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ON THE DISTANCE TO SINGULARITY

VIA LOW RANK PERTURBATIONS

CHRISTIAN MEHL, VOLKER MEHRMANN AND MICHAŁ WOJTYLAK

(Communicated by Z. Drmač)

Abstract. For regular matrix pencils the distance in norm to the nearest singular pencil under low
rank perturbation is studied. Characterizations of this distance are derived via the Weyl function
of the perturbation. Special attention is paid to the Hermitian pencil case. Estimates for the
distance of a given pencil to the set of singular pencils are obtained.

1. Introduction

Consider a regular complex n× n matrix pencil A+ λE , i.e., a pencil satisfying
det(A+λE) �≡ 0, and suppose the pencil is perturbed to Ã+λ Ẽ with Ã = A+ΔA and
Ẽ = E + ΔE . It is a long-standing open problem in matrix analysis, see [3], to find the
smallest (in some appropriate norm) perturbation (ΔA,ΔE) such that the pencil Ã+λ Ẽ
is singular, i.e., that det(Ã+ λ Ẽ) ≡ 0. The norm of this smallest perturbation is called
the distance to singularity of the pencil A+λE . Determining this distance is important
in many applications, in particular in the analysis of differential-algebraic equations
(DAEs), see [2, 14, 15, 22] for the theory and for a large number of applications. Gen-
eral DAEs have the form of implicit systems of equations

F(t,x, ẋ) = 0, (1)

where ẋ denotes the time derivative of the state x . If such systems are linearized along
a stationary solution, then one obtains a linear DAE

Eẋ+Ax = f , (2)

with constant coefficients A,E ∈ C
n×n .

Consider the initial value problem of solving (2) with initial value x(t0) = x0 . If
the pencil A+λE is regular, f is sufficiently smooth, and the initial value is consistent,
then the initial value problem has a unique solution. However, if A+ λE is singular,
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then a solution only exists if the inhomogeneity f lies in the image of the DAE operator
Eẋ+Ax , and even if a solution exists then it will not be unique.

In many engineering applications and in most industrial environments, modern
modeling packages such as simscape and modelica [17, 20] or modeling environments
such as simulink [18] are used to construct DAE models of the form (1) automatically.
It is then necessary to analyze whether the model equations have a unique solution or
not, and also to study the sensitivity of the model under small perturbations, which are
inevitable due to modeling errors or uncertainty in the model parameters. This anal-
ysis is usually done by checking the regularity of the pencil A + λE associated with
the linearization. The rule of thumb is that if the pencil A + λE is close to a singu-
lar pencil within the uncertainty of the data, then in a numerical simulation the DAE
behaves just like a singular system, and the results of numerical simulations cannot be
trusted. Unfortunately, only upper bounds are known for the distance to singularity,
see [3] for a survey. One should also mention, that in many applications, in particular
those arising from network analysis in electrical engineering [22] or multi-body system
simulation [7], the physical application restricts the entries of the pencil A+λE , where
data uncertainties arise. This results in the effect that the perturbation matrices ΔA and
ΔE typically have a rank that is small compared to the overall system size. This situa-
tion motivates the study of the distance to the nearest singular pencil under small rank
perturbations, i.e., we consider perturbed pencils of the form

A+ τB1B
∗
2 + λ (E + τF1F

∗
2 ), (3)

where τ is a complex parameter describing the perturbation level, and where the ma-
trices

B1,B2 ∈ C
n×κA, F1,F2 ∈ C

n×κE ,

describing the perturbations satisfy

rankB1 = rankB2 = κA � 0, rankF1 = rankF2 = κE � 0,

with κA,κE being small. An important special case is the case that the matrix E is not
perturbed at all, i.e., κE = 0. This is motivated from applications in circuit simulation
[22], where the matrix E is a matrix with entries 0,1,−1 that describes the network
topology and which is not influenced by possible parameter uncertainties. In this case
one can study parameter uncertainties in A arising in a rank κA part of the matrix by a
sequence of consecutive rank-one perturbations of the form

A+ τuv∗+ λE, (4)

where u,v ∈ Cn \{0} . In our study we will concentrate on the rank one case, i.e., rank-
one perturbations of a regular pencil, for which the perturbed pencil becomes singular.

We will give particular emphasis to the class of Hermitian pencils, i.e., pencils with
both A and E being Hermitian, and their Hermitian perturbations. This special type
of pencils appears in a large number of applications [9, 11, 16], where the Hermitian
structure arises from the physical structure of the problem. In this case it is essential
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that the perturbations also have the Hermitian structure, which leads to the different
notion of Hermitian distance to singularity.

The remainder of the paper is organized as follows. In Section 2 the Weyl function
Q(λ ) = v∗(A−λE)−1u associated with a rank one perturbation as in (4) is introduced.
It allows to determine the spectrum of the perturbed pencil. In particular, with the help
of the Weyl function one is able to see how the spectrum changes in dependence of
the parameter τ . We show that A + τuv∗ + λE is a singular pencil for some value
of τ if and only if Q(λ ) is constant, see Theorem 4. We also observe that in this
case the eigenvalues of the perturbed pencils are constant functions in the parameter
τ . This peculiar behavior stands in contrast to existing results on the local behavior of
the eigenvalues of matrices [12, 21, 24, 25] or regular matrix polynomials [4], but is in
line with the existing results on perturbations on singular matrix pencils [6] and matrix
polynomials [5].

In Section 3 we study the rank-one distance to singularity as the smallest norm of
a rank-one perturbation that makes a given pencil singular and show in Theorem 7, that
this distance can be expressed as a quadratic constrained optimization problem with
quadratic constraints. This leads to a reformulation of the problem in the language of
zeros of polynomials and a simple estimate, see Theorem 13.

We then specialize to Hermitian pencils in Section 4 and characterize for which
canonical forms of the Hermitian pencil A+ λE it is possible to construct a Hermitian
perturbation of A of rank one, such that the perturbed pencil is singular. In Section 5
a closed formula for the rank-one distance to singularity in a special case is obtained,
see Theorem 23. The formula is followed by several examples showing its limitations.
In Section 6 we describe major differences between the Hermitian and non-Hermitian
case, cf. Theorems 13 and 32, and illustrate these with examples.

Section 7 presents a suggestion for a numerical method of alternating projections
for finding the closest rank-one singularizing perturbation. Several examples indicate
the difficulties in applying the method. Finally, Section 8 presents extensions of the
results from Section 2 to perturbation matrices of arbitrary rank.

2. The Weyl function and its relation to singularity of pencils

Throughout the paper, the following notation is used. For a complex matrix B of
any dimension the symbol B∗ denotes the conjugate transpose of B while ‖B‖2 denotes
the operator norm and ‖B‖F the Frobenius norm of B . If X1, . . . ,Xl ∈ C

n×n then by
span{X1, . . . ,Xl} we denote the set of all linear combinations of matrices X1, . . . ,Xl .
The space Cn×n will be interpreted as a unitary space with the inner product given by

〈X ,Y 〉 := tr(Y ∗X),

and the corresponding norm is the Frobenius norm. The symbol ‘⊥ ’ denotes the or-
thogonal complement in the space (Cn×n,〈·, ·〉) . If V is a subspace of Cn×n then by
PV we denote the orthogonal projection from Cn×n to V .

Let A,E ∈ Cn×n . We say that a point λ0 ∈ C is a regular point of the pencil
A+ λE if the matrix A+ λ0E is invertible. Infinity is called a regular point of A+ λE
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if E is invertible. A point of the extended complex plane C∪ {∞} which is not a
regular point of A+ λE will be called a singular point. A pencil is called regular, if it
has regular points, otherwise it is called singular. The singular points are zeros of the
characteristic polynomial p(λ ) = det(A+ λE) .

For a regular point λ0 we introduce the resolvent

R(λ0) := (A+ λ0E)−1.

Then for the one-parameter family of rank-one perturbations

A+ τuv∗+ λE, τ ∈ C, (5)

with u,v∈ Cn \{0} , on the set of regular points of A+λE , we define the rational Weyl
function

Q(λ ) = v∗R(λ )u. (6)

We recall the following basic proposition, an extension of this result to the case of
perturbations of arbitrary rank and point λ0 = ∞ will be presented in Section 8.

PROPOSITION 1. Let A + λE be a regular pencil with A,E ∈ Cn×n , let u,v ∈
C

n \ {0} and let τ0 ∈ C . Then

(i) det(A+ τ0uv∗ + λE) = det(A+ λE) · (1+ τ0Q(λ )) ;

(ii) a regular point λ0 ∈ C of A+ λE is a singular point of A+ τ0uv∗ + λE if and
only if 1+ τ0Q(λ0) = 0 .

Moreover, the pencil A+ λE + τuv∗ is singular for at most one value of τ ∈ C .

Proof. The proof of (i) follows standard lines, cf. [21, 23], but we include it for
the sake of completeness. We obtain

det(A+ τ0uv∗+ λE) = det(A+ λE)
(
In + τ0uv∗(A+ λE)−1)

= det(A+ λE) · (1+ τ0Q(λ )) ,

using the formula det(In + BC) = det(Im +CB) for B,CT ∈ C
n×m . This proves (i),

and (ii) follows immediately from (i). To prove the last statement note the following.
If Q(λ ) ≡ 0 then the pencil A + λE + τuv∗ is regular for all values of τ ∈ C . Let
Q(λ0) �= 0 for some regular point λ0 of A+ λE and let the pencil A+ λE + τuv∗ be
singular for τ = τ0 and τ = τ1 . Then, by (ii), 1 + τ0Q(λ0) = 1 + τ1Q(λ0) . Hence,
τ0 = τ1 . �

Another important tool for the investigation of matrix pencils is the Kronecker
canonical form, see e.g., [8, Ch. XII]. We only state the result for the special case of
square matrix pencils.
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THEOREM 2. (Kronecker canonical form) Let A,E ∈ Cn×n . Then there exist in-
vertible matrices S,T ∈ Cn×n such that the pencil S(A+ λE)T is block-diagonal with
diagonal blocks of one of the following forms:

Pk,γ (λ ) =

⎡⎢⎢⎢⎢⎣
γ −λ 1

. . .
. . .

. . . 1
γ −λ

⎤⎥⎥⎥⎥⎦ ∈ C
k×k, γ ∈ C; (7)

Mk(λ ) =

⎡⎢⎢⎢⎢⎣
1 −λ

. . .
. . .

. . . −λ
1

⎤⎥⎥⎥⎥⎦ ∈ C
k×k; (8)

Gk(λ ) =

⎡⎢⎢⎢⎢⎣
1

−λ
. . .

. . . 1
−λ

⎤⎥⎥⎥⎥⎦ ∈ C
k×(k−1), (9)

Gk(λ )� ∈ C
(k−1)×k. (10)

where the parameters γ ∈ C and k � 1 depend on the particular block and hence may
be different in different blocks. The canonical form is unique up to permutations of
blocks.

If the canonical form of A+ λE contains a block Pk,γ (λ ) (Mk(λ )) then we say
that γ (∞ , respectively) is an eigenvalue of A+ λE . Note that the notion is a gener-
alization of the notion of eigenvalue for matrices. We distinguish between eigenvalues
and singular points. If A+ λE is regular, then λ0 ∈ C is an eigenvalue of A+ λE if
and only if λ0 is a singular point of A+ λE , but if A+ λE is singular, then all values
λ0 ∈ C are singular points, but not all of them are eigenvalues of A+ λE . Further-
more, the pencil is singular if and only if it contains at least one block of the forms (9)
or (10). Note that in some references, also zero blocks S (λ ) = 0 ∈ Cm×� are intro-
duced in the canonical form, but these are redundant because they can also be expressed
by combining m blocks G1(λ ) of size 1×0 with � blocks G1(λ )� of size 0×1.

