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C*-ALGEBRAS OF BERGMAN TYPE OPERATORS WITH
CONTINUOUS COEFFICIENTS ON POLYGONAL DOMAINS

YURI [. KARLOVICH

(Communicated by I. M. Spitkovsky)

Abstract. Given o € (0,2], the C*-algebra g, generated by the identity operator and by the
Bergman and anti-Bergman projections acting on the Lebesgue space L?(Kg) over the open
sector

Ko={z=reé" :r>0,0¢(0,n0)}

is studied. Then, for any bounded polygonal domain U, the C*-algebra By generated by the
operators of multiplication by continuous functions on the closure U of U and by the Bergman
and anti-Bergman projections acting on the Lebesgue space L?>(U) is investigated. Symbol cal-
culi for the C* -algebras 2, and By are constructed and an invertibility criterion for operators
A € g, and a Fredholm criterion for the operators B € By in terms of their symbols are es-
tablished.

1. Introduction

Let #(H) denote the C*-algebra of all bounded linear operators acting on a
Hilbert space H, and let J# (H) be the ideal of compact operators on H. Operator
A € B(H) is called Fredholm if the coset A™ := A+ % (H) is invertible in the quotient
C*-algebra ™ (H) .= #(H)/ ¢ (H) (see, e.g., [2]).

Let U be a domain in C equipped with the Lebesgue area measure dA(z) = dxdy,
and let &7 (U) and .«7*(U) denote the Hilbert subspaces (see, e.g., [5], [9]) of L?(U) =
L?>(U,dA) that consist of differentiable functions such that, respectively, d-f = 0 and

d.f =0, where
1/d .0 /a0
wmg(5eri) =3 (5%)

These spaces are related by the anti-linear norm one operator
C: L*(U)—L*(U), Cf=7. (1.1)

Obviously, C(a7?(U)) = J(U) because d,f = @
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The Bergman projection By and anti-Bergman projection By are the orthogo-
nal projections of the Lebesgue space L?(U) onto its subspaces .7>(U) and 27> (U),
respectively. Clearly, By = CByC.

According to [5, Chapter 2], for a bounded multiply connected domain U C C
with sufficiently smooth boundary, the Bergman and anti-Bergman projections are rep-
resented in the form

By =1-SyS;+K, By=I-S;Sy+K, (1.2)

where Sy and Sj; are two-dimensional singular integral operators bounded on the space
L?>(U) [17] and given for z € U by

(SUf)(Z) = _%/U (V{(_Wz))z dA(W)7 (1.3)

5000 = [ L0 a0,

TJu(W—2)

and K, K are compact operators on the space L>(U). Clearly, S;; =CSyC is the adjoint
operator for Sy .

If U is the upper half-plane IT= {z € C:Imz > 0}, then K = K = 0 and hence
(1.2) takes the form (see [28, Lemma 7.5]):

Br=1—SnSy, Bn=1I-S55m. (1.4)

On the other hand, if the boundary of a domain U admit angles different of m, then
formulas (1.2) and (1.4), in general, are violated. For example, this happens for the
open sectors

Koy={z=re:r>0,0¢(0,ra)} (ac(0,.2]) (1.5)

if o« €{1/2,1/3,...} (see [10, Theorem 5.3]).

The Fredholmness for the C*-algebra generated by the Bergman projection of
a bounded multi-connected domain G with a smooth boundary dG and by piecewise
continuous coefficients having one-sided limits at the points of the finite union of curves
intersecting dG at distinct points was investigated in [25]. A generalization of this
work to piecewise continuous coefficients admitting more than two one-sided limits at
the points of dG was elaborated in [13] (also see [14] and [15]). The C*-algebras gen-
erated by the Bergman and anti-Bergman projections (as well as by n poly-Bergman
and m anti-poly-Bergman projections) with piecewise continuous coefficients admit-
ting finite numbers of one-sided limits at the points of dG were studied in the papers
[8]-[11]. C*-algebras of Toeplitz operators on the Bergman space were studied in [28],
[29] (also see references therein). In all these works it was assumed that the boundary
of a domain G is sufficiently smooth.

The present paper deals with studying the invertibility and Fredholmness in the
C*-algebras of Bergman type operators acting on the space L?(U) over domains U
whose boundaries admit angles. The invertibility in the C*-algebra generated by the
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operators of multiplication by piecewise constant functions and by the Bergman and
anti-Bergman projections on the space L? over sectors K /m for m=2,3,... was re-
cently studied in [6]. The obtained results essentially depend on the values of the sector
angles.

In the present paper, making use of another approach, we study the invertibility of
operators in the C* -algebra

g, = alg{l, Bk, Bx,} C B(L*(Ky)) (1.6)

generated by the identity operator /, by the Bergman projection By, and by the anti-
Bergman projection EK@ for any a € (0,2]. Further, applying the Allan-Douglas lo-
cal principle (see [4, Theorem 7.47] and [2, Theorem 1.35]) and the limit operators
techniques (see, e.g., [21, Chapter 1], we study the Fredholmness of operators in the
C* -algebras

By :=alg{al,By,By :ac C(U)} c BL*(U)) (1.7)

generated by the operators al of multiplication by all complex-valued functions a €
C(U), by the Bergman projection By and by the anti-Bergman projection By, where
U is the closure of a bounded polygonal domain U whose angles admit values o
with a € (0,2].

The paper is organized as follows. In Section 2, following [7] and [6], we expound
the Plamenevsky decomposition for the two-dimensional Fourier transform and give
its application to convolution type operators with homogeneous data. In Section 3,
for any o € (0,2], we construct a C*-algebra isomorphism of the C*-algebra 2y,
given by (1.6) into a C*-algebra Q, of bounded norm-continuous operator functions
R — (L*(T)). In Section 4, for all A € R, we calculate the images of the operators
By (A) and By(A) related to the projections By, and Bk, according to Section 3.

In Section 5, modifying the symbol calculus constructed in [8, Theorem 8.1], we
describe an abstract symbol calculus for a C*-algebra generated by the identity 7 and
by a finite number of one-dimensional self-adjoint idempotents that are not pairwise
orthogonal. Given a € (0,2] and A € R, we check in Section 6 the fulfillment of all
conditions of the abstract symbol calculus from Section 5 for the C*-algebras

Ay i=alg{l,Ba(L),Ba(1)} (1.8)

generated by the operators I, By (A) and By (). Applying results of Sections 5 and 6,
we construct in Section 7 symbol calculi for the C* -algebras sza’ 2 and g, (see (1.6))
forall o € (0,2] and all A € R, and establish an invertibility criterion for the operators
A € U, in terms of their symbols.

