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C∗–ALGEBRAS OF BERGMAN TYPE OPERATORS WITH

CONTINUOUS COEFFICIENTS ON POLYGONAL DOMAINS

YURI I. KARLOVICH

Abstract. Given α ∈ (0,2] , the C∗ -algebra AKα generated by the identity operator and by the
Bergman and anti-Bergman projections acting on the Lebesgue space L2(Kα) over the open
sector

Kα =
{
z = reiθ : r > 0, θ ∈ (0,πα)

}

is studied. Then, for any bounded polygonal domain U , the C∗ -algebra BU generated by the
operators of multiplication by continuous functions on the closure U of U and by the Bergman
and anti-Bergman projections acting on the Lebesgue space L2(U) is investigated. Symbol cal-
culi for the C∗ -algebras AKα and BU are constructed and an invertibility criterion for operators
A ∈ AKα and a Fredholm criterion for the operators B ∈ BU in terms of their symbols are es-
tablished.
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