On the set of regular points of the pencil A+ λE , we define matrix-valued func-
tions

Cj(λ ) := R(λ )(ER(λ )) j = (A+ λE)−1(E(A+ λE)−1) j
, j ∈ N. (11)

Then C0(λ ) = R(λ ) and it is straightforward to check that

Cj(λ0) = (−1) j 1
j!

d jC0(λ )
dλ j

∣∣∣∣
λ=λ0

, j � 1, (12)
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i.e. Cj(λ0) is the coefficient of the j -th degree term of the Taylor expansion of R(λ )
at λ0 . Furthermore, we have

Cj+1(λ ) = R(λ )ECj(λ ), i, j � 0 (13)

and
Ci(λ )ECj(λ ) = Ci+ j+1(λ ), i, j � 0. (14)

A further important property of the matrices Cj(λ ) is given in the following lemma.

LEMMA 3. Let A,E ∈ Cn×n and let λ0 ∈ C be a regular point of A+ λE . Then
there exists an n0 � n such that the matrices C1(λ0), . . . ,Cn0(λ0) are linearly indepen-
dent, and for all j > n0 , we have

Cj(λ0) ∈ span
{
C1(λ0), . . . ,Cn0(λ0)

}
.

Proof. Note that the transformation S(A + λE)T , with S,T invertible, changes
the matrices Cj(λ0) into T−1Cj(λ0)S−1 ( j � 1). Therefore, we may assume without
loss of generality that A+ λE is in Kronecker canonical form. If for some j0 > 1,

Cj0(λ0) ∈ span
{
C1(λ0), . . . ,Cj0−1(λ0)

}
, (15)

i.e., there exist α1, . . . ,α j0−1 such that Cj0(λ0) = ∑ j0−1
k=1 αkCk(λ0) , then by (13) we have

Cj0+1(λ0) = R(λ0)ECj0(λ0) =
j0−1

∑
k=1

αkCk+1(λ0) ∈ span
{
C2(λ0), . . . ,Cj0(λ0)

}
.

Thus, using (15) and induction we obtain that

Cj(λ0) ∈ span
{
C1(λ0), . . . ,Cj0−1(λ0)

}
, j � j0. (16)

We set n0 to be the minimum of all j0 satisfying (15). Observe that C0(λ ) is block
diagonal with blocks that are upper-triangular Toeplitz matrices, i.e., matrices with con-
stant entries along each of the diagonals. By (12), the matrix Cj(λ0) ( j � 1) has the
same block structure, again with upper-triangular Toeplitz blocks. Therefore, each of
the matrices Cj(λ0) ( j � 1) is uniquely determined by the first rows of all the diago-
nal blocks, and hence the matrices C1(λ0), . . . ,Cn+1(λ0) are linearly dependent. Thus,
n0 � n . �

The following theorem presents equivalent conditions for the pencil A+τuv∗+λE
to be singular for some value of τ .

THEOREM 4. Suppose that the pencil A+λE is regular, where A,E ∈ Cn×n , and
let u,v ∈ Cn . Then the following conditions are equivalent.

(a) The pencil A+ τ0uv∗ + λE is singular for some τ0 ∈ C .

(b) The function Q(λ ) = v∗(A+ λE)−1u is a nonzero constant function.
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(c) The polynomial in two variables p(λ ,τ) = det(A+ τuv∗+ λE) satisfies

p(λ ,τ) = (1+ ζτ)det(A+ λE)

for some ζ ∈ C\ {0} .

(d) There exists τ0 ∈ C such that for all τ ∈ C \ {τ0} the pencil is regular and the
eigenvalues of A+τuv∗+λE and their algebraic multiplicities coincide with the
eigenvalues of A+ λE and their respective algebraic multiplicities.

(e) For every regular point λ0 ∈ C of A+ λE we have v∗C0(λ0)u �= 0 and

v∗Cj(λ0)u = 0, j = 1,2, . . . ,n. (17)

(f) For some regular point λ0 ∈ C of A+λE we have v∗C0(λ0)u �= 0 and the iden-
tities in (17) hold.

Furthermore, if (b) holds, then A+ τ0uv∗ + λE is singular precisely for the value
τ0 = −1/Q(λ ) , and this τ0 coincides with τ0 from statements (a) and (d).

Proof.
(a)⇒(b) If the pencil A+ τ0uv∗+ λE is singular, then every λ0 ∈ C is a singular

point. By Proposition 1(ii) we have Q(λ0) = −1/τ0 for every regular point λ0 of
A+ λE , so Q(λ ) is constant and nonzero.

(b)⇒(a) If Q(λ ) is a constant nonzero function on the set of regular points of
A+λE , then with τ0 = −1/Q(λ ) the pencil A+τ0uv∗+λE has infinitely many finite
singular points by Proposition 1(ii). Hence, it is singular.

(b)⇒(c) follows from Proposition 1(i) with ζ = Q(λ ) .
(c)⇒(d) Setting τ0 := −1/ζ we see that the (monic) characteristic polynomials

of the pencils A+ τuv∗ + λE (τ ∈ C \ {τ0} ) coincide, which is clearly equivalent to
(d).

(d)⇒(b) By Proposition 1 the pencil A+ τuv∗+ λE is regular for all but at most
one value of τ . Hence, there exists τ1 ∈C\{0,τ0} such that the pencil A+τ1uv∗+λE
is regular. Thus, if (d) holds, then det(A+τ1uv∗+λE) and det(A+λE) have the same
roots as polynomials in λ , i.e.

det(A+ τ1uv∗ + λE) = cdet(A+ λE),

with some c �= 0. Then, by Proposition 1(i), for every regular point λ of A+ λE one
has

1+ τ1Q(λ ) = c,

and as τ1 �= 0

Q(λ ) =
c−1

τ1
. (18)

Thus (b) holds.
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(b)⇒(e) If Q(λ ) is constant, then the identities (12) imply that

0 = Q( j)(λ0) = (−1) j j! · v∗Cj(λ0)u

for j = 1, . . . ,n , and for any regular point λ0 ∈ C of A + λE . Moreover, we have
0 �= Q(λ0) = v∗R(λ0)u = v∗C0(λ0)u .

(e)⇒(f) is trivial.
(f)⇒(b) If (f) holds, then by Lemma 3 and (12), all derivatives of Q(λ ) at λ0

are zero. Since Q(λ ) is a rational function, it is constant, and it is nonzero because
Q(λ0) = v∗C0(λ0)u �= 0. �

3. The rank-one distance to singularity for general pencils

In this section we will investigate the distance to singularity for low rank pertur-
bations in the sense of the following definition.

DEFINITION 5. Let A+λE , A,E ∈ Cn×n be a regular pencil. Consider perturba-
tion matrices ΔE,ΔA∈Cn×n with rankΔA � κA, rankΔE � κE , such that the perturbed
pencil Ã+ λ Ẽ := A+ ΔA+ λ (E + ΔE) is singular.

Then the rank-(κA,κE) distance to singularity of A+ λE is defined as

δκA,κE (A,E) = min
{
‖[ΔA,ΔE]‖F

∣∣∣ΔA,ΔE ∈ C
n×n;

rankΔA � κA, rankΔE � κE , det(Ã+ λ Ẽ) ≡ 0
}
.

Here for convenience, the minimum over the empty set is defined as +∞ . In the par-
ticular case κA = 1 and κE = 0, we call δ1,0 the rank-one distance to singularity of
A+ λE .

REMARK 6. The generalized Schur form of the pair (A,E) , see, e.g., [10], states
that there exist unitary matrices U,V such that both UAV = [ai j] and UEV = [bi j] are
upper triangular matrices. From this we immediately deduce that δ1,1(A,E) < +∞ for
any regular pencil A+ λE . Indeed, (ΔA,ΔE) = (−U∗a11e1e�1 V ∗,−U∗b11e1e�1 V ∗) is
a rank-(1,1) perturbation that makes the pencil A + λE singular. Furthermore, note
that δκA,0(A,E) < +∞ if and only if E is not invertible. Indeed, if E is singular,
then there is at least one zero entry on the diagonal of UEV , say b j j = 0. Then
ΔA = −U∗a j je je�j V

∗, ΔE = 0 is a perturbation that makes A + λE singular, show-
ing that δκA,0(A,E) � δ1,0(A,E) < +∞ . If on the other hand E is nonsingular, then no
perturbation of A of any rank κA will make the pencil singular, so δκA,0(A,E) = +∞ .
One should also note, that the so constructed singularizing perturbations need not to be
the ones of minimal norm, see [3].

In the following we will be mainly concerned with the distance δ1,0(A,E) , and
we begin with one of the main results of the paper that shows that the problem of
determining δ1,0(A,E) can be reformulated as a quadratic optimization problem with a
quadratic constraint. (For convenience, we set max /0 := 0 and 1/0 := +∞ .)



ON THE DISTANCE TO SINGULARITY VIA LOW RANK PERTURBATIONS 741

THEOREM 7. Let A+ λE with A,E ∈ Cn×n be a regular matrix pencil, and let
λ0 be an arbitrary regular point. Then

δ1,0(A,E)−1 = max
{
|v∗R(λ0)u|

∣∣∣u,v∈C
n, ‖u‖2 ‖v‖2 = 1, v∗Cj(λ0)u = 0, j = 1, . . . ,n

}
.

Proof. Recall that δ1,0(A,E) equals the minimal |τ| for all τ ∈ C for which there
exist u,v∈ Cn with ‖uv∗‖F = 1 such that the pencil A+τuv∗+λE is singular. On the
other hand, the pencil A+ τuv∗ + λE is singular if and only if the equations (17) are
satisfied and τ = −1/Q(λ0) = −1/v∗R(λ0)u , see Theorem 4(e). Thus

δ1,0(A,E) = min
{
|v∗R(λ0)u|−1

∣∣∣u,v ∈ C
n, ‖uv∗‖F = 1, v∗Cj(λ0)u = 0, j = 1, . . . ,n

}
.

Taking inverses of both sides and noting that ‖uv∗‖2
F = ‖u‖2

2 ‖v‖2
2 finishes the proof. �

The explicit representation of the rank-one distance to singularity as a minimum of
a quadratic function with quadratic constraints allows for the development of numerical
methods. We will discuss such methods in the following, but first, we construct a simple
estimate from below for δ1,0 . For this, observe that the constraints v∗Cj(λ0)u = 0 of
Theorem 4 can be expressed as

0 = tr
(
v∗Cj(λ0)u

)
= tr

(
uv∗Cj(λ0)

)
= 〈Cj(λ0),vu∗〉,

so the rank-one matrices vu∗ and Cj(λ0) are orthogonal with respect to the standard
inner product on Cn×n for j = 1, . . . ,n . Thus, vu∗ lies in the orthogonal complement

(span{C1(λ0), . . . ,Cn(λ0)})⊥ ,

of the linear space generated by C1(λ0), . . . ,Cn(λ0) . The following Lemma shows that
this space is independent of λ0 .

LEMMA 8. The linear span with complex coefficients

span{C1(λ0), . . . ,Cn(λ0)}

does not depend on the choice of the regular point λ0 of A+ λE .

Proof. Fix a regular point λ0 of A + λE . First we show that the set Z of all
regular points λ for which

span{C1(λ ), . . . ,Cn(λ )} ⊆ span{C1(λ0), . . . ,Cn(λ0)} (19)

is open in the set of all regular point of A+ λE . Let λ1 ∈ Z . Since R(λ ) is analytic,
there exists a neighborhood U of λ1 such that

C0(λ ) = R(λ ) =
∞

∑
j=0

(λ −λ1) j(−1) jCj(λ1),
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converges absolutely for all λ ∈ U , cf. (12). Due to Lemma 3 one has

R(λ ) =
n

∑
j=0

a j(λ −λ1) jCj(λ1),

with some coefficients a0 = 1, a1, . . . ,an ∈ C , depending, possibly, on λ1 . Hence,

Ck(λ ) = R(λ )(ER(λ ))k =

(
n

∑
j=0

(λ −λ1) ja jCj(λ1)

)(
E

n

∑
j=0

(λ −λ1) ja jCj(λ1)

)k

=
n·k
∑
l=0

(λ −λ1)l
(

∑
i0+···+ik=l

(ai0 · · ·aik)︸ ︷︷ ︸
=:bl

Ci1(λ1)E · · ·ECik (λ1)
)

=
n·k
∑
l=0

(λ −λ1)l bl Cl+k(λ1),

where the last equality is obtained by subsequent applications of (14). By Lemma 3,
we have

Ck(λ ) ∈ span{Ck(λ1), . . . ,Cnk+k(λ1)} ⊆ span{C1(λ1), . . . ,Cn(λ1)} .