Finally, in Section 8, making use of the Allan-Douglas local principle and the limit
operators techniques, for any polygonal domain U we construct a Fredholm symbol
calculus for the C*-algebra By given by (1.7) and obtain a Fredholm criterion for the
operators A € By in terms of their Fredholm symbols.
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2. C*-algebras of convolution type operators with homogeneous data

The results of this section are essentially due to Plamenevsky’s decomposition of
the multidimensional Fourier transform [19]. Such technique was also applied in [7],
where the Plamenevsky results were extended in the two-dimensional case. Here we
specify some results of [7] on the basis of [6].

Let PC(T) be the C*-algebra of all complex-valued piecewise continuous func-
tions on the unit circle T, and let H(PC(T)) denote the C*-algebra of all homogeneous
of order zero functions in L*(C) whose restrictions on T belong to PC(T) and, for all
7€ T andall >0,

: i0 : i0 : i0 . i0

linloa(te T) = elinloa(e 7), En}oa(te T)= lin_l a(e'’”1).
We also apply the C*-algebra H(C(T)) consisting of functions « € H(PC(T)) such
that a|p € C(T). Let % stand for the C*-subalgebra of %(L?(R?)) generated by the
multiplication operators

A=al (acH(PC(T)))
and by the two-dimensional singular integral operators
F~'bF (be H(C(T))).
Here F : L?(R?) — L*(R?) is the Fourier transform defined by

_1
Y

(Fuu)(x) /R u()e ™di, xe R, @1

where x -t is the scalar product of vectors x,t € R2, and F~! is the inverse Fourier
transform.
We also consider the Mellin transform and its inverse given by

ML (Rerdr) — R), 009)(3) == [ v Pan
M~V LA(R) — L2(Ry,rdr), (M~ 'u)(r) = \/Lz_n/Ru(;L)riAfldk'

Following [19] and [7], for A € C such that ImA >0 and A # ik, k=1,2,...,
we define the operators E(A) € Z(L*(T)) on functions u € C*(T) by

(E(A)u)(t) =y(A) / (—1-0+i0)"*u(w)dw, TET, (2.2)
T
where d® is the length measure on T,

1 .
¥(A) = 5T+ ir)emi=M2 (2.3)
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and the expression (r £i0)* for r € R and u € C is understood in the sense of distri-
butions:

4 et ifu#—1,-2,...,
in
— = U i =—1,-2,...,
(—u—1)!
=0 fort <0, ! = et for t >0, and t* = (—1) .
For ImA < 0 the integral (2.2) is understood in the sense of analytic continuation,
since for every u € C(T) the function A — E(A)u(t) admits analytic continuation in

the complex plane minus the poles A = ik (k =1,2,...) of the I'-function in (2.3) (see
[19]). The inverse operator E(A)~! is given by

(1 +i0)" = "

(E()L)*lv)(co):y(—)L)/T(w-1:+i0)"l*1v(r)d1:, A#—ik, k=1,2,....

By [19, Proposition 4.4], the operators E(A) are unitary for all A € R.
Consider the reflection operator
V:LAR) - LA(R), (VF)(A)=f(-1), A€ER. (2.4)
Passing to polar coordinates in the plane, we obtain the decomposition
L*(R?) = L*(R ., rdr) ® L*(T). (2.5)

The tensor product M ® I will be taken relatively to the decomposition (2.5). For an
operator-valued function

R — B(IA(T)), A+ L(A),
we denote by 1®; L(2) the operator in #(L*(R)® L*(T)) given by the formula
(123 LONAA) = LA A0, (Ar) €RXT. 2.6)
Given A € R, we introduce the C*-algebra Q; C %(L*(T)) generated by the operators
al and E(A)"'bE(L) (a € PC(T), b€ C(T)).
Consider the orthogonal basis in the space L?(T):
{n"/v2r}, _,, where h(t)=1t forall t € T. (2.7)

The following result corrects [7, Proposition 2.2 and (2.15)].

LEMMA 2.1. [6, Lemma 2.1] For every m € Z,
E(MR" = u(|m|,A)n™ if A €C\{ik:keN},

2.8
EA) 7" = (=1)"u(|m|,—A)h™ if A € C\{—ik:k e N}, (28)
where h is given by (2.7) and, for A € C\ {ik: k € N},
) (m-‘ri?t+l)
w(m,A) = (—i)"2™* 2 (m=0,1,2,...). (2.9)

r\(mfizlJrl)
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Although the operator functions A ~ E(A)*! are not norm-continuous, we have
the following result.

LEMMA 2.2. [6, Lemma 2.2] For every b € C(T), the operator-valued function
R — ZB(L*(T)), A — E(A)"'bE(A)
is bounded and norm-continuous.
Let Q be the C*-algebra of bounded norm-continuous operator-valued functions
U: R— B(LXT)), A—U)eQ,, (2.10)
with the norm ||U|| = sup [|[U(A)]|.
AeR

According to [7, Proposition 2.4] (see also [19, Proposition 2.1]) we have the
decomposition
F=M1'oh(Vah(I®,EA)MeI).

Let a € H(PC(T)) and b € H(C(T)). Taking in account the equalities

MeD(a)NM ' @1) =I®a(1)],

@2.11)
M (FD(E)F) (M~ 1) = 1@, (E(A)"'b(w)E(1)),

where t,w € T and the operator function A +— E(A)~!'h(w)E(A) is norm-continuous

by Lemma 2.2, and using the notation (U(A)),cr for the operator-valued function

(2.10), one can obtain the following.

LEMMA 2.3. [7, Proposition 2.5] The C*-algebra % is *-isomorphic to a C*-
subalgebra of Q, and the isomorphism is given on the generators al (a € H(PC(T)))
and F~'bF (b€ H(C(T))) of Z by

a(x)l = (at)yer,  F'BE)F — (E(X)'b(W)E(A))scr.

