taking the infimum, we get

‖cv‖1,n � |c|‖v‖1,n. (3.3)

When c 	= 0, replacing c by 1/c and v by cv in (3.3) gives

|c|‖v‖1,n � ‖cv‖1,n, (3.4)

so (3.3) together with (3.4) gives ‖cv‖1,n = |c|‖v‖1,n , which is obviously true when
c = 0.

Finally, suppose ‖v‖1,n = 0. To show that v = 0, it suffices to show that

‖v‖ � n2|1/p−1/p′| · ‖v‖1,n. (3.5)

Indeed, if v = αwβ with α ∈ Mn,r , β ∈ Mr,n , and w ∈ Mr(v) , then

‖v‖ � ‖α‖‖w‖‖β‖
(by Lemma 3.2) � ‖α‖p′ ·n|1/p−1/p′| · ‖w‖ · ‖β‖p ·n|1/p−1/p′|

= n2|1/p−1/p′| · ‖α‖p′ · ‖w‖ · ‖β‖p.

Taking the infimum, (3.5) follows. �
For a p -operator space V , let Tn(V ) denote the normed space (Mn(V ),‖ · ‖1,n) .
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LEMMA 3.4. For a p-operator space V , Tn(V )′ = Mn(V ′) = CBp(V,Mn) iso-
metrically.

Proof. The second isometric isomorphism comes from the definition of the p -
operator space structure on V ′ . We follow the idea as in [3, §4.1]. Let f = [ fi j] ∈
Mn(V ′) = CBp(V,Mn) . Note that

‖ f‖ = sup{‖〈〈 f , ṽ〉〉‖ : r ∈ N, ṽ = [ṽkl] ∈ Mr(V ), ‖ṽ‖ � 1}.
Let Dp

n×r denote the closed unit ball of �n×r
p , then

‖ f‖ = sup{|〈〈〈 f , ṽ〉〉η ,ξ 〉| : r ∈ N, ṽ = [ṽkl] ∈ Mr(V ), ‖ṽ‖ � 1, η ∈ Dp
n×r, ξ ∈ Dp′

n×r}

= sup

{∣∣∣∣∣ ∑
i, j,k,l

fi j(ṽkl)η( j,l)ξ(i,k)

∣∣∣∣∣ : r ∈ N, ṽ = [ṽkl ] ∈ Mr(V ), ‖ṽ‖ � 1,

η ∈ Dp
n×r, ξ ∈ Dp′

n×r

}

= sup

{∣∣∣∣∣
n

∑
i, j=1

〈
fi j,

r

∑
k,l=1

ξ(i,k)ṽklη( j,l)

〉∣∣∣∣∣ : r ∈ N, ṽ = [ṽkl] ∈ Mr(V ), ‖ṽ‖ � 1,

η ∈ Dp
n×r, ξ ∈ Dp′

n×r

}
.

Note that ∑r
k,l=1 ξ(i,k)ṽklη( j,l) is the (i, j)-entry of the matrix product α ṽβ , where

α =

⎡
⎢⎣

ξ(1,1) · · · ξ(1,r)
...

. . .
...

ξ(n,1) · · · ξ(n,r)

⎤
⎥⎦ and β =

⎡
⎢⎣

η(1,1) · · · η(n,1)
...

. . .
...

β(1,r) · · · η(n,r)

⎤
⎥⎦ ,

so

‖ f‖ = sup

{∣∣∣∣∣
n

∑
i, j=1

〈
fi j,(α ṽβ )i j

〉∣∣∣∣∣ : ‖ṽ‖ � 1, ‖α‖p′ � 1, ‖β‖p � 1

}

= sup
{|〈 f ,v〉| : v = α ṽβ , ‖ṽ‖ � 1, ‖α‖p′ � 1, ‖β‖p � 1

}
= sup{|〈 f ,v〉| : ‖v‖1,n � 1} . (3.6)

Define the scalar pairing Φ : Mn(V ′)→Tn(V )′ by f �→ 〈 f , ·〉 , then from (3.6) it follows
that Φ is an isometric isomorphism. �

PROPOSITION 3.5. Let V ⊆ W be p-operator spaces such that the inclusion
Tn(V ) ↪→ Tn(W ) is isometric. Then every p-completely contractive map ϕ : V →
B(Lp(Ω)) has a completely contractive extension ϕ̃ : W → B(Lp(Ω)) .

Proof. Following [3, Corollay 4.1.4, Theorem 4.1.5], it suffices to assume that
B(Lp(Ω)) = B(�n

p) = Mn . If the inclusion i : Tn(V ) ↪→ Tn(W ) is isometric, then
by Lemma 3.4, the adjoint i′ : CBp(W,Mn) → CBp(V,Mn) , which is a restriction
mapping, is an exact quotient mapping. �
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4. �p -polar decomposition

Let V ⊆W be p -operator spaces. By Proposition 3.5, if the inclusion Tn(V ) ↪→
Tn(W ) is isometric, then every p -completely contractive map ϕ : V → B(Lp(Ω)) has
a completely contractive extension ϕ̃ : W → B(Lp(Ω)) . In this section, we consider a
condition on W under which the inclusion Tn(V ) ↪→ Tn(W ) is isometric. Recall that
the vector p -norm of x = (x1, . . . ,xn) ∈ Cn is defined by

‖x‖p =

(
n

∑
i=1

|xi|p
)1/p

.