So, span{C1(λ ), . . . ,Cn(λ )} ⊆ span{C1(λ1), . . . ,Cn(λ1)} ⊆ span{C1(λ0), . . . ,Cn(λ0)}
for all λ ∈ U which shows that Z is open.

Now observe that Z is also closed in the set of all regular points of A+ λE . To
see this, let λk ∈ Z converge with k → ∞ to a regular point z0 . By continuity, Cj(λk)
then converges for k → ∞ to Cj(z0) for j = 1, . . .n . By hypothesis, we have

Cj(λk) ∈ span{C1(λ0), . . . ,Cn(λ0)}

for j = 1, . . . ,n , and hence, since finite-dimensional subspaces are closed, it follows
that

Cj(z0) ∈ span{C1(λ0), . . . ,Cn(λ0)}
for j = 1, . . . ,n , and thus z0 ∈ Z . Since the set of regular points of A+ λE is con-
nected, we have that Z is equal to the set of regular points. Finally, since λ0 was
arbitrary, a symmetry argument shows that the inclusion in (19) is an equality. �

In view of Lemma 8 we introduce

D := (span{C1(λ0), . . . ,Cn(λ0)})⊥ , (20)

where λ0 is any regular point of A+ λE . Recalling that PD denotes the orthogonal
projection from Cn×n to D , we continue with two examples.
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EXAMPLE 9. Let A+λE = Pk,γ (λ ) be a block of size k > 0 associated with the
finite eigenvalue γ as in (7). In this case

R(λ ) =

⎡⎢⎢⎢⎢⎣
(γ −λ )−1 −(γ −λ )−2 . . . (−1)k−1(γ −λ )−k

0 (γ −λ )−1 . . .
...

...
. . .

. . . −(γ −λ )−2

0 . . . 0 (γ −λ )−1

⎤⎥⎥⎥⎥⎦ .

Then a straightforward calculation using formula (12) shows that C1(λ ), . . . ,Cn(λ ) are
linearly independent upper triangular Toeplitz matrices with nonzero diagonals. Con-
sequently, we have R(λ ) ∈ span{C1(λ ), . . . ,Cn(λ )} and PDR(λ ) = 0.

EXAMPLE 10. Let A + λE = Mk(λ ) be a block of size k > 0 associated with
the eigenvalue infinity as in (8). By (12) for j � k− 1 it follows that Cj(λ ) is an
upper-triangular Toeplitz matrix, with its first row equal to[

0 · · · 0 a( j)
j+1λ 0 · · · a( j)

n λ k− j−1
]
,

where the zero entry is repeated j times, and a( j)
j+1, . . . ,a

( j)
n ∈ R\{0} . Hence, we have

PDR(λ ) = Ik .

Examples 9 and 10 suggest that PDR(λ0) may also be independent of the choice
of the regular point λ0 and this is indeed the case as the next result shows.

PROPOSITION 11. If A+ λE is a regular pencil, then the matrix PDR(λ0) does
not depend on the choice of the regular point λ0 . Furthermore, PDR(λ0) = 0 if and
only if infinity is a regular point of A+ λE .

Proof. As in the proof of Lemma 8 fix a regular point λ0 and define the set W of
all those regular points λ for which PDR(λ0) = PDR(λ ) . We show that W is open
in the set of regular points. Take λ1 ∈ W and let U be a neighborhood of λ1 such that
for all λ ∈ U we have

R(λ ) =
n

∑
j=0

(λ −λ1) j a j Cj(λ1),

with some coefficients a0 = 1, a1, . . . ,an ∈C , see the proof of Lemma 8. By Lemma 8,
we have

PDR(λ ) =
n

∑
j=0

a j(λ −λ1) jPspan{C1(λ1),...,Cn(λ1)}⊥Cj(λ1) = PDR(λ1)

for all λ ∈U and thus W is open. The set W is clearly closed in the set of the regular
points, hence, it is equal to the set of regular points which is a connected set.
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For the ‘furthermore’ part note, that without loss of generality one may assume
that A+ λE is in Kronecker canonical form, and using (12), one may consider each
block separately. If A+λE = Pk,γ(λ ) , then by Example 9 one has PDR(λ0) = 0 and
if A+ λE = Mk(λ ) , then PDR(λ0) = Ik . �

In view of Proposition 11 we define the quantity

ρ(A,E) := ‖PDR(λ0)‖−1
F .

for a regular point λ0 of A+λE . By Proposition 11, ρ(A,E) is well defined if and only
if infinity is an eigenvalue of A+λE . If this is not the case, then we set ρ(A,E) := +∞ .

The following observation is a key step in showing that ρ(A,E) can be used as a
lower bound for δ1,0(A,E) .

PROPOSITION 12. Let A+ λE be a regular pencil, let λ0 be a regular point and
let G ∈ Cn×n be of rank one. Then

A+ τG+ λE

is singular for some τ0 ∈ C if and only if PDG∗ = G∗ and tr(GR(λ0)) �= 0 .
If these conditions hold, then the only value of τ for which A+τG+λE is singu-

lar is

τ0 = − 1
tr(GR(λ0))

.

Proof. Let G = uv∗ , with some u,v ∈ Cn . Note that PD(G∗) = G∗ is equivalent
to

0 =
〈
Cj(λ0),G∗〉= tr(uv∗Cj(λ0)) = v∗R(λ0)(ER(λ0)) ju, j = 1, . . . ,n,

for any regular point λ0 of A+λE . Together with the fact that v∗R(λ0)u = tr(uv∗R(λ0))
= tr(GR(λ0)) �= 0, the assertion follows by Theorem 4, equivalence (a)⇔(e). The iden-
tity

τ0 = − 1
v∗R(λ0)u

= − 1

tr
(
GR(λ0)

)
then follows from the second part of Theorem 4. �

As a consequence we obtain the following lower bound for the rank-one distance
to singularity.

THEOREM 13. Let A+λE be a regular pencil and let E be singular, i.e., infinity
is an eigenvalue. Let the linear subspace D of Cn×n be defined by (20) and (11), and
let D0, . . . ,Dk be an orthonormal basis of D with

D0 =
PDR(λ0)

‖PDR(λ0)‖F
.
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Then the set

Ξ :=

{
[α0, . . . ,αk]T ∈ C

k+1

∣∣∣∣α0 �= 0,
k

∑
j=0

|α j|2 = 1, rank

(
k

∑
j=0

α jD j

)
= 1

}
is not empty and

δ1,0(A,E) = ρ(A,E) min
(α0,...,αk)∈Ξ

|α0|−1.

In particular, we have
δ1,0(A,E) � ρ(A,E).

Proof. By assumption, there exists a matrix G of rank one and Frobenius norm
one, such that A+ τG+ λE is singular for some τ ∈ C , see Remark 6. By Proposi-
tion 12 we have G∗ = ∑k

j=0 α jD j for some α0, . . . ,αk ∈ C , with ∑k
j=0 |α j|2 = 1, as

well as

0 �= tr
(
GR(λ0)

)
= 〈R(λ0),G∗〉 = α0〈R(λ0),D0〉 = α0 ‖PDR(λ0)‖F ,

which implies that α0 �= 0. This shows that Ξ �= /0 .
Conversely, if G∗ = ∑k

j=0 α jD j for some α0, . . . ,αk ∈ Ξ then by Proposition 12
the pencil A+ τG+ λE is singular for

τ = − 1

tr
(
GR(λ0)

) = − 1
α0 ‖PDR(λ0)‖F

= −α−1
0 ρ(A,E).

Taking δ1,0(A,E) as the minimum of |τ| over all pairs (τ,G) with G∗ ∈ Ξ and such
that A+ τG+ λE is singular, finishes the proof. �

REMARK 14. The quantity min(α0,...,αk)∈Ξ |α0|−1 may be expressed in terms of
zeros of multivariate polynomials. Indeed, considering the 2×2 minors of the matrices
Di , we immediately see that the rank condition in the definition of Ξ is equivalent to

pi1,i2, j1, j2(α0, . . . ,αk) :=
k

∑
i, j=0

(
(αiDi)i1, j1(α jD j)i2, j2 −αiα j(Di)i2, j1(Dj)i1, j2

)
= 0

for every i1, i2, j1, j2 = 1, . . . ,n , i1 �= i2 , j1 �= j2 , with (Di)p,q denoting the (p,q) entry
of the matrix Di . In other words, to compute δ1,0(A,E) one needs to find a common
zero of the polynomials pi1,i2, j1, j2 on the unit sphere, with the largest absolute value of
the α0 coordinate.

The inequality ρ(A,E)� δ1,0(A,E) may be strict as the following example demon-
strates.

EXAMPLE 15. Let A+ λE = Mk(λ ) with Mk(λ ) as in (8) and k > 0. Since by
Example 10 we have PDR(λ ) = Ik , it follows that ρ(A,E) = k−1/2 . On the other hand,
δ1,0(A,E) is clearly greater than or equal to the minimal singular value of A , which is
one in this case.

Further examples can be found in Section 6, where the analogue of Theorem 13
for Hermitian pencils is discussed.
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4. Singularizing perturbations for Hermitian pencils

We call a pencil A+λE Hermitian if both matrices A and E are Hermitian, which
we denote by A,E ∈ C

n×n
H .

DEFINITION 16. Let A+ λE , A,E ∈ C
n×n
H be a regular Hermitian pencil. Then

the Hermitian rank-(κA,κE) distance to singularity of A+ λE is defined as

δH
κA,κE

(A,E) = min
{
‖[ΔA,ΔE]‖F

∣∣∣ΔA,ΔE ∈ C
n×n
H , rankΔA � κA, rankΔE � κE ,

det
(
A+ ΔA+ λ (E+ ΔE)

)≡ 0
}
.

In the particular case κA = 1 and κE = 0, we call δH
1,0(A,E) the Hermitian rank-one

distance to singularity of A+ λE .

Clearly, for any κA,κE , we have

δκA,κE (A,E) � δH
κA,κE

(A,E).

and if κA � κ1, κE � κ2 then δH
κA,κE

� δH
κ1,κ2

. These inequalities may be strict as
demonstrated in Example 18 below which presents a pencil for which we have
δκA,κE (A,E) < δH

κA,κE
(A,E) and δH

2,0(A,E) < δH
1,0(A,E) .

Next, we show that for any Hermitian pencil A + λE we have δH
1,1(A,E) < +∞

and we will characterize all Hermitian pencils for which δH
1,0(A,E) < +∞ . We will also

present a family of Hermitian pencils for which

δ1,0(A,E) < δH
1,0(A,E) = +∞.

The analysis is based on the canonical form for Hermitian pencils under congruence,
see [26].

THEOREM 17. (Hermitian canonical form) Let A,E ∈ C
n×n
H . Then there exists

an invertible matrix S ∈ Cn×n such that the pencil S∗(A+λE)S is block-diagonal with
diagonal blocks of one of the following forms:

i) blocks corresponding to a real eigenvalue γ ∈ R:

J s
k,γ (λ ) := s

⎡⎢⎢⎢⎢⎣
γ −λ

. .
.

1

. .
.
. .

.

γ −λ 1

⎤⎥⎥⎥⎥⎦ ∈ C
k×k, s ∈ {−1,1} ; (21)

ii) blocks corresponding to a pair of conjugate complex eigenvalues γ,γ , where
γ ∈ C+ := {z : Imz > 0}:

J2k,γ (λ ) :=

[
0 J 1

k,γ (λ )
J 1

k,γ (λ ) 0

]
∈ C

2k×2k, (22)

where J 1
k,γ (λ ) and J 1

k,γ (λ ) are defined as in (21);
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iii) blocks corresponding to the eigenvalue infinity:

N s
k (λ ) := s

⎡⎢⎢⎢⎢⎣
1

. .
. −λ

. .
.