3. Study of the C* -algebra Ax,

Given o € (0,2], consider the representations of the Bergman projection By, and
the anti-Bergman projection gKo: over the open sectors Ky = {z =rd?:r>0,0¢
(0, na)} via the two-dimensional singular integral operators St and Sy; given by (1.3)
with U =I1I. Obviously, K; coincides with the upper half-plane I1, and then such
representations are given by (1.4).

We define the unitary shift operator

Wo 1 L*(Ko) — L*(IT), (Wof)(z) = az® ' f(z%) (z€T). 3.1)

Identifying B, and EKa with the operators yi, Bk, XKk,! and %KorgKa XKk, acting
on the space Lz((C), we immediately obtain the following assertion (cf. [10, Theo-
rem 5.3]).
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LEMMA 3.1. Forevery o € (0,2], the Bergman and anti-Bergman projections of
the space L*(Kg,) are self-adjoint projections having, respectively, the form
By, = Wy 'BrWy = I — Wy 'SuStiWe, (3.2)
By, = CWy 'BnWoC = I —CW, ' SuSiWyC. (3.3)
where the unitary shift operator Wy, is given by (3.1) and the operator C is given by
(L.1) for U =K.
According to [28, Theorem 3.14], we have the following.

LEMMA 3.2. For the upper half-plane 11, BriBri = 0 and BpBr = 0.

Note that such assertion fails for the sectors K, with o € (0,1)U(1,2) (see Re-
mark 4.5 below).

Consider the arc ¥, := {¢'": 7 € [0,07]} of the unit circle T, and the upper
semicircle T4 := 9. Let yp be the characteristic function of a set B C C, and let

X+ ' =XTy -
LEMMA 3.3. If o € (0,2], then
M) (rnWaxic, )M~ @ 1) = Uy 1o @ (2 UatnaD): (3.4)

where Uy o € B(L*(R)) and Uy : L*(Yy) — L*(T.) are unitary operators given, re-
spectively, by
U1/aW](R) = (1)) Py(2/a) forall AcR,

- 3.5
Tad)(0) = &4 6(%) forall 1€T,. (33)

Proof. Obviously, the operator equalities
xnWaic,d = Watz d = xiWa,  2+Uatd = Uoty = 2+Ua,  (3.6)
are fulfilled on the spaces L?(C) and L*(T), respectively, and
(MR yx, (M~ &I) =1® yy,1. (3.7)
Given a function f € L*>(R)® L*(T), for (A,t) € R x T we then obtain
(M &D) (nWaxx, )M ' @1)f](A,1)

B %/}RJr [Wax')/a(M_l®I)f] (r7t)r_i7“dr

_ )f}-z(_;) /]R ara—lta—l[(M—l®I)f] (rocJa)r—i?Ldr

_ !

V2n Ry

(! 1 ay Aifi— —il)a
- \/E R, <\/E/]Rf(‘u7t )le 1d‘u>p dp
=2+ 01" f (A ) 0,1%) = (V1o ® (s Uadtyed)) £ (A1),

(M @) f](p,1*)p~*%dp
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which gives (3.4). O
LEMMA 3.4. If C: L*(C) — L*(C) is the anti-linear operator (1.1), then
MDCM ' @I)=CV&C, (3.8)
where V GA%(L2 (R)) is the reflection operator defined by (2.4), and the anti-linear
operators C : L*(R) — L*(R) and C : L*(T) — L*(T) act by Cf = f and Cf = f.
Proof. For f € [*(R)®L*(T) and (A,t) € R x T, we obtain

[(M®I)C(M71®I)f](l t Mﬁl@l)f] (r,t)riildr

“7mh

:E A (M=) f](rt)ri*dr

= f(—A.1) = [(CVRO)f] (A,1),
which gives (3.8). U

From the formula for the Fourier transform of the kernels of multidimensional
singular integral operators (see, e.g., [17, Chapter X, p. 249]) it follows that

Se=F 'W'F, St=F'hF, (3.9)

where F is the two-dimensional Fourier transform acting on L?(C) by the formula
(2.1), and h is given by _
h(z):=z/7 forall z€C. (3.10)

Let Q be the C* -algebra of all bounded norm-continuous operator functions
Y: R— BLXT)), A—Y(A),
with the norm [|Y|| = )SLU%”Y(MHL@(U(T))-
S

THEOREM 3.5. Forevery a € (0, 2] the C*-algebra Ak, given by (1.6) is *-iso-

morphic to the C*-subalgebra Qa of Q generated by the bounded norm-continuous
operator functions R — ZB(L*(T)) of the form

A= xyd, A= Bo(A), A Ba(2), (3.11)
where for every A € R,

By(A) =Uy,'Bi(Act)Usy, (3.12)

By(A) = (CU;'C)Bi(Aa)(CU,C), (3.13)

Bi(A) = 2+l — x+S(A) 248" (A) 141, (3.14)

Bi(A) = 21— 148" (M) 2+ S(A)x 41, (3.15)
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X+ is the characteristic function of T, the operator Uy, : L2 (Yo) — L*(T4.) is given by
(3.5), Cf = f on the subspaces of L*(T), and the operators S(1),5*(A) € B(L*(T))
for A € R are defined by

S(A):=EA)"'h2E(A), S*(A):=EA)'WE(A), (3.16)
with h(t) =t forall t € T.

Proof. Since h*! € H(C(T)), we infer from (3.9), (3.10) and (2.11) that
MeDSc(M™ ' &I) =12, S(4),

MDSEM ' @I) =12, 5 (1), G4
where S(A) and S*(A) are given by (3.16). Hence, applying the equality
MeDmM el =12y,
we conclude from (1.4), (3.17) and (3.14)—(3.15) that
M & DB @) = 1n (1SS Mgl =Tea B,

(M&DBa(M ™' @1) = 1@ (18" (W) SA) ) = 18, Bi().