If we identify Mr,n with B(�n
2, �

r
2) , the space of all bounded linear operators from �n

2
to �r

2 , it is well known that every β ∈ Mr,n with r � n has a polar decomposition,
that is, β can be written as β = τβ0 , where τ ∈ Mr,n has orthonormal columns, that
is, τ is an isometry, and β0 ∈ Mn is positive semidefinite [5, §7.3]. For p 	= 2 and
r � n , regarding Mr,n as B(�n

p, �
r
p) , the space of all bounded linear operators from �n

p
to �r

p , we ask if there is an �p -analogue of the polar decomposition. First of all, we
need to define what we should mean by polar decomposition when p 	= 2, because, for
example, if T : �n

p → �n
p , then the adjoint T ′ is from �n

p′ to �n
p′ , where 1/p+1/p′ = 1,

and therefore T ′T is not defined, which in turn means we lose the concept of positive
(semi)definiteness. We use the definition below as a natural p -analogue of the polar
decomposition.

DEFINITION 4.1. Let r � n . We say that β ∈ Mr,n = B(�n
p, �

r
p) is �p -polar de-

composible if there is an isometry τ ∈Mr,n and an operator β0 ∈Mn such that β = τβ0 .
In this case, we say that β = τβ0 is an �p -polar decomposition of β . The set of all full

rank �p -polar decomposible r×n matrices is denoted by M
(p)
r,n .

REMARK 4.2.

a. If r < n , then there is no isometry in Mr,n = B(�n
p, �

r
p) and hence we only con-

sider the case r � n in Definition 4.1.

b. It is well known [5, §0.4] that rankAB � min{rankA, rankB} whenever AB is
defined for matrices A and B , so if β = τβ0 is an �p -polar decomposition of a
full rank r×n matrix β , then

n = rankβ � min{rankτ, rankβ0} � n

and it follows that rankτ = rankβ0 = n . In particular, β0 is nonsingular.

c. If β = τβ0 is an �p -polar decomposition of β , then ‖β‖p = ‖β0‖p , where ‖ ·‖p

is as in Lemma 3.2.

To give a characterization of �p -polar decomposible matrices, we begin with a
characterization of isometries from �n

p to �r
p . Recall that for a vector x = (x1, . . . ,xm) ,

we define suppx , the support of x , by suppx = {i : 1 � i � m, xi 	= 0} .
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LEMMA 4.3. Let 1 < p < ∞ , p 	= 2 , and r � n. Then τ : �n
p → �r

p is an isometry if
and only if the columns of τ have mutually disjoint supports with each vector p-norm
equal to 1 .

Proof. Let τ j =

⎡
⎢⎣

τ1 j
...

τr j

⎤
⎥⎦ denote the jth column of an r×n matrix τ . If τ1, . . . ,τn

have mutually disjoint supports with each p -norm equal to 1, then for any x = (x1, . . . ,xn)
∈ �n

p , we get

‖τx‖p
p =

r

∑
i=1

∣∣∣∣∣
n

∑
j=1

τi jx j

∣∣∣∣∣
p

=
n

∑
k=1

∑
i∈suppτk

∣∣∣∣∣
n

∑
j=1

τi jx j

∣∣∣∣∣
p

=
n

∑
k=1

∑
i∈suppτk

|τikxk|p =
n

∑
k=1

|xk|p ∑
i∈suppτk

|τik|p

= ‖x‖p
p.

Conversely, suppose τ : �n
p → �r

p is an isometry. Since τ j = τe j for each j , where e j

denotes the unit vector in �n
p whose only non-zero entry is 1 at the jth place, it follows

that τ j is of norm 1. To show that columns of τ have mutually disjoint supports, let
j 	= k and consider e j ± ek in �n

p . Since ‖e j ± ek‖p = 21/p , we get ‖τ j ± τk‖p
p = 2 and

the result follows from [7, Lemma 15.7.23]. �

REMARK 4.4. The result above remains true when p = 1.

Let V be a p -operator space. For v ∈ Mn(V ) , we define

‖v‖2,n = inf{‖α‖p′‖w‖‖β‖p : r ∈ N, v = αwβ , αT ∈ M
(p′)
r,n , β ∈ M

(p)
r,n , w ∈ Mr(V )},

(4.1)
where αT denotes the transpose of α and

‖α‖p′ =

(
n

∑
i=1

r

∑
j=1

|αi j|p′
)1/p′

and ‖β‖p =

(
r

∑
k=1

n

∑
l=1

|βkl|p
)1/p

.