. .
.

1 −λ

⎤⎥⎥⎥⎥⎦ ∈ C
k×k, s ∈ {−1,1} ; (23)

iv) singular blocks:

L2k−1(λ ) :=
[

0 Gk(λ )
G �

k (λ ) 0

]
∈ C

(2k−1)×(2k−1), (24)

where Gk(λ ) is given by (9).

The parameters γ ∈ C , s ∈ {−1,1} , and k � 1 depend on the particular block
and hence may be different in different blocks. Moreover, the canonical form is unique
up to permutation of diagonal blocks.

A Hermitian pencil is singular if and only if it contains blocks of the form (24) and
the notion of the eigenvalue agrees with the one introduced in Section 2. In contrast to
the unstructured canonical form, besides the eigenvalues and the sizes of the blocks,
the numbers s in the blocks (21) and (23) associated with real eigenvalues and the
eigenvalue infinity are additional invariants. They are called the signs of the blocks and
their collection is called the sign characteristic of the Hermitian pencil A + λE , see,
e.g., [9].

If A + λE is a regular Hermitian pencil, then the canonical form S∗(A + λE)S
reduces to a block-diagonal pencil of the form(⊕

γ∈σR

Nγ⊕
j=1

J
s( j,γ)
k j(γ),γ

)
⊕
⎛⎝ ⊕

γ∈σ
C+

Nγ⊕
j=1

J2k j(γ),γ

⎞⎠⊕
(

N∞⊕
j=1

N
s( j,∞)

k j(∞)

)
, (25)

where σR , σC+ denote the sets of real eigenvalues and eigenvalues with positive imag-
inary part of A+ λE , respectively, and where Nγ � 0, k j(γ) > 0, s(k j,γ) ∈ {−1,1} ,
j = 1, . . . ,Nγ , γ ∈ σR ∪σC+ ∪{∞} .

If κA = 1 and κE = 0, then the general form of a Hermitian rank-one perturbation
of a Hermitian pencil is given by

A+ τuu∗+ λE, τ ∈ R.

In this case the Weyl function takes the form Q(λ ) = u∗R(λ )u , cf. (5) and (6).

EXAMPLE 18. Let a > 0 and

A+ λE = aN +
2 (λ )⊕N +

1 (λ ) =

⎡⎣ 0 a 0
a −aλ 0
0 0 1

⎤⎦ .
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We show that for a < 1/
√

2 we have δH
2,0(A,E) < δH

1,0(A,E) < +∞ , and δ1,0(A,E) <

δH
1,0(A,E) . It is clear that

δH
2,0(A,E) � a

∥∥∥∥∥∥
⎡⎣ 0 1 0

1 0 0
0 0 0

⎤⎦
∥∥∥∥∥∥

F

= a
√

2 < 1.

On the other hand let u = [u1,u2,u3]� ∈ C
3 be such that A+λE + τuu∗ is singular for

some τ ∈ R . Then, according to Theorem 4, the Weyl function

Q(λ ) = u∗(A+ λE)−1u = a−1λ u1u1 +a−1(u2u1 + u1u2)+ u3u3

is nonzero and constant. This implies that u1 = 0 and consequently

det(A+ τuu∗+ λE) = det

⎡⎣ 0 a 0
a τu2u2−aλ τu2u3

0 τu3u2 τu3u3 +1

⎤⎦= −a2(1+ τ|u3|2).

Hence, u = (0,u2,u3) and τ = −1/|u3|2 . Conversely, for any such u,τ the pencil
A+ λE + τuu∗ is singular. From this we obtain that δH

1,0(A,E) = 1. Finally, note that

A−a

⎡⎣0 1 0
0 0 0
0 0 0

⎤⎦+ λE

is singular and hence δ1,0(A,E) � a < 1/
√

2 < 1 = δH
1,0(A,E) .

In the following we present necessary and sufficient conditions in terms of the Her-
mitian canonical form for the Hermitian rank-one distance to singularity to be finite. Let
A+ λE be a regular pencil in Hermitian canonical form (25) and let u = [u�1 ,u�2 ,u�3 ]�
be an associated conformable partition of the entries of a vector u ∈ Cn . Introducing
the functions

Qf (λ ) := u∗1

(⊕
γ∈σR

Nγ⊕
j=1

(
J

s( j,γ)
k j(γ),γ(λ )

)−1
)

u1 +u∗2

⎛⎝ ⊕
γ∈σ

C+

Nγ⊕
j=1

(
J2k j(γ),γ(λ )

)−1

⎞⎠u2,

(26)
and

Q∞(λ ) := u∗3

(
N∞⊕
j=1

(
N

s( j,∞)
k j(∞) (λ )

)−1
)

u3, (27)

we obtain the following result.

LEMMA 19. Let A + λE be a regular Hermitian pencil in canonical form (25)
and let the correspondingly partitioned vector u = [u�1 ,u�2 ,u�3 ]� ∈ Cn be such that
A+ τuu∗+ λE is singular for some value τ = τ0 ∈ R . Then u3 �= 0 , Q f (λ ) ≡ 0 , and
Q∞(λ ) ≡− 1

τ0
, where Qf and Q∞ are as in (26) and (27), respectively.
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If, additionally, A + λE has only real eigenvalues (including infinity), all finite
eigenvalues are semi-simple and for each fixed real eigenvalue all corresponding blocks
are of the same sign, then u1 = 0 , and u2 is void.

Proof. Introducing the partitioning

u1 = [uγ, j]γ∈σR, j=1,...,Nγ ,

u2 = [uγ, j]γ∈σ
C+ , j=1,...,Nγ ,

u3 = [u∞, j] j=1,...,N∞ ,

of the vectors u1 , u2 , u3 , we have that

Qf (λ ) = ∑
γ∈σR

Nγ

∑
j=1

u∗γ, j

(
J

s( j,γ)
k j(γ),γ (λ )

)−1
uγ, j + ∑

γ∈σ
C+

Nγ

∑
j=1

u∗γ, j

(
J2k j(γ),γ(λ )

)−1
uγ, j.

Furthermore, for γ ∈ σR , j = 1, . . . ,Nγ , we obtain

u∗γ, j

(
J

s( j,γ)
k,γ (λ )

)−1
uγ, j

= s( j,γ) u∗γ, j

⎡⎢⎢⎢⎢⎣
(−1)k−1(γ −λ )−k · · · −(γ −λ )−2 (γ −λ )−1

... . .
.

. .
.

−(γ −λ )−2 . .
.

(γ −λ )−1

⎤⎥⎥⎥⎥⎦uγ, j,

where we abbreviated k = k j(γ) for simplicity. Analogously, partitioning conformably
u�γ, j = [u�γ, j,1,u

�
γ, j,2] , for γ ∈ σC+ , j = 1, . . . ,Nγ , we get that

u∗γ, j

(
J2k,γ (λ )

)−1
uγ, j =

[
uγ, j,1

uγ, j,2

]∗[ 0
(
J 1

k,γ (λ )
)−1(

J 1
k,γ (λ )

)−1
0

][
uγ, j,1

uγ, j,2

]
= u∗γ, j,1

(
J 1

k,γ (λ )
)−1

uγ, j,2 +u∗γ, j,2

(
J 1

k,γ (λ )
)−1

uγ, j,1,

where again we used k = k j(γ) for simplicity. Note that for each γ ∈ σR the function
Qf (λ ) has either a pole in γ or

Nγ

∑
j=1

u∗γ, j

(
J

s( j,γ)
k j(γ),γ(λ )

)−1
uγ, j ≡ 0. (28)

Analogously, for each γ ∈ σC+ , the function Qf (λ ) has either a pole in γ or

Nγ

∑
j=1

u∗γ, j

(
J2k j(γ),γ (λ )

)−1
uγ, j ≡ 0. (29)
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Hence, Qf (λ ) is either a zero function or a rational function, which is not a polynomial.
On the other hand, for j = 1, . . . ,N∞ we have that

u∗∞, j

(
N

s( j,∞)
k j(∞) (λ )

)−1
u∞, j = s( j,∞) u∗∞, j

⎡⎢⎢⎢⎢⎣
λ k−1 · · · λ 1

... . .
.
. .

.

λ . .
.

1

⎤⎥⎥⎥⎥⎦u∞, j, (30)

where we used the abbreviation k = k j(∞) . Hence, Q∞(λ ) is a polynomial. By The-
orem 4 the function Q(λ ) is constantly equal to −1/τ0 . Therefore, Qf (z) ≡ 0 and
Q∞(z) ≡−1/τ0 . Hence, u3 �= 0.

To prove the second assertion, note that if the assumption (37) holds, then u2 is
void and the left hand side of (28) is zero if and only if uγ, j = 0, j = 1, . . . ,Nγ . �

The following theorem presents the main result of this section, classifying several
low-rank distances for Hermitian pencils.

THEOREM 20. Let A+ λE , with A,E ∈ C
n×n
H , be a regular Hermitian pencil.

(i) There exist u ∈ Cn and τ0 ∈ R\ {0} such that the pencil

A+ τ0uu∗ + λE

is singular if and only if the Hermitian canonical form of A + λE contains ei-
ther an odd sized block associated with the eigenvalue infinity, or two even sized
blocks of possibly distinct dimensions with opposite signs, i.e., it contains at least
one of the following two blocks:

(i.1) N s
2k+1(λ ) , k � 0, s ∈ {1,−1} ,

(i.2) N 1
2l (λ )⊕N −1

2l′ (λ ) , l, l′ � 1 .

(ii) There exist matrices B ∈ Cn×2 , H = H∗ ∈ C2×2 and τ0 ∈ R\ {0} such that

A+ τ0BHB∗ + λE

is singular if and only if infinity is an eigenvalue of the pencil, i.e., if and only if
the Hermitian canonical form of A+ λE contains at least one block of the form

(ii.1) N s
k (λ ) , k � 1, s ∈ {1,−1} .

(iii) There exist v ∈ Cn and τ0 ∈ R\ {0} such that the pencil

A+ λ (E + τ0vv
∗)

is singular if and only if the Hermitian canonical form of A+λE contains either
an odd sized block associated with the eigenvalue zero, or two even sized blocks
of possibly distinct dimensions with opposite signs, i.e., it contains at least one of
the following two blocks:
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(iii.1) J s
2k+1,0(λ ) , k � 0, s ∈ {1,−1} ,

(iii.2) J 1
2l,0(λ )⊕J −1

2l′,0(λ ) , l, l′ � 1 .

(iv) There exist matrices C ∈ Cn×2 , K = K∗ ∈ C2×2 and τ0 ∈ R\ {0} such that

A+ λ (E + τ0CKC∗)

is singular if and only if zero is an eigenvalue of the pencil, i.e., if and only if the
Hermitian canonical form of A+ λE contains at least one block of the form

(iv.1) J s
k,0(λ ) , k � 1, s ∈ {1,−1} .

(v) There exist vectors u,v ∈ Cn , h ∈ {−1,1} and τ0 ∈ R\ {0} such that

A+hτ0uu∗ + λ (E + τ0vv
∗)

is singular, regardless of the particular Hermitian canonical form of A+ λE .

Proof. In the complete proof we assume without loss of generality that A+λE is
in the Hermitian canonical form (25) and that u = [u�1 ,u�2 ,u�3 ]� is partitioned corre-
spondingly.

(i) Assume that A + τ0uu∗ + λE is singular for some τ0 ∈ R \ {0} . Then by
Lemma 19 and ũ := [0,0,u�3 ]� , we have

ũ∗(A+ λE)−1ũ = Q∞(λ ) ≡ const �= 0.

Hence, by Theorem 4, the pencil A + τ0ũũ∗ + λE is singular as well. Therefore, we
may assume that A+ λE only has the eigenvalue infinity.