Fix o € (0,2]. Taking into account (3.6), (3.18) and the equality (3.7), we infer
from (3.5) and (2.6) that

(U1/a®Ua) ™ (102 B1(1))(U1ja @ Ua) =19 (Ug 'Bi(A)Us).  (3.19)
Indeed, for f € L*(R) ® L*(T) and (A4,7) € R x T, we obtain
[(U1/a @ Ua) ™ f1(Ast) = &' P[0, f(2ex, )] (1),
(@7 B1(4))fl(Aat) = [Bi(Aar) f(Aer,-)](2),
(V)0 @ Ua) fl(Rtst) = & P Uaf(A,)](0),

which gives (3.19). Hence, taking into account (3.6), we deduce from (3.2), (3.18),
(3.4) and (3.19) that

1®) Bo(A) := (M&1)Bg, (M~ ' ®1)
= (MI)(Wy 'BuWy) (M~ ' 1)
= (U1/a®Uq) ™ (103 B1(A)) (U /6 ® Uy)
=1®, (Uy'Bi(Aa)Uy), (3.20)

f
f

which implies (3.12).
Since for f € L*>(R)® L*(T) and (A,t) € R x T we have
(VRDfI(A,1) = f(=A1),
(1 @3 Ba () f1(=2,1) = [Ba(=A)f(=24,)](),
(VRNDfI(=A,1) = f(4,1),
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it follows that
(V&I)(I®) Ba(A))(V@I) =12 (Ba(—1)).

Hence
(CV&C)(I®; By(A))(CV@C) = (C®C)(I®, Ba(—A))(CRC)
—1®; (CBy(—A)C). (3.21)
Applying now (3.3), (3.8), (3.20) and (3.21), we obtain
12, Bo(A) := (M&I)Bg, (M~ ' @1)
= (M®I1)(CBg,C)(M ' ®1I)
= (CV&C)(MI)Bg, (M~ ' ®1)(CV&C)
= (CV®C)(I®; Ba(A)(CV &)
=1®) (CBy(—A)C), (3.22)
which means that B _ _
By (L) =CBy(—A)C. (3.23)
Making use of (3.12), we deduce from (3.23) that
Ba(A) = CU, 'Bi(—2.0)UaC = (CU 'C)B1 (1) (CULC),
which gives (3.13).
Thus, by the first equalities in (3.20) and (3.22), we conclude that
(M@ 1By, (M~ ©1) =12 By(1),

~ ~ 3.24
(Ma1)Bg, (M '®1)=1®; By(A), 529

where the operators By (A), By (1) € Z(L2(T)) for every A € R are given by (3.12)—
(3.15). From Lemma 2.2 and (3.12)—(3.15) it follows that the operator functions A=
By (A) and A +— By(A) are norm-continuous, which completes the proof according to
(3.24). O

Fix o € (0,2]. By Theorem 3.5, the C* -algebra
Ak, = alg{l, By, Bk, } C B(L*(Kq))

is *-isomorphic to the C*-algebra Qq generated by the bounded norm-continuous op-
erator functions R — %(L*(yy)) given by (3.11). On the other hand, the C*-algebra

Q. can be considered as

Qo C P Ay, (3.25)
AER

where the C*-algebras <7, ; C %(L*(Yy)) are defined by (1.8). By (3.7) and (3.24),
for every A € g, and every A € R there exists an operator A (4) € <7, ; such that

M@DAM '®1)=1®; Ax(]) (3.26)
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and the operator function A +— Ay(A) is norm-continuous. Theorem 3.5 in view of
(3.25) and (3.26) immediately imply the following invertibility criterion.

THEOREM 3.6. Given o € (0,2], an operator A € Ux,, is invertible on the space
L*(Kg) if and only if the operators Aq(A) € oy ; are invertible on the space L*(Yq)
forall A € R and

sup [[(Ao(A)) 7Y, < oo, (3.27)
AERH o B2 (Vo))

4. The images of the operators By (1) and By (1)

To calculate the images of the operators By(4) and By (A) for any o € (0,2],
we partially follow the scheme of [13] and [8], [9]. By [12, Chapter 1, Lemma 4.10],
if P(r) is a family of projections on a Hilbert space H continuously depending, in the
norm topology, on the real parameter ¢ running through a connected set of R, then all
the spaces P(t)H are isomorphic; in particular, all the images of P(z) have the same
dimensions. Thus, taking into account that the projections By () and By () norm-
continuously depend on A € R in view of Theorem 3.5, we get

dimBg(4) = dimBy(0), dimBy(A) = dimBg/(0).

We are going to show that B (0) and By (0) are one-dimensional projections and then
all the projections By (A) and By(A) are one-dimensional.

LEMMA 4.1. Let o € (0,2] and let h(t) =t forall t € T. Then

h! ~ h
ImBy(0) = span{ XYD‘W }, ImBy(0) = span{ % },

where Xy, is the characteristic function of the arc Yo, C T.

Proof. Since the function T is analytic on the set C\ {0,—1,—2,...} and has
poles of order one at the points 0,—1,—2,..., we deduce from (2.8) and (2.9) that

EO)R" = (=)"n", E©)'W =" (nez), (4.1)
where h(t) =t for all r € T. Then, in view of (3.16) and (4.1), we obtain

S(0)" = E(0) ' h2E(0)h" = (—i)I"i"2Ip =2,
S*(0)R" = E(0) 'h2E(0)h" = (—i)Miln+2pn+2,

which implies that, for every n € Z,

_jn—2 _ ppnt2 _

N W2 o n=—1.
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Given f € L*(T), let us calculate By (0)f, where, by (3.12) and (3.14),
Ba(0) = Xyo — X7 Ug ' 2-5(0) x-S (0) x4 Uoi Xy L

Representing a function y, y € L?>(T) by the convergentin L?(T) series

1
XV = (x+ v, h)R*, (4.3)
L=/

we infer from (4.2) and (4.3) that

1 1
S*0)(x+v) = > v KR — ey, i hh
2n keZ\ -1} 2r

1 2
== Y (e B+ —(oy, kY
2r i 2r

= gy’ 4 — <X+w, i (4.4)

and, analogously,

1 1
S0)(x+w) = > v BT+ —(ey !
2 keZN{1} 2r

1 _
=5 2 wh R <X+v/,h>h 1
keZ

= —geyh 4 <Jc+w, hyh™". *.5)
Applying (4.4), (4.5) and the equality (erh,h) = 1, we infer from (3.14) that
Bi(0)y = x+y — x+S(0)2+5" (0) x4+ v
=X+¥— [%+S(0)]< Xy’ + — <Jc+w, >X+h>
1 _
=XV Y eyl R
1 -1 1 -1

+—(xeyih >(x+h — —{xhh)xh )

1
= E<X+ v gk (4.6)

Finally, taking x,,f € L*(T) and applying (3.12), we infer from (4.6) and (3.5)
that

[Bo(0)] (X f) = Ug 'B1(0)Us (Y7, f)
X+ Uaf h UG (™)