PROPOSITION 4.5. Let V ⊆W be p-operator spaces. If ‖w‖2,n = ‖w‖1,n for all
w ∈ Mn(W ) , then the inclusion Tn(V ) ↪→ Tn(W ) is isometric.

Proof. Let v ∈ Mn(V ) . It is clear that ‖v‖Tn(W) � ‖v‖Tn(V ) . Suppose ‖v‖Tn(W ) <
1, then by assumption, one can find r ∈ N , α ∈ Mn,r , β ∈ Mr,n , and w ∈ Mr(W ) such

that v = αwβ , αT ∈ M
(p′)
r,n , β ∈ M

(p)
r,n , ‖α‖p′ < 1, ‖w‖ < 1, and ‖β‖p < 1. Let

β = τβ0 (respectively, αT = σα0 ) be �p -(respectively, �′p -) polar decomposition of β
(respectively, αT ), and set w̃ = σT wτ , then ‖w̃‖Mn(W ) < 1. Moreover, by Remark 4.2,

α0 and β0 are invertible and hence w̃ = (αT
0 )−1vβ−1

0 ∈Mn(V ) , giving that ‖w̃‖Mn(V ) <
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1. Since v = αT
0 w̃β0 , ‖αT

0 ‖p′ = ‖α‖p′ < 1, and ‖β0‖p = ‖β‖p < 1 by Remark 4.2, it
follows that ‖v‖Tn(V ) < 1. �

For any v ∈ Mn(V ) , it is clear that ‖v‖1,n � ‖v‖2,n At this moment of writing, we
do not know of any nontrivial example of p -operator space V such that ‖·‖1,n = ‖·‖2,n .
It is not even clear whether ‖·‖2,n defines a norm on Mn(V ) for some p -operator space
V (see Remark 4.7). However, thanks to Lemma 4.3, we can give a characterization
of �p -polar decomposible matrices which may lead to finding a nontrivial example of
p -operator spaces V such that ‖v‖1,n = ‖v‖2,n for all v ∈ Mn(V ) .

PROPOSITION 4.6. Let 1 < p < ∞ , p 	= 2 , and r � n. Then β =

⎡
⎢⎣

u1
...
ur

⎤
⎥⎦∈

Mr,n = B(�n
p, �

r
p) is �p -polar decomposible if and only if there are u j1 ,u j2 , . . . ,u jn , not

necessarily distinct, such that each ui (1 � i � r) is a scalar multiple of u jk for some
k , 1 � k � n.

Proof. Let β =

⎡
⎢⎣

u1
...
ur

⎤
⎥⎦ ∈ Mr,n = B(�n

p, �
r
p) . Suppose that there are

u j1 ,u j2 , . . . ,u jn (not necessarily distinct) such that each ui (1 � i � r) is a scalar mul-
tiple of u jk for some k , 1 � k � n . Rearranging rows of β with an appropriate permu-
tation if necessary, we may assume that 1 = j1 < j2 < j3 < · · · < jn � r and that for
i with jk � i < jk+1 , ui = ciu jk for some scalar ci . For each k , 1 � k � n , we define

λk =
(

∑ jk�i< jk+1
|ci|p

)−p
. Note that λk is well defined since c jk = 1. Define τ ∈ Mr,n

and β0 ∈ Mn by

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1λ1 0 0 · · · 0
c2λ1 0 0 · · · 0

...
...

...
. . .

...
c j2−1λ1 0 0 · · · 0

0 c j2λ2 0 · · · 0
0 c j2+1λ2 0 · · · 0
...

...
...

. . .
...

0 c j3−1λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · c jnλn

0 0 0 · · · c jn+1λn
...

...
...

. . .
...

0 0 0 · · · crλn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and β0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
λ1

u j1

1
λ2

u j2
...

1
λn

u jn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

then by Lemma 4.3, it follows that β = τβ0 is an �p -polar decomposition of β .
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Conversely, assume that β = τβ0 is a p -polar decomposition of β . To exclude
triviality, we may assume that β contains no rows of only zeros. Let τk denote the kth

column of τ . By Lemma 4.3, suppτk 	= /0 so we can pick jk ∈ suppτk . Moreover, for
each i , 1 � i � r , there is exactly one k(i) such that i ∈ suppτk(i) and it follows that ui

is a constant multiple of u jk(i) . �

REMARK 4.7. Let v1 ∈ Mn(V ) and v2 ∈ Mm(V ) for some p -operator space V ,
then one can easily show that ‖cv1‖2,n = |c|‖v1‖2,n . Moreover, the decomposition
v1 = αT

1 w1β1 and v2 = αT
2 w2β2 gives[

v1

v2

]
=
[

αT
1

αT
2

][
w1

w2

][
β1

β2

]
, (4.2)

which, combined with Proposition 4.6, shows that ‖v1⊕ v2‖2,n+m � ‖v1‖2,n +‖v2‖2,m .
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