Suppose now that there are no odd sized blocks corresponding to infinity and that
all even sized blocks have the same sign, i.e.,

A+ λE = N s
2l1

(λ )⊕·· ·⊕N s
2lN∞

(λ ), (31)

where s ∈ {±1} . We also assume that l1 � · · ·� lN∞ , and let u = [u�1 , . . . ,u�N∞ ]� be the
corresponding partition of the entries of the vector u . Denoting by u j,i the i-th (scalar)
entry of u j we obtain from (30) that

Q(λ ) =
N∞

∑
j=1

u∗j
(
N s

2l j(λ )
)−1

u j = s
N∞

∑
j=1

2l j−1

∑
i=0

d( j)
i λ i, (32)

where

d( j)
i = ∑

i1+i2=2l j−i+1

u j,i1 u j,i2 , j = 1, . . . ,Nj, i = 0,1, . . . ,2l j −1. (33)

Hence, the leading coefficient of the polynomial Q(λ ) is

s ∑
j∈{ j:l j=l1}

|u j,1|2λ 2l1−1.
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On the other hand, Q(λ ) is constant, therefore, u j,1 = 0 for j such that l j = l1 . Sub-
sequently, according to (32) and (33), the coefficient of λ 2l1−3 in Q(λ ) equals

s

⎡⎣ ∑
j∈{ j:l j=l1}

(
u j,1u j,3 + |u j,2|2 +u j,1u j,3

)
+ ∑

j∈{ j:l j=l1−1}
|u j,1|2

⎤⎦ .

Since Q(λ ) is constant and u j,1 = 0 if l j = l1 , we get u j,2 = 0 if l j = l1 and also
u j,1 = 0 if l j = l1 − 1. Proceeding in this way by induction for j = 1, . . . ,N∞ , we
obtain u j,r = 0 for r = 1, . . . , l j . Hence, N s

2l1
(λ ) and u1 are of the form

N s
2l1

(λ ) =

[
0 N s

l1
(λ )

N s
l1

(λ ) −λEl1
11

]
and u1 =

[
0
ũ1

]
,

respectively, with some ũ1 ∈ Cl1 . Here El1
11 denotes the l1 × l1 matrix with one in the

(1,1)-position and zeros elsewhere, and then we obtain that

A+ τuu∗+ λE =

⎡⎢⎣ 0 N s
l1

(λ ) 0

N s
l1

(λ ) −λEl1
11 + τ ũ1ũ∗1 τ ũ1ũ∗

0 τ ũũ∗1 Ã+ λ Ẽ + τ ũũ∗

⎤⎥⎦ ,

where ũ = [u�2 , . . . ,u�N∞ ]� and

Ã+ λ Ẽ = N s
2l2

(λ )⊕·· ·⊕N s
2lN∞

(λ ).

Thus, by Laplace expansion, induction, and using that |detN s
l j

(λ )| = 1, we obtain

|det(A+ τuu∗+ λE)|= |det(Ã+ λ Ẽ + τ ũũ∗)| = · · · = 1,

and hence the pencil A+ τuu∗+ λE = A+ λE is regular for all τ , which contradicts
the main assumption that A + τ0uu∗ + λE is singular for some τ0 ∈ R \ {0} . As a
consequence, (31) is false, which finishes the proof of one direction of (i).

To prove the converse implication, it is enough to consider the two cases that
A+λE equals the block(s) in (i.1) or (i.2), respectively. If A+λE = N s

2k+1(λ ) , k � 0,
s ∈ {1,−1} , then setting u = e(k+1)/2 we get that the pencil A− suu∗+λE singular. In
the other case, we have A+ λE = N −1

2l (λ )⊕N 1
2l′(λ ) , l, l′ � 0, and we first consider

the situation when l = l′ . Let u = [u�1 ,u�2 ]� = [u1,1, . . . ,u1,2l,u2,1, . . . ,u2,2l] be such
that

u1,i = u2,i for i = 1, . . . , l−1, and Re(u1,1u1,l) �= Re(u2,1u2,l).

Then, due to (32), (33) and the fact that the signs of the two blocks of A + λE are
opposite, we have

Q(λ ) = −2Re(u1,1u1,l)+2Re(u2,1u2,l),

which is a nonzero constant. Application of Theorem 4 finishes the proof in the situa-
tion l = l′ .
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If l �= l′ , then we assume for simplicity that l′ > l , the case l < l′ can be treated
similarly. Let l̃ = l′ − l and let u ∈ C2l′ be a vector such that

u1 = · · · = ul̃ = ul̃+2l+1 = · · · = u2l′ = 0.

Then
u∗(N 1

2l′(λ ))−1u = v∗(N 1
2l (λ ))−1v

with v = [ul̃+1, . . . ,ul̃+2l]
� . This reduces the situation to the case l′ = l and thus finishes

the proof of (i).
(ii) If infinity is not an eigenvalue of A+λE then, due to the regularity of A+λE ,

the matrix E is invertible. Hence, A+ B̃+λE is regular for all B̃∈Cn×n . Assume now,
that infinity is an eigenvalue of A + λE . If the canonical Hermitian form of A + λE
contains one of the structures listed in (i.1) or (i.2), then we set B = [u,0] and H = I2 ,
where u is constructed as in the proof of (i). By (i) the pencil A + τ0BHB∗ + λE is
singular for some τ0 . The remaining case to consider is that A + λE has only even
blocks of the same sign corresponding to infinity. It is enough to consider the case that
A+ λE = N s

2l(λ ) , l � 1, s ∈ {−1,1} . Setting

B = [e1,e2l], H =
[

0 1
1 0

]
,

we then have that the pencil A−BHB∗+ λE is singular.
(iii) and (iv) follow from (i) and (ii) by interchanging the roles of A and E .
(v) Without loss of generality we may assume that A+λE is a single block of one

of the forms (21), (22), or (23). The cases A+ λE = N s
1 (λ ) and A+ λE = J s

1,0(λ ) ,
s ∈ {−1,1} , are trivial. Consider the case

A+ λE = N s
k (λ ), k � 2, s ∈ {−1,1} , (34)

let w = e1 + ek−1 + ek , with the special case w = e1 + e2 if k = 2, and let τ1 = −s/2.
According to Proposition 1(i), the fact that det(A + λE) = ±1, and formulas (32)
and (33), the characteristic polynomial of A+ τ1ww∗ + λE equals

±(1− 1
2
(2λ +2)

)
= ±λ ,

with the special case ±(1− 1
2 (λ +2)

)
=± 1

2λ if k = 2, and it clearly has a simple zero
at λ = 0. Therefore, the pencil A+ τ1ww∗ + λE has in its Hermitian canonical form
a block J s

1,0(λ ) . By (iii) there exists v ∈ Ck and τ0 ∈ R \ {0} such that the pencil

A + τ1ww∗ + λ (E + τ0vv∗) is singular. Setting h = sgn(τ0τ1) and u = |τ0|− 1
2 |τ1| 1

2 w
finishes the proof in this case.

Consider next the case

A+ λE = J s
k,γ (λ ), γ ∈ R\ {0} , s ∈ {1,−1} . (35)

Taking u = e1 , τ1 = s(−1)kγk , then according to Proposition 1(i) and the fact that
det(A+ λE) = ±(γ −λ )k , the characteristic polynomial of A+ τ1uu∗+ λE equals

±(γ −λ )k
(

1− γk

(γ −λ )k

)
= ±((γ −λ )k − γk),
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and clearly has a simple zero at λ = 0. As in case (34), application of (iii) finishes the
proof.

Next, consider the case

A+ λE = J2k,γ (λ ), γ ∈ C
+, k > 0. (36)

Taking u = −( 1
2γk)e1 + ek+1 , τ1 = (−1)k+1 , then according to Proposition 1(i) and

the fact that det(A + λE) = (−1)k(γ − λ )k(γ − λ )k , the characteristic polynomial of
A+ τ1uu∗ + λE equals

(−1)k(γ −λ )k(γ −λ )k

(
1− γk

2(γ −λ )k −
γ k

2(γ −λ )k

)
,

and clearly has a simple zero at λ = 0. As in cases (34), (35), application of statement
(iii) finishes the proof.

The remaining case to consider is

A+ λE = J s
k,0(λ ), s ∈ {1,−1} ,k � 2.

In this situation the statement follows from (34) by interchanging the roles of A and
E . �

REMARK 21. Observe that if A+ λE = N s
2k+1(λ ) , then the sign of τ0 , as con-

structed in the proof of (i), is opposite to s . In the case A+ λE = N +
2l (λ )⊕N −

2l′ (λ ) ,
the sign τ0 can be arbitrary, depending on the choice of u . This observation remains
valid under congruence transformations W ∗(A + τuu∗ + λE)W , since both the sign
characteristic and the sign of τ0 stay invariant.

REMARK 22. Note that Theorem 20 presents two different methods of making
the pencil N s

2k+1(λ ) singular. In (i) the matrix A is perturbed by a rank-one matrix so
that the perturbed pencil equals L2k+1(λ ) . On the other hand in (v) first A is perturbed
so that zero is an eigenvalue, and then the matrix E is perturbed to get the block L1(λ )
in the Hermitian canonical form.

5. An explicit formula for the rank-one distance to singularity
for a special Hermitian pencil

In this section, we present an explicit formula for δH
1,0(A,E) in a specially simple

case. For this, we will make use of several assumptions on the Hermitian canonical
form (25) of a regular Hermitian pencil which we list for later reference:

i) there are no non-real eigenvalues, each fixed γ ∈ σR is semi-simple and all cor-
responding blocks have the same sign, i.e.,

σC+ = /0 and s( j,γ) =: s(γ), k j(γ) = 1, j = 1, . . . ,Nγ , γ ∈ σR; (37)
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ii) infinity is a semi-simple eigenvalue, i.e.,

k j(∞) = 1, j = 1, . . . ,N∞; (38)

iii) all blocks corresponding to infinity have the same sign, i.e.,

s( j,∞) =: s(∞), j = 1, . . . ,N∞. (39)

THEOREM 23. Let A+λE be a regular Hermitian pencil that has only real eigen-
values (including infinity) that are all semi-simple and such that for each fixed finite
eigenvalue all corresponding blocks in the Hermitian canonical form have the same
sign, i.e., the Hermitian canonical form (25) of A+ λE satisfies (37) and (38). Then
for every invertible matrix S , such that S(A+ λE)S∗ is in Hermitian canonical form
one has

δH
1,0(A,E) �

∥∥S|ker(ES∗S)
∥∥−2

2
. (40)

Furthermore, if all blocks corresponding to the infinity eigenvalue are of the same sign
s∞ , i.e., the Hermitian canonical form (25) of A+ λE satisfies (37)–(39), then

δH
1,0(A,E) =

∥∥S|ker(ES∗S)
∥∥−2

2
.

and for every u ∈ ker(ES∗S) , u �= 0 the pencil A− s∞‖Su‖−2
2 uu∗+ λE is singular.

Proof. Fix an invertible matrix S , such that S(A+ λE)S∗ is in Hermitian canoni-
cal form and let u∈ Cn . Observe that the pencil A+τ0uu∗+λE is singular if and only
if u ∈ ker(ES∗S) and

−1/τ0 = u∗(A+ λE)−1u. (41)

To see this, set uJ = Su , AJ = SAS∗ , and EJ = SES∗ . If A+ τuu∗ +λE is singular for
some τ = τ0 ∈ R , then the pencil AJ +τ0uJu∗J +λEJ is singular as well. By Lemma 19
applied to AJ ,EJ and uJ and the fact that all blocks corresponding to the eigenvalue
infinity are of size one, we have uJ ∈ kerEJ , or equivalently u ∈ ker(ES∗S) . Then (41)
follows from Theorem 4. The converse implication is immediate.

Using this observation, we have

δH
1,0(A,E)−1

= max
{|τ|−1

∣∣(u,τ) ∈ C
n×R, A+ τuu∗+ λE is singular, ‖u‖2 = 1

}
= max

{|u∗(A+ λE)−1u| ∣∣u ∈ ker(ES∗S), ‖u‖2 = 1
}

= max
{|u∗J(AJ + λEJ)−1uJ|

∣∣uJ ∈ kerEJ,
∥∥S−1uJ

∥∥
2 = 1

}
.