(.05 Oh™ N0 ™)

QA==

1 - -
—o a2 47
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This means that the linear space ImB,(0) is one-dimensional, and the norm one func-
tion yy,h~ /T € L2(Yy) is its generator.
Taking into account (3.23), we infer from (4.7) that

[Ba(0)) (2 f) = [CBa(0)C) (2. f)
= %6(<77x7ah_1>x%xh_l)
= % (s Xva ) Xy -

Thus, the linear space Im By, (0) also is one-dimensional and it is generated by the norm
one function yy,1/vwa € L*(yy). O

_LEMMA 4.2. For each o € (0,2] and each A € R, the spaces ImBg (1) and
ImBy (L) are one-dimensional and their generators of norm one on the space L*(Yy)
are given for t € Yy, respectively, by

8aa(t) = Ga (M), (4.8)
Zar(t) =Faa(1) = Gu(—A)' 1, (4.9)
where - o
S — if L e R\ {0
Go(A) = (1_6727:/105) A €R\{0), (4.10)

lim G () = (ma)"Y2 if A =0.

Proof. We deduce from the equality (M ® I)Bg, (M~ ' ®1) =1®; By(1) that
(192 Ba(A)(L*(R) © L*(T)) = (M @ I) (7% (Kq)), (4.11)

where the functions in .«7%(K) are considered as elements of the space L>(R,rdr)®
L*(T) after their extension by zero to the set C\ Ky . So, if f € &7?(K), then by
(4.11) there exists a function g € L?>(R) ® L*(T) such that

[(M@D)f](A,1) = [ 2 Ba(2))gl(A;1) = [Ba(R)g(A,)](), 1€T.

Consequently, [[M®I)f](,-) € ImBy(A) forevery f € o/*(Kg). Taking the function
ho(z) = xn(z)(z+1i)~2 € &7?(I1), we conclude that

Wy ho)(z) = xx, (2)(1/ )2 /%1 (2% i) 72 € 7% (Kq). (4.12)

Applying then [18, formula 2.19], we infer by analogy with [13, Proposition 3.10] that
for (A,1) e Rx T,

(M@ 1) (Wy'ho)] (A,1) = "sz(_: /M(1/(>c)(rt)1/0‘—1(rl/%l/‘ui)—2r—fA dr
Jm(f)ll/a_l/ o | n—2—ikat
_ reo d
Nt pr’ +i)7°p p
Xy (t) Bl —ido,1+ida) 21

\/ﬁ jltita (4.13)




786 Y. I. KARLOVICH

where B(-,-) is the Beta function. Thus, the function ¢ — yxy, (£)f*~! belongs to
ImBy(A). Since the space ImBy(A) is one-dimensional, we conclude that

ImBy (L) = span{xyahil_l},

where h(t) =t for all r € T. Simple calculations give

ny hl‘l,] _ \/(1_6—27:051)/(2&), A GR\{O}7
’ L2(Ye) NLTR A =0.
Hence, the function (4.8) is a generator of norm one of the one-dimensional space

ImBy(A). B N
In the same way, from the relation (M ®I)Bg, (M~ ' ®1) =1®; Ba(A) we get

(I3 Ba(M)(LA(Kq)) = (M 1) (> (Ka)).

Hence, if f € J(Ka), then [(M®1)f](A,-) € ImBg(A). Since the function W, i

given by (4.12) belongs to the space .«7>(K), we conclude that Wy 'hg € o? (Kg).
Therefore, we deduce from (4.13) that for (1,7) e R x T,

[(M@I)(W(;lho)] (A1) = %"T(:C)/R(l/a)(rt)l/a—l(rl/atl/a+i>—2 ik gy

= [(M&1)(Wy "ho)] (=A,1). (4.14)

As we already proved, there exists ¢ € C\ {0} such that
(M@ 1) (Wg 'ho)] (—A.1) = cgo, -4 (1)

Then we infer from (4.14) that g, —; € ImBy(A). So, the function Zar = 8a

given by (4.9) is the generator of norm one of ImBy(4). [
REMARK 4.3. It follows from (3.12) and (3.23) that
2o (t) = [Ug ' g12a)(t) = a2/ gy 4 (117
— o126, (Aa)e et/ ira) — G yiA
8o (1) = [C8, 2](1) = Ga(—A)r -1 = Ga(~2)1" .

LEMMA 4.4. Forevery o € (0,2] and every A € R,

<ga,7u ga,l> = Coc,?u (4.15)
where
Cop = e "By (A)sin(mar), (4.16)
A aem\joy,

Ba(A) :=Gu(A)Gy(—A) = ( sinh(wald)
(o)~ ! if A=0,

4.17)
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and
lim =0. 4.18
A 1 Coc,l ( )

Proof. Obviously, (4.17) follows from (4.10). Further, by (4.9), for all r € T we
obtain

Zan (1) = 8a2(1) = Ga(—A) 2y, ()1 (4.19)
Applying (4.8), (4.19), (4.17) and (4.16), we infer that

(8arn:8an) = /Omgaﬂ(t)gaﬁ,l(t) |dt| = [306@)/0”6—21'9‘19
- ﬂa(l)(l o e_2ﬂai)/(2i) = COC,}H

which gives (4.15).
Finally, we infer from (4.17) that, for every o € (0,2],

lim Bu(A)= 1 A

im —————~=0
A—cteo A—+esinh(rad)

which in view of (4.15) implies (4.18) and completes the proof. [

REMARK 4.5. One can see from (4.15) that for every A € R the one-dimensional
subspaces ImB (A ) and ImBy (1) of L?(¥) are not orthogonal if o € (0,1)U(1,2),
while By (A)By(A) =0 forall A €R and o = 1,2.

5. A C*-algebra generated by projections

In this section we modify the symbol calculus constructed in [8] for a C* -algebra
o/ C P(H) generated by n orthogonal projections Q; giving the identity operator 1
in sum and by m pairwise orthogonal one-dimensional self-adjoint projections P; on a
Hilbert space H. In the case n € N and m = 1 such isomorphism was constructed in
[22] (also see [260]). We establish a C*-algebra isomorphism between the C*-algebra
o/ and a C*-algebra of finite matrices if n =1, m € N and the self-adjoint projections
P, are not pairwise orthogonal.