Since the pencil AJ +λEJ is in Hermitian canonical form and infinity is a semi-simple
eigenvalue, the part of AJ corresponding to kerEJ is diagonal with entries ±1 on the
diagonal, depending on the signs of the blocks corresponding to infinity. Thus, for
uJ ∈ kerEJ we have that |u∗J(AJ + λEJ)−1uJ| � ‖uJ‖2

2 . Hence,

δH
1,0(A,E)−1 � max

{
‖uJ‖2

2

∣∣∣uJ ∈ kerEJ,
∥∥S−1uJ

∥∥
2 = 1

}
= max

{
‖Su‖2

2

∣∣∣u ∈ kerES∗S, ‖u‖2 = 1
}

=
∥∥S|ker(ES∗S)

∥∥2
2
.
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If all blocks corresponding to the eigenvalue infinity have the same sign s∞ , then we
have |u∗J(AJ +λEJ)−1uJ|= ‖uJ‖2

2 for uJ ∈ kerEJ , and thus δH
1,0(A,E)−1 =

∥∥S|ker(ES∗S)
∥∥2

2
.

If in this case u ∈ ker(ES∗S)\ {0} , then the pencil A+ τuu∗+ λE is singular for

τ =
−1

u∗(A+ λE)−1u
=

−1
u∗J(AJ + λEJ)−1uJ

=
−1

s∞ ‖uJ‖2
2

=
−s∞

‖Su‖2
2

=
−s∞

‖Su‖2
2

. �

The assumption of equal signs of blocks corresponding to finite real eigenvalues
is essential for the first part of Theorem 23. This is demonstrated in the following
example.

EXAMPLE 24. Let

S(A+ λE)S∗ =

⎡⎣ 1
λ
−λ

⎤⎦ = AJ + λEJ,

where S is any invertible matrix satisfying∥∥∥S−1[1,1,1]�
∥∥∥

2
<
∥∥∥S−1[1,0,0]�

∥∥∥
2
. (42)

Observe that ∥∥S|ker(ES∗S)
∥∥2

2
= max

{
‖uJ‖2

2

∣∣∣uJ ∈ kerEJ,
∥∥S−1uJ

∥∥
2 = 1

}
(43)

=
∥∥∥S−1[1,0,0]�

∥∥∥−2

2
.

On the other hand, the pencil AJ −u0u∗0 + λEJ is singular also for u0 = [1,1,1]� , i.e.,
the pencil A−uu∗+ λE is singular with u1 = S−1u0 , and hence

δH
1,0(A,E) � ‖u1u

∗
1‖F =

∥∥∥S−1[1,1,1]�
∥∥∥2

2
. (44)

Equations (42), (43) and (44) are in contradiction with (40).

Similarly, one can construct examples showing the necessity of the assumption
that the pencil has no non-real eigenvalues.

EXAMPLE 25. Consider the pencil

AJ + λEJ =

⎡⎣ 1 0 0
0 0 λ −α − ıβ
0 λ −α + ıβ 0

⎤⎦ , α,β ∈ R.

Then not only the perturbation AJ−uJu∗J +λEJ with uJ = [1,0,0]� ∈ kerEJ is singular,
but also AJ −u0u∗0 +λEJ with u0 = [1,0,1]� . Choosing an appropriate transformation
matrix S leads, as in Example 24, to a contradiction with (40).
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The assumption of equal signs of blocks corresponding to the eigenvalue infinity is
essential for the second claim of Theorem 23, as the following example demonstrates.

EXAMPLE 26. Let

A+ λE =
[

0 1
1 0

]
.

Then for every a ∈ R\ {0} and the matrix

S =
√

2
2

[
1/a a
−1/a a

]
,

we have S(A+ λE)S∗ =
[

1 0
0 −1

]
. Due to the fact that kerE = C2 , we obtain

∥∥S|ker(ES∗S)
∥∥

2
= ‖S‖2 �

√
2

2
|a|,

which may be chosen arbitrarily large by varying a , while δH
1,0(A,E) = 1.

6. Computing the rank-one distance to singularity for Hermitian pencils

In this section we present the analogues of the results from Section 3 for the case
of Hermitian pencils. We begin with the Hermitian version of Theorem 7. The proof
follows the same lines as in Section 3 and is not repeated here.

THEOREM 27. Let λ0 ∈ C be an arbitrary regular point of the Hermitian pencil
A+ λE . Then

δH
1,0(A,E)−1 = max

{
|u∗R(λ0)u|

∣∣∣u ∈ C
n, u∗u = 1, u∗Cj(λ0)u = 0, j = 1, . . . ,n

}
.

To measure distances, consider the real orthogonal space of Hermitian matrices
C

n×n
H with the inner product

〈X ,Y 〉H := tr(Y ∗X).

Note that this is indeed an inner product on the real space of Hermitian matrices, be-
cause tr(Y ∗X) = tr(YX) = tr(XY ) = tr(X∗Y ) and hence 〈X ,Y 〉H is real.

The corresponding norm is the Frobenius norm and the inner product equals 〈X ,Y 〉
restricted to the set of Hermitian matrices, but we use the subscript H to avoid confu-
sion. The adjective ‘H -orthogonal’ and the symbol ‘⊥H ’ will refer to orthogonality
and orthogonal complement in the space

(
C

n×n
H ,〈·, ·〉H

)
. The matrices Cj(λ0) are de-

fined as before by (11). Clearly, if λ0 is real, then the matrices Cj(λ0) are all Hermitian.
Then Lemma 8 takes the form below. Note that we have to give a different proof,

because the set of real regular points need not be a connected set and this fact was used
in the proof of Lemma 8.
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LEMMA 28. For any regular point λ0 ∈R of the regular Hermitian pencil A+λE
we have

spanR {C1(λ0), . . . ,Cn(λ0)} = spanR

{
Cj(λ0) | j ∈ N, j � 1

}
(45)

and the span does not depend on the particular choice of λ0 .

Proof. Let the regular point λ0 ∈ R be fixed. Assume that there exists a regular
point λ1 ∈ R and k ∈ N\ {0} such that

Ck(λ1) �∈ spanR {C1(λ0), . . . ,Cn(λ0)} .

By Lemma 8, we have nevertheless Ck(λ1) ∈ spanC {C1(λ0), . . . ,Cn(λ0)} . Choosing a
basis C1(λ0), . . . ,Cn0(λ0) of the complex linear span, see Lemma 8, there exist coeffi-
cients α1, . . . ,αn0 ∈ C such that

n0

∑
i=1

αiCi(λ0) = Ck(λ1) =
(
Ck(λ1)

)∗ =
n0

∑
i=1

α iCi(λ0),

where we have used that Ck and Cji , i = 1, . . . ,n0 are Hermitian. This implies that

0 =
n0

∑
i=1

(αi −α i)Ci(λ0),

and hence all α1, . . . ,αn0 are real, contradicting the assumption. This proves (45) and

{C1(λ1), . . . ,Cn(λ1)} ⊆ {C1(λ0), . . . ,Cn(λ0)} .

By symmetry of the argument, the latter inclusion is an identity. �

As in the unstructured case we define

DH :=
(
spanR {C1(λ0), . . . ,Cn(λ0)}

)⊥H ⊆ C
n×n
H , (46)

where λ0 is any real regular point of the Hermitian pencil A + λE . If V is a real
subspace of C

n×n
H , then by PH

V we denote the orthogonal projection from C
n×n
H to V .

LEMMA 29. Let A+λE be a regular Hermitian pencil and let G be a Hermitian
matrix. Then

PH
DH

G = PDG. (47)

Proof. Recall that if A and E are Hermitian, then so are the matrices Cj(λ0) ,
j = 1, . . . ,n . Let C̃1(λ0), . . . ,C̃ñ(λ0) be the result of Gram-Schmidt orthonormaliza-
tion of the matrices C1(λ0), . . . ,Cn(λ0) with respect to the complex inner product 〈·, ·〉 .
However, note that 〈X ,Y 〉 ∈ R for Hermitian X ,Y and therefore, C̃1(λ0), . . . ,C̃ñ(λ0)
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are Hermitian matrices and thus identical to those obtained by Gram-Schmidt orthonor-
malization applied to C1(λ0), . . . ,Cn(λ0) with respect to the real inner product 〈·, ·〉H .
Hence,

PDG = G−
ñ

∑
j=1

〈
G,C̃j(λ0)

〉
C̃j(λ0) = G−

ñ

∑
j=1

〈
G,C̃j(λ0)

〉
H C̃j(λ0) = PH

DH
G. �

Lemma 29 immediately allows to deduce Hermitian versions of Propositions 11
and 12.

PROPOSITION 30. If A + λE is a regular Hermitian pencil then the matrix
PH

DR(λ0) does not depend on the particular choice of the regular point λ0 ∈ R . Fur-
thermore, PH

DR(λ0) = 0 if and only if infinity is not an eigenvalue of A+ λE .

PROPOSITION 31. Let λ0 ∈ R be a regular point of the Hermitian n× n pencil
A+ λE and let G ∈ Cn×n be a Hermitian matrix of rank one. Then

A+ τG+ λE

is singular for some τ ∈ R if and only if PH
DG = G and tr(GR(λ0)) �= 0 . If the latter

is the case, then

τ = − 1
tr(GR(λ0))

.

Observe that by (47) we have

ρ(A,E) = ‖PDR(λ0)‖−1
F =

∥∥PH
DH

R(λ0)
∥∥−1

F
,

where λ0 is any real regular point of the Hermitian pencil A+λE . By Proposition 30,
we furthermore have that ρ(A,E) < +∞ if and only if infinity is an eigenvalue of
A+ λE .

We now present an analogue of Theorem 13. Note that ρ(A,E) � δH
1,0(A,E)

follows directly from ρ(A,E) � δ1,0(A,E) due to Theorem 13 and the fact that it holds
δ1,0(A,E) � δH

1,0(A,E) .

THEOREM 32. Let A + λE be a regular Hermitian pencil for which infinity is
an eigenvalue, and let λ0 ∈ R be any regular point. Furthermore, introduce the linear
subspace DH of C

n×n defined by (46) and (11), and let DH
0 , . . . ,DH

l be an orthonormal
basis of DH with

DH
0 =

PH
DH

R(λ0)∥∥∥PH
DH

R(λ0)
∥∥∥

F

.

Introduce also

ΞH =

{
[α0, . . . ,αl ]� ∈ R

l+1

∣∣∣∣α0 �= 0,
l

∑
j=0

|α j|2 = 1, rank

(
l

∑
j=0

α jD
H
j

)
= 1

}
.
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Then ΞH �= /0 if and only if δH
1,0(A,E) < +∞ . In this case

δH
1,0(A,E) = ρ(A,E) min

(α0,...,αl)∈ΞH

|α0|−1.

Proof. Besides the fact that we have to additionally assume that δH
1,0(A,E) is fi-

nite, the proof follows the same lines as the proof of Theorem 13, with the use of
Proposition 31 instead of Proposition 12, G being additionally Hermitian, DH

0 , . . . ,DH
l

replacing D0, . . . ,Dk and τ,α0, . . . ,αl ∈ R replacing τ,α0, . . . ,αk ∈ C . �

REMARK 33. Note that Theorem 20(i) gives a criterion for δH
1,0(A,E) < +∞ in

terms of the canonical form of A+λE . Therefore, Theorem 32 may be also viewed as
a method for revealing the structure at infinity of a given Hermitian pencil. Similar to
Remark 14, the rank condition in the definition of ΞH is equivalent to

pH
i1,i2, j1, j2(α0, . . . ,αk) :=

l

∑
i, j=0

(
(αiD

H
i )i1, j1(α jD

H
j )i2, j2 − (αiD

H
i )i2, j1(α jD

H
j )i1, j2

)
= 0

for every i1, i2, j1, j2 = 1, . . . ,n , i1 �= i2 , j1 �= j2 , with (DH
i )pq denoting the (p,q) entry

of the matrix DH
i .