Let (x,y) mean the inner product in a Hilbert space H, let 5,-7.,' be the Kronecker
symbol, and let I; stand for the k x k identity matrix. We will denote by H; + H, +
...+ H,, the direct sum of Hilbert spaces H|,H>,...,H, that consists of elements x| +
Xp+...+x, with xy € H, (k=1,2,...,n) suchthatif ¥} ,x; =0, then x;, =0 for all
k=1,2,...,n.

THEOREM 5.1. Let H be a Hilbert space and let P, (k = 1,2,...,m) be self-
adjoint projections in B(H) satisfying the conditions:

(i) B (k=1,2,...,m) are one-dimensional projections,

(i) N (ImP)* # {0},
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(iii) the norm one generators vi,...,vy of the spaces ImPy,... ImP,,, respectively,
are linearly independent.

Let of be the C*-subalgebra of %(H) generated by the identity operator I and by the
projections P, (k=1,2,...,m), let S be the invertible matrix in C"™*™ that transforms
the system v ={vy,va,..., v} of linearly independent vectors in H onto an orthonor-
mal system vy = {ey,ea,...,en}, and let & be the C*-subalgebra of C"*™ generated
by the m x m identity matrix I,, and by the m X m matrices

(er,vi)(er,vik) (e1,vi)(e2,vk) -+ (e1,vi)(em,Vvk)
(e2,vi)(er,vi) (e2,vi)(e2,vk) -+ (€2, Vi) (em, k)

P = (5.1)
<em7vk><el7vk> <em7vk><e27vk> <€m,V]<><€m7Vk>
(k=1,2,...,m). Then the map o, defined on generators of </ by
[—1®1,, P—0&P (k=1,2,....m), (5.2)

extends to a C* -algebra isomorphism of the C* -algebra < onto the C* -algebra C®H &.

Proof. Let Ly :=ImP, (k=1,2,...,m). For every k, fix a norm one generator
vg of L. We divide the proof in several steps.
1) Since the projections Py, ..., P, are self-adjoint, the closed subspaces

Ho:=LiN...NL, and 9 :=Hy
of H are invariant with respect to these projections:
PHy={0}, PORCON (k=1,...,m). (5.3)

The first equality is evident. Let us show that L, C 91 for all k =1,...,m. Indeed,
representing every element [;, € Ly in the form [, = x; + y; where y, € 91 and x; €
L{N...NLy, we obtain

0= (L, 0) = ooel® + s xa) = [l

Thus, all x; = 0 and hence [ € M, which gives (5.3).
2) Consider the operator

IT:= (P +...+P)|on.

If g € 91 and T1g =0, then Pig+--- + P,g = 0. By (i), Prg = cyvy for every k =

1,...,m, where vy is a norm one generator of the space ImP; and ¢; € C. Hence
civi+...+cmvm =0. 5.4)
Since the vectors vy,...,Vv, are linearly independent due to (iii), we deduce from (5.4)

that ¢, = 0 and hence P.g = cxvi =0 for every k = 1,...,m. Consequently,

I: 9 —Li+...+ L.
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On the other hand, since P,g =0 forall k=1,...,m, we conclude that g € LlL Nn...N
L. Thus,
g€ (Lin...nLy)Nn<M = {0},

and hence the operator IT is injective.

3) We claim that dim9)t = m. Indeed, since vy € L, C 91 forall k=1,...,m and
since the vectors vy, ...,v, € 91 are linearly independent in view of (iii), we conclude
that dim9t > m. On the other hand, because I1: 90t — L; + ... + L,, is an injective
operator and dim (L; 4 ... + L,,) = m (see (iii)), it follows that dim9)t < m, which
proves the claim.

4) Since dim9t = m, we infer that v = {v{,v2,...,v, } is an ordered basis of 1.
Applying the Gram-Schmidt orthogonalization process to the basis v, we obtain the
orthonormal basis vop = {ej,ez... ey} of M, where

k-1
e :=vy, e .= ”j:—];H, foi=vi— Z(vlﬁes)es #0 (k=2,3,...,m). (5.5)
s=1

Because for the self-adjoint projections P/ := P|on and all k, j,s € {1,2,...,m} we
have

Plej = (Plej,vi)vi = (ej, Plvi)vk = (e}, vi) vk,

and hence

(Plej,es) = ((ej,vi)vi,es) = (es,vi)(ej, Vi),

we conclude that
[Plei Pley ... Plen) =le1es ... en) B (k=1,2,...,m),

where the matrices P, € C"™*™ given by (5.1) are matrix representations of the projec-
tions P/ € Z(M) in the basis vy.
5) Finally, according to the decomposition

H=(L{n..nLHem

where, by (i), NJ_;(ImP,)* # {0} and 9 is taken with the basis vy, we obtain the
representations (5.2) for the generators / and P, of the C* -algebra </ in the C* -algebra
C@® &. Thus, there exists a C* -algebra isomorphism of .27 onto the C*-algebra & of
C @ G generated by the elements (5.2).
6) Since, by (5.5), v; € span{ey,ea,..., e}, from the orthogonality of the basis vy
it follows that
(ej,vi) =0 forall k,j=1,2,....,m; j>k. (5.6)

Moreover, (5.5) implies that

k—1 2

Vi — 2 (Vi,es)es

s=1

k—1
=1=Y [(e)P£0  (5.7)
s=1

IAIP=1, [Ifl?=
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for k=2,3,...,m. Hence, for all k=1,2,...,m we infer from (5.5) and (5.7) that

k—1
fersve) = —— (1 -y <es_,vk><es7vk>) — Al £ 0. (5:8)
TR

Thus, if the orthogonal basis Vv is given by (5.5), we conclude from (5.1), (5.6) and
(5.8) that

ﬁk: |: Bk Om—k:l (k: 1’2’...’m)’ (5.9)
Om—k Om—k
where .
By = [<es»vk><ej7vk>]sﬁj:1 (5.10)

and the (k,k)-entry By := |{ex,v¢)|?> of By is non-zero.
7) Then similarly to the proof of [8, Lemma 8.3] we can show that the C*-algebra
contains the operators Uy (k=1,2,...,m) for which

G(Uk) =0 diag{&(’s}zn:l.
Indeed, since B, # 0, we can define by induction the operators
U= '(I-U1—...— U )P(I-Uy —...— U_1) € B(H),

where k =1,2,....mand I —U; —...—U;_; =1 for k = 1. Then we infer, again by
induction, that

Uk Z:ﬁk_l(lm—fjl—...—Uk_l)i‘:’;{(lm—fjl —...—(7]{_1)
= dialg{(‘;;@_y}:":1 € B(M),
which leads to the desired equalities
o(Uy) =0 Uy =0 diag{ ), (k=1.2,...,m).

This immediately implies that the C* -subalgebra & of the C* -algebra C& S coincides
with Ca&. O

It is natural to call the matrices 0(A) € C® & the symbols of operators A € o7 .

COROLLARY 5.2. Any operator A € < is invertible on the Hilbert space H if
and only if its symbol 6(A) € C® S is invertible in the C*-algebra C @ C™* ™,

6. Fulfillment of conditions of Theorem 5.1

Given a € (0,2] and A € R, let us check the fulfillment of all conditions of The-
orem 5.1 for the C* -algebra <7, ; given by (1.8).

Let m:=2. Forevery A € R and all j,I = 1,2, we introduce the inner products
(Vor.jsVaai) in L*(Yo) of the norm one functions in L?(,) given by

Varl - =8als Va2 ::§a,7u (6.1)

where the functions g, 4 and g, ; are defined by (4.8) and (4.9), respectively.
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LEMMA 6.1. Forevery A € R and every a. € (0,2], we have

(8anr8an)i2(r,) = [Ga(A)/GL(A)]* #0, (6.2)
(Banr&an)2(r,) = [Ga(=2) /G (=) #0, (6.3)
<gO£7L7gO£7L> L2(Ty) = =0. (6.4)

Proof. By (4.8) and (4.10), for every A € R, we obtain

(82 8ar)ra(ry) z/T a2 (180 (1)]d1] =G§(7L)/One‘mde
=G () (1= ) /(22) = [Ga(A)/GI(MP £0,  (65)

which gives (6.2). Further, for every A € R, we deduce from (6.5) that

<gzn,7L:§m,7L>L2(T+) = <gm,—7Lagm,—7L>L2(1I‘+) = [Ga(_z’)/Gl(_l)}z 7é 0,

which gives (6.3). Finally, applying (4.8) and (4.9), we get

T
(gaaBarim,) = [ 8aasa a0l =Balr) [ e a0 =0,
+
which gives (6.4). U

LEMMA 6.2. For every A € R and every o € (0,2], the functions vy 5 (k=
1,2) given by (6.1) are linearly independent on the arc Y.

Proof. Suppose that, for some constants cj,c; € C,

€180 (t)+ 2800 =0 forall 7€ yy.

By (4.8) and (4.9), the function

Q) :=c18a(t) 2802 (1) (6.6)

admits an analytic extension to the whole upper half-plane IT. Since this function
identically equals zero on the arc Y, C T4, it equals zero for all + € T in view of
its analyticity on IT. But by Lemma 6.1 the functions g, ; and g ; , are orthogonal
on the space L?(T. ), while their norms in L?>(T..) are different of 0. In that case it
follows from the equality (6.6) fulfilled for all # € T that ¢; =0 forall j = 1,2, which
means that the functions v, 3 4 (k= 1,2) are linearly independent on the arc y,. [

Given o € (0,2] and A € R, we now check conditions (1)—(iii) of Theorem 5.1
for P = Pi(ot,A) = By(A) and P, = P>(0,A) = By (A). By Lemma 4.2, the spaces
ImP;(o;,A) are one-dimensional for all A € R and all & = 1,2, whence condition (i)
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of Theorem 5.1 holds. Because the space L?(¥y) is infinite dimensional and the spaces
ImP;(cx,A) are one-dimensional for all k = 1,2, there is a g € L?(7,) such that

2
0#g€ ((ImP(a,A))*,

k=1

and hence condition (ii) of Theorem 5.1 is also fulfilled. Finally, Lemma 6.2 implies the
fulfilment of condition (iii) of Theorem 5.1. Thus, to study the invertibility of operators
in the C*-algebra .27, ; we can apply this theorem.

Consider the direct sum 90t of linear subspaces of L?(},) generated by the norm
one functions vy, 3 ; (j = 1,2) given by (6.1). Since dim M = 2, we infer from (iii)
that the system v = {vy 3 1,V 2} is an ordered basis of 9. Obviously, for every
k,j=1,2, we obtain

Pk/(ohl)va,l,j = <Voc,l,jvva,l,k>va,l,k7 (6.7)

where P/(ot,A) := P(ct,A)|on . From (6.7) it follows for every k = 1,2 that

. 2
[Pk/(aax)va,l,l Pk/(aax)va,lg} = [Voc,l,l Va,l,ﬂ dlag{ak,j}jzlEa(A%
where the m x m matrix Eq(A) is given by

E. (L) = <Va7)L,1aVoc,7L,l> <Va.,x,27"a7k,1> c C2%2, 6.8
“P)Z ot 1V 2) (Ve 20V o) (©8)

Thus, the matrix representations of the projections P/(a,A) € Z(9M) relatively to the
basis v are of the form

Pe(a,2) :diag{Skh,»}?:lEa()L), k=1,2. (6.9)

By Lemma 6.2, detEq(A) # 0 for all A € R. According to (6.8), Lemma 4.2 and
(4.15), we conclude that for every A € R the Gram matrix E4(A) is of the form

Eq(A) = [C:,A @} : (6.10)

where (, ; is given by (4.16). By (4.18), )Llilil o2 =0, and hence we conclude from

(6.10) that
lim Ey(A)=L.
A 1 oc( ) 2

Thus, we obtain the following.

LEMMA 6.3. The matrix function Eq () given by (6.8) admits a continuous exten-

sion to R = [—oo, +o0] with values Eq(+0) = I, and a non-zero determinant detEq (1)
on R.
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7. Symbol calculus for the C* -algebra i,

Theorem 5.1 for m = 2 immediately implies the following.

THEOREM 7.1. Forevery o € (0,2] and every A € R, the C* -algebra
Ao j =alg{l,Ba(2),Ba(A)} C B(L*(1a))

is *-isomorphic to a C*-subalgebra of C@® C**? which coincides with C & C>*? if
a € (0,1)U(1,2), and this isomorphism n° &N is given on the generators of ) by

I—1®hL, Bg(A)—0&My(L), Bg(A)—0®My(A), (7.1)

where the matrices My(A) and My(A) € C**? are defined by

10] - Carl? Tan A
Ma2)= g 0] Mam:[ el
Ca,lAm;L Aa,)t

Agp =1—1Cu2|? and &y, is given by (4.16). For (o, 1) € {1,2} x R the matrices
My (1), My(2) are diagonal, and (n° & N)(y.2) is a C*-subalgebra of C & C**2.