EXAMPLE 34. Let

A+ λE = N 1
2 (λ ) =

[
0 1
1 λ

]
.

Then R(0) =
[

0 1
1 0

]
, C1 =

[
1 0
0 0

]
and C2 = 0. Hence,

DH
0 =

√
2

2

[
0 1
1 0

]
, DH

1 =
[

0 0
0 1

]
,

and, thus

p1,2,1,2(α0,α1) = det

[
0 α0/

√
2

α0/
√

2 α1

]
= −α2

0

2
,

which clearly has no zeros on the real unit sphere. This confirms that by Theorem 20(i)
the Hermitian rank one distance to singularity is infinite.

EXAMPLE 35. Let A+ λE be defined as in Example 18, where a is sufficiently
small. By Theorem 32, we have δH

1,0(A,E) = 1 > a = δ1,0(A,E) � ρ(A,E) showing
that ρ(A,E) � δH

1,0(A,E) is possible.

EXAMPLE 36. In Examples 15 and 35 the reason for the estimate ρ(A,E) being
significantly smaller than δ1,0(A,E) or δH

1,0(A,E) , respectively, was the presence of
Jordan chains. However, even if we start with a pencil satisfying ρ(A,E) = δH

1,0(A,E) ,
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then a simple congruence transformation (A + λE) �→ T (A + λE)T ∗ can also cause
ρ(TAT∗,TET ∗) < δH

1,0(TAT ∗,TET ∗) . With

A+ λE =
[

1
λ

]
, T =

[
a 1
c 0

]
, (detT = −c �= 0),

we obviously have ρ(A,E) = δ1,0(A,E) = δH
1,0(A,E) = 1. Consider the transformed

pencil

T (A+ λE)T∗ =
[

a
c

][
a c

]
+ λ

[
1 0
0 0

]
,

let u = [u1, u2]� ∈ C2 be arbitrary and let τ ∈ R be such that[
a
c

][
a c

]
+ τuu∗+ λ

[
1 0
0 0

]
=
[

d + λ 0
0 0

]
(48)

with some d ∈ C . For this we need τ < 0, hence we may just take τ = −1. Then
u2 = eıθ c for some θ ∈ [0,2π) and consequently u1 = eıθ a . Since the vector u was
chosen arbitrarily and any singular pencil Ã+ λTET ∗ has to be of the form (48), we
have shown that

δH
1,0(TAT ∗,TET ∗) = |eıθ |

∥∥∥∥[a
c

][
a c

]∥∥∥∥
F

= |a|2 + |c|2. (49)

On the other hand observe that

R(λ ) = T−∗
[

1
λ−1

]
T−1, Cj(λ ) = T−∗

[
0

λ−( j+1)

]
T−1,

so that we can write the resolvent as

R(λ ) = T−∗
[

1
0

]
T−1 + λT−∗

[
0

λ−2

]
T−1

= T−∗
[

1
0

]
T−1 + λC1(λ ).

Hence, spanR{C1(λ ), . . . ,Cn(λ )} = spanR{C1(λ )} and thus,

PDR(λ ) = PspanR{C1(λ )}⊥H R(λ ) = PspanR{C1(λ )}⊥H

(
T−∗

[
1

0

]
T−1

)
=

1
|c|2 Pspan{C1(λ )}⊥H

[
0 0
0 1

]
. (50)

Furthermore, spanR {C1(λ )} = spanR{C̃1(λ )}, where

C̃1(λ ) =
[−c

a

][−c a
]
,

∥∥C̃1(λ )
∥∥2

F = (|c|2 + |a|2)2.
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With this we obtain

PspanR{C1(λ )}

[
0 0
0 1

]
=

∥∥C̃1(λ )
∥∥−2

F tr

([
0 0
0 1

]
C̃1(λ )

)
C̃1(λ )

=
|a|2

(|c|2 + |a|2)2 C̃1(λ ).

Using (50) we have

PDR(λ ) =
1
|c|2

([
0 0
0 1

]
− |a|2

(|c|2 + |a|2)2 C̃1(λ )
)

=
|a|2

|c|2(|c|2 + |a|2)2

[ |c|2 −ca

−ac |c|4+2|c|2|a|2
|a|2

]
.

and an easy calculation gives

ρ(TAT ∗,TET ∗)−1 =
|c|(|c|2 + |a|2)√

2|a|2 + |c|2 .

Comparing this with (49), we see that for a→∞ and c constant, the estimate ρ(A,E) is
significantly smaller then δH

1,0(A,E) . Also note that with a → ∞ the condition number
of T grows to infinity.

The theoretical results of this section are not very suitable for numerical compu-
tation, since in the neighborhood of a singular pencil the standard eigenvalue methods
may behave very erratically. This is demonstrated in the following example.

EXAMPLE 37. To illustrate potential numerical errors in eigenvalue computation
in the neighborhood of singular pencils, we used matlab [19] to evaluate the formula
for the projection

Pspan{C1(λ ),...,Cn(λ )}⊥X = X −
ñ

∑
j=1

〈
X ,C̃j(λ )

〉
,

where C̃1(λ ), . . . ,C̃ñ(λ ) is determined via Gram-Schmidt orthonormalization applied
to the matrices C1(λ0), . . . ,Cn(λ0) and A+λE = S∗

(
N 1

3 (λ )⊕J1,5(λ )
)
S , where S is

some invertible random matrix.
We present the results for the theoretically constant function

f (λ ) :=
∥∥∥Pspan{C1(λ ),...,Cn(λ )}⊥R(λ )

∥∥∥−1

F
(51)

in Figure 1.
Note that f (λ ) is not only deviating from the constant function at the singular

point λ = 5. For this system we have ρ(A,E) = 0.45.
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Figure 1: The numerically obtained plot of the constant function f (λ ) as in (51).

7. The method of alternating projections

In this section we consider both the situation that A+ λE is an arbitrary unstruc-
tured pencil or a Hermitian pencil. By Proposition 12 and 31, we have that a singu-
larizing rank-one perturbation of the regular n×n pencil A+ λE is given by a matrix
G ∈ Cn×n satisfying PDG∗ = G∗ and rank(G) = 1, where in the Hermitian case we
assume in addition that G is Hermitian.

To derive a numerical method to compute such a singularizing perturbation matrix
G , we start with an arbitrary matrix R0 ∈ Cn×n . It can then be anticipated that the
projected matrix R1 :=

(
PDR∗

0)
∗ will be closer to a singularizing perturbation matrix.

However, R1 need not be of rank one, not even in the case that the initial matrix R0 was
of rank one. So, the idea for the construction of a numerical method is to project R1 to
the nearest rank-one matrix. This will most likely move the projected matrix out of D
again, but alternating this process using the two mentioned projections, we can hope to
converge to a rank-one matrix G satisfying PDG∗ = G∗ . We will call this procedure
the method of alternating projections.

The orthogonal projection of a matrix X ∈ Cn×n to the set of matrices of rank
one can be easily performed using the singular value decomposition X = UΣV ∗ of X ,
where Σ = diag(σ1, . . . ,σn) , with σ1 � σ2 � · · · � σn and where U and V are unitary.
Setting

Q(X) =U diag(σ1,0, , . . . , ,0)V ∗ (52)

uniquely defines the matrix Q(X) if σ1 > σ2 , but depends on the actual singular value
decomposition if σ1 = σ2 . Choosing in each case a particular SVD then fixes a mapping
Q : Cn×n →Cn×n , so that the matrix Q(X) satisfies (52) for every X ∈Cn×n . Similarly,
we define by QH a mapping satisfying (52) and such that QHX is Hermitian for a
Hermitian matrix X .

Given an arbitrary initial nonzero matrix R0 ∈ C
n×n , we then define the sequence
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of matrices

R2k+1 :=
(
PDR∗

2k

)∗
, R2k+2 = Q(R2k+1), k = 0,1, . . . .

In the Hermitian case we set

RH
2k+1 = PDRH

2k, RH
2k+2 = QH(RH

2k+1), k = 0,1, . . . ,

if the initial matrix RH
0 is a nonzero Hermitian matrix. The choice of R0 , as well as the

choice of Q as one of the mappings satisfying (52) will affect the limiting behavior of
the sequence, see Example 41.

In view of Theorems 13 and 32 the natural candidate for the initial value is R0 =
R(λ0) , where λ0 is a regular point of A+ λE . By Lemma 8 and Proposition 11, the
matrices Rj , j > 1, are independent on the choice of λ0 .

PROPOSITION 38. Let A+ λE be a regular pencil with A,E ∈ Cn×n . If the al-
ternating projection sequence (Rk)k∈N converges to some G �= 0 with k → ∞ , then
G is of rank one, the pencil A− (tr(GR(λ0)))−1G + λE is singular, and we have
δ1,0(A,E) � | tr(GR(λ0))|−1 ‖G‖F .

If, additionally, A and E are Hermitian and the Hermitian alternating projec-
tion sequence (RH

k )k∈N converges for k → ∞ to some G �= 0 , then G is an Her-
mitian matrix of rank one, the pencil A− (tr(GR(λ0)))−1G + λE is singular, and
δH

1,0(A,E) � | tr(GR(λ0))|−1 ‖G‖F .

Proof. Note that the matrix G satisfies PDG∗ = G∗ , QG = G . Application of
Proposition 12 finishes the proof. The Hermitian case follows analogously. �

If R0 is sufficiently close to the set of singularizing perturbations of the form
τuv∗ , then convergence of the sequence (Rk)k∈N follows from general results in [1].
The following two examples illustrate the convergence behavior of the method.

EXAMPLE 39. Let A+ λE = (A′ + λE ′)⊕E (λ ) be a regular pencil, where

A′ + λE ′ =

⎡⎢⎢⎢⎢⎢⎢⎣

ε1 λ
ε2 λ

. . .
. . .

. . . λ
εk

⎤⎥⎥⎥⎥⎥⎥⎦
with 0 < |εl0 | < |εl | , l �= l0 for some l0 ∈ {1, . . . ,k} , and where E (λ ) is a regular
pencil with only finite and nonzero eigenvalues. Then

R1 = (PDR(0)∗)∗ =

⎡⎢⎢⎢⎣
ε−1
1

ε−1
2

. . .

ε−1
k

⎤⎥⎥⎥⎦⊕0
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and R2 = Q
(
PDR(0)∗

)∗ = ε−1
l0

el0e
∗
l0

, where el0 denotes the l0 -th vector of the canon-
ical basis in Cn . Observe that R2 ∈ D , i.e., the sequence (Rk) becomes constant for
k � 2. On the other hand, one has

δ1,0(A,E) = δ1,0(A′,E ′) � δ (A′,E ′) � σmin(A) = |εl0 |,
where the inequality δ (A′,E ′)� σmin(A) results from [3, Section 5.2]. Hence, δ1,0(A,E)
= |εl0 | and ε2

l0
R2 realizes this distance.

EXAMPLE 40. We apply the alternating projection method to Example 36 with
a = 30, c = 1, which has a unique rank-one singularizing perturbation of A+λE . After
106 iterations performed with Matlab [19], for λ0 = 0.5 the computed singularizing
perturbation is [−863.3295 −29.3888

−29.3888 −1.0004

]
,

while the only rank-one perturbation G that makes the pencil A + G + λE singular
equals

G =
[−900 −30
−30 −1

]
.

A plot of the convergence behavior is presented in Figure 2.
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Figure 2: Graph of ‖R2n−G‖F

EXAMPLE 41. For

A+ λE =
[

0 1
1 λ

]
the sequence (RH

j ) with the initial value RH
0 = R(0.5) computed via the Matlab pro-

gram
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[U,Sigma]=eig(V1);
[m,id]=max(abs(diag(Sigma)));
Sigma2=zeros(n,n); Sigma2(id,id)=Sigma(id,id);
V=U*Sigma2*U’;

diverges.
On the other hand, to compute the mapping Q(X) , the Matlab program

[U1,Sigma,U2]=svd(X);
Sigma2=zeros(n,n); Sigma2(1,1)=Sigma(1,1);
QX=U1*Sigma2*U2’;

with the same initial value R0 = R(0.5) yields that the sequence Rj is constant for
j � 2 and with

G =
[

0 −1
0 0

]
.

Both results confirm the theory as there is no Hermitian rank-one perturbation that
singularizes the given Hermitian pencil.

For the Hermitian pencil

A+ λE =
[

0 1
1 λ

]
⊕ [

10
]

one obtains the sequence

lim
j→∞

RH
j =

[
0 −0.5

−0.5 +∞

]
⊕ [

0
]
,

while

lim
j→∞

Rj =
[

0 −1
0 0

]
⊕ [

0
]
.

Thus, while the unstructured method converges to a singularizing perturbation matrix
of minimal norm, the Hermitian method fails to find a Hermitian singularizing pertur-
bation.

On the other hand, setting R0 = RH
0 =

[
0 0
0 0

]
⊕ [

10
]

one gets

Rj = RH
j =

[
0 0
0 0

]
⊕ [−10

]
, j � 1,

so now the Hermitian method finds the unique Hermitian singularizing perturbation
matrix of rank one while the unstructured method does not find the singularizing per-
turbation matrix of minimal norm.

Examples 40 and 41 show the difficulties with the alternating projection method. It
is still an open problem to derive a monotonically convergent sequence to the smallest
singularizing rank-one perturbation.
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8. Other low-rank distances

In this section, we present some further results on singularizing perturbations of
arbitrary rank. The central role in Sections 3 and 5 is played by Theorem 7, which
further refers to Theorem 4, condition (e). Here we show an analogue of the afore-
mentioned condition (e) in Theorem 4 in the Hermitian case with κA = κE = 1. The
condition is, however, significantly more complicated and thus harder to apply.

For the pencil A+ λE , we consider the perturbations

A+ τB1B
∗
2 + λ (E + τF1F

∗
2 ), τ ∈ C,

with the two choices
B1,B2 ∈ C

n×κA, F1,F2 ∈ C
n×κE , (53)

rankB1 = rankB2 = κA � 0, rankF1 = rankF2 = κE � 0. (54)

Similarly as in Section 2, we define the matrix valued Weyl functions

Q(λ ) =
[

B∗
2

λF∗
2

]
R(λ )

[
B1 F1

]
, (55)

and

Q(∞) =
[

0 0
F∗

2 E−1B1 F∗
2 E−1F1

]
, (56)

if infinity is a regular point of A + λE . Observe that Q(λ ) is analytic on the set of
regular points of A+ λE .

PROPOSITION 42. Let the n×n pencil A+λE be regular, let B1,B2,F1,F2 be as
in (53) and (54), and let τ0 ∈ C\ {0} . Then

(i) the characteristic polynomial p(λ ) of A+ τ0B1B∗
2 + λ (E + τ0F1F∗

2 ) is given by

p(λ ) = det(A+ λE) ·det
(
IκA+κE + τ0Q(λ )

)
;

(ii) a regular point λ0 ∈ C∪ {∞} of A + λE is a singular point of the perturbed
pencil A+ τ0B1B∗

2 +λ (E + τ0F1F∗
2 ) if and only if −1/τ0 is an eigenvalue of the

matrix Q(λ0) .

Proof. (i) If λ0 ∈ C is a regular point of A+ λE , then one has

p(λ ) = det
(
A+ τ0B1B

∗
2 + λ0(E + τ0F2F

∗
2 )
)

= det(A+ λ0E) ·det

(
In + τ0(A+ λ0E)−1 [B1 F1

][ B∗
2

λF∗
2

])
= det(A+ λ0E) ·det

(
IκA+κE + τ0Q(λ0)

)
.
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(ii) For λ0 ∈ C the proof is a direct consequence of (i). The case λ0 = ∞ follows
from

det(E + τ0F1F
∗
2 ) = det(E) ·det(IκE + τ0F

∗
2 E−1F1)

= det(E)det
(
IκA+κE + τ0Q(∞)

)
. �

From Proposition 42, we obtain immediately that a regular point λ0 ∈ C∪{∞} of
A+λE is a singular point of the pencil A+τB1B∗

2 +λ (E +τF1F∗
2 ) for at most κA +κE

values of the parameter τ .
The statements (a’)–(c’) in the following theorem directly generalize respective

statements from Theorem 4.

THEOREM 43. Let the n× n pencil A+ λE be regular and let B1,B2,F1,F2 be
as in (53) and (54). Then the following statements are equivalent.

(a’) The pencil A+ τ0B1B∗
2 + λ (E + τ0F1F∗

2 ) is singular for some τ0 ∈ C .

(b’) On the set of regular points of A+λE , all matrices Q(λ ) have common, nonzero
eigenvalues ζ1, . . . ,ζk (independent of λ ) , where k is some integer satisfying
1 � k � κA + κE .

(c’) The polynomial in two variables

p(τ,λ ) = det(A+ τB1B
∗
2 + λ (E + τF1F

∗
2 ))

is divisible by the polynomial q(λ ,τ)= (1+ζ1τ) · · · (1+ζkτ) with some ζ1, . . . ,ζk

�= 0 , for some k ∈ N with 1 � k � κA + κE .

Furthermore, the numbers ζ1, . . . ,ζk in (b’) and (c’) coincide and the perturbed pencil
A+ τ0B1B∗

2 + λ (E + τ0F1F∗
2 ) is singular precisely if and only if τ0 = −1/ζ j for some

j ∈ {1, . . . ,k} .

Proof. (a’)⇔(b’) If the pencil A+τ0B1B∗
2 +λ (E +τ0F1F∗

2 ) is singular, then each
λ ∈ C∪{∞} is a singular point. By Proposition 42(i) we get that −1/τ0 is an eigen-
value of the matrix Q(λ0) for all regular points λ0 ∈ C∪{∞} of A + λE , so (b’) is
satisfied for some k � 1. The reversed argument proves the converse implication.

(b’)⇒(c’) Let ζ1, . . . ,ζk be the common nonzero eigenvalues of the matrices
Q(λ0) , where λ0 is a regular point of A+ λE . Then

det(IκA+κE + τQ(λ )) = (1+ ζ1τ) · · · (1+ ζkτ)Q1(τ,λ )

for some function Q1(τ,λ ) polynomial in τ and rational in λ . Hence, by Proposi-
tion 42(i),

p(τ,λ ) = (1+ ζ1τ) · · · (1+ ζkτ)det(A+ λE)Q1(τ,λ ).

Since p(τ,λ ) is a polynomial in λ , the function det(A+ λE)Q1(τ,λ ) is polynomial
in λ and τ .
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(c’)⇒(a’) Assume that (c’) holds. Then

p(−1/ζ j,λ ) = 0, λ ∈ C, j = 1, . . . ,k

and hence the pencil A+ τ0B1B∗
2 + λ (E + τ0F1F∗

2 ) is singular with τ0 = −1/ζ j , j =
1, . . . ,k . �

EXAMPLE 44. Let κA = 2, κE = 0, B1 = B2 = I2 , and let

A =
[

2 0
0 1

]
, E =

[
0 0
0 0

]
Then the function Q(λ ) ≡ A−1 has two constant eigenvalues. Furthermore, this simple
example shows that the number k appearing in (b’) and (c’) need not be equal to the
number of singular blocks in the perturbed pencil.

EXAMPLE 45. In this example we show that point (d) of Theorem 4, i.e., the fact
that the eigenvalues are constant in τ when the perturbed pencil is regular, cannot easily
be generalized to the case of perturbations of arbitrary rank. Consider the perturbed
pencil [

1+ τ 0
0 λ + τ

]
which is singular for τ = −1, but for τ �= −1 the eigenvalues are ∞ and −τ .

The perturbed pencil [
1+ τλ 0

0 λ + λ τ

]
is singular for τ = −1, but for τ �= −1 the eigenvalues are zero and −1/τ .

The perturbed pencil ⎡⎣λ (τ +1) 0 1
0 (τ +1) λ
1 λ (τ +1)

⎤⎦
is singular for τ = −1, but for τ �= −1 the eigenvalues are roots of the polynomial
λ 3 − (1+ τ)λ +1, i.e., they are nonconstant functions of τ . A detailed discussion on
fractional power series expansions of eigenvalues of a perturbed singular pencil is given
in [6].

REMARK 46. Observe that Theorem 43 (b’) is a generalization of Theorem 4 (b).
However, the condition of Theorem 4 that is most useful for applications is statement
(e). Unfortunately, there seems to be no simple condition generalizing Theorem 4(e).
In this remark we present a condition equivalent to Theorem 43 (b’) for a Hermitian
n×n pencil A+ λE and perturbations of the forms

A+ τ0uu∗+ λ (E + τ0vv
∗), A− τ0uu∗+ λ (E + τ0vv

∗). (57)
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Our choice is motivated by Theorem 20(v), which says that every Hermitian pencil can
be made singular by one of the perturbations given in (57). Observe that

Q(λ ) =
[

u∗R(λ )u u∗R(λ )v
λv∗R(λ )u λv∗R(λ )v

]
and the eigenvalues of Q(λ ) equal

ζ1,2(λ ) = −1
2

(
t(λ )±

√
Δ(λ )

)
,

where
t(λ ) = t(λ ;u,v) = trQ(λ ), d(λ ) = d(λ ,u,v) = detQ(λ ).

and
Δ(λ ) = Δ(λ ;u,v) = t2(λ ;u,v)−4d(λ ;u,v).

Fixing a regular point λ0 with Δ(λ0) �= 0 and expressing the derivatives of the above
functions in terms of A , E , u and v , we obtain

tk(u,v) :=
∂ kt
∂λ k (λ0) = trQ(k)

u,v(λ0)

= u∗R(k)(λ0)u+ λ0v
∗R(k)(λ0)v+ kv∗R(k−1)(λ0)v;

dk(u,v) :=
∂ kd
∂λ k (λ0)

=
k

∑
i=1

(
k
i

)[
u∗R(i)(λ0)u

(
λ0v

∗R(k−i)(λ0)v+(k− i)v∗R(k−i−1)v
)

− u∗R(i)(λ0)v
(

λ0v
∗R(k−i)(λ0)u+(k− i)v∗R(k−i−1)u

)]
.

For l = 1,2 . . . we set

Δl(u,v) :=
∂ l(t2−4d)

∂λ l (λ0) = 2
�l/2�
∑
i=0

tl−i(u,v)
(l− i)!

ti(u,v)
i!

−4dl(u,v).

Differentiating the formula for the eigenvalue ζ1(λ ) with the help of the Faá di Bruno
formula (see [13, Theorem 1.3.2]), and finding the zeros of the derivatives of the eigen-
values, we get the following necessary and sufficient condition on the pair (u,v) for the
eigenvalue ζ1(λ ) of Q(λ ) to be constant.

0 = tk(u,v)+∑ k!
i1! · · · ik!

(
1
2

)
i1+···+ik

Δ
1−2(i1+···ik)

2 (u,v)

·
(

Δ1(u,v)
1!

)i1 (Δ1(u,v)
2!

)i2

· · ·
(

Δk(u,v)
k!

)ik

for k = 1,2 . . . , where we used the Pochhammer symbol (x) j := x(x− 1) · · ·(x− j +
1) , and where the sum is taken over all sequences i1, i2, i3, ..., ik− j+1 of non-negative
integers such that

i1 +2i2 +3i3 + · · ·kik = k.
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The necessary and sufficient condition on the pair (u,v) for the eigenvalue ζ2(λ ) of
Q(λ ) being constant is analogous.

9. Conclusions

We have studied low rank perturbations of unstructured and Hermitian pencils
matrix with the goal to find smallest norm perturbations that make the pencil singular.
Motivated by the fact that most ’smallest distance perturbations’ can be realized by
small rank perturbations, we have identified several cases which allow characterizations
to these smallest distance and contributed with partial results to the open problem of
finding the distance to singularity for matrix pencils.
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