(7.2)

Proof. Fix oo € (0,2] and A € R and apply Theorem 5.1 to the C* -algebra <7, ; .
By Lemma 6.2, for every A € R, the set

{80.2:8ar} CL*(Ya), (7.3)

given by (4.8) and (4.9), is a system of linearly independent vectors in L?(¥,). Ap-
plying the Gram-Schmidt orthogonalization process to the set (7.3), we obtain the or-
thonormal set

{ear-Can} CL(Ya), (7.4)

where _ _
Sa, ) — <ga,laga,)t>ga,)t

ea) =8ars Car= = . (7.5)
EEEE T (1= [(Fans8an) )2
By Lemma 4.4, (g4 4,8a.1) = Ca.1» Where {5 is given by (4.16). Then
Agp=1-1Cal? #0. (7.6)

Let S¢(A) be an invertible 2 x 2 matrix that transform the system (7.3) onto the or-
thonormal system (7.4). Then we infer from (7.5) that

learrCan] = [8ar:8an]Sa(A) (7.7)
where A L
1 _Coc A A, A 1 ca A

Sa(k) = [ 7_1 (217 > al(l) - 1}2 . (7.8)
0 A,Y 04,5
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Let us define the matrix functions
Ma(2) = Bl A) = S5  (M)Pe(0. 2)Sa(A) (A €R). (7.9)

Then, in accordance with (5.9) and (5.10), we infer from (7.9), (6.9), (6.10) and (7.8)
that

Ma(2) =53 (2) | g o] Eul@)54(2)
1 on

15| [V -Cant,? :[10]
OA1/2 0 0 0 A 1/{2 00|’

a,

i1a(2) = 530 [0 ] ()

1Coc—l 0 0 Ca?LA i
“loal2 | | |0 Aa}f

1/2

_lmx,x Tar A3
- 1/2

Ca,zAM Aa,l

which gives (7.2). In view of (7.6) and (4.18), we deduce from (7.2) that

lim Ma(2) = [8 ﬂ . (7.10)
By Theorem 5.1 and (7.9), the C*-algebra .27, , is isomorphic to a C*-subalgebra of
C@®C?*2. By (7.6), Ay # 0 forall (a,A) € (0,2] x R. On the other hand, by (4.16),
Can #0 once (o,A) € ((0,1)U(1,2)) x R. This implies that in the latter case the
image of the C* -algebra 7, ; under the map (7.1) coincides with C & C?*?, while for
o € {1,2} the set 1(, ;) in the image of <7, ; under the map n°@®n given by (7.1)
consists of diagonal matrices in C2*2. [

For every o € (0,2] and every A € g, , we introduce in view of (7.1), (7.2) and
(7.10) the continuous matrix functions 14 ¢ : R — C**2 given by

Ma(A) =NAc(A)] (A ER), NMag(dee) = lim nyq(4).

A oo

Since the matrix functions A — 14 ¢(2) are continuous on R, we conclude from The-
orem 7.1 that the invertibility criterion for an operator A € 2, , which is given by
Theorem 3.6, is equivalent to the invertibility of the matrices 14 (A) for all A € R
and the fulfillment of N°[A¢(A)] # 0. Hence Theorems 3.5, 3.6 and 7.1 immediately
imply the following.
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THEOREM 7.2. For every o € (0,2], the C*-algebra
U, =alg{I,Bk,.Bx, } C B(L*(Ka))

is *-isomorphic to the C* -subalgebra C® &, of the C* -algebra C & C(R,C**?), and
this isomorphism ®y = ®Y & (DscrPanr) of Uk, onto CH Sy is given by

oY) =1, @y, (1) =1,
Y (Bg,) =0, @y, (Bx,)=Ma(R), (7.11)
(I)g (EKa) =0, q)a,l (EKa) = MOC (A)7

where the matrix functions M(-), My () € C(R,C**?) are defined by (7.2) for all
A € R. An operator A € U, is invertible on the space L*(Ky) if and only if its
symbol @y (A) is invertible in the C*-algebra C& S, that is, if

DY(A)#£0 and det[®,;(A)] #0 forall A €R.

8. C*-algebras By over bounded polygonal domains U

Let U be a bounded polygonal domain with inner angles mwoy € (0,7) U (m,27]
(k=1,2,...,n) atcorners z;, and let .7 = {z; : k=1,2,...,n} be the set of all corners.
As is well known, for a polygonal domain U, ¥}_, woy = m(n—2).

Let us study the C*-algebra By given by (1.7).

8.1. Compact operators

Let U be the closure of the polygonal domain U, and let dU be the boundary of
U.

LEMMA 8.1. For a bounded polygonal domain U and any function a € Cc(),
the commutators aBy — Byal and aBy — Byal are compact on the space [? U).

Proof. Since dU is aJordan curve, then by the Riemann Mapping theorem and the
Carathéodory theorem (see, e.g., [20, Sections 1.2 and 2.1]), there exists a conformal
bijection of the open unit disc D onto a bounded polygonal domain U, which extends
to a homeomorphic map of D =DUT onto U = U U QU . This result remains true for
a bounded polygonal domain U with cuts if to distinguish two sides of cuts. Moreover,
such map is given by the Schwarz-Christoffel formula (see, e.g., [16, II1.9]).

Fix a € C(U) and consider the unitary shift operator

Wo: L*(U) = L*(D), fr¢'(fog).
associated with a conformal map ¢ : D — U. Since the commutator

(a o (p)B]D) — BD(a o (p)I
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is compact on the space 1? (D) (see, e.g., [29, Lemma 2.4.4]) and since By = W(EIBDW(,,,
it follows that the commutator

aBy —Byal =W, ' [(ac ¢)Bp —Bp(ac @)I|W,

is compact on the space L2(U ) This implies the compactness of the commutator aBy —
Byal in view of the equality By = CByC, where Cf = f. [

According to [24] (also see [1, Section 8.2]), an operator A € Z(L*(U)) is called
an operator of local type if the commutators cA — Acl are compact for every ¢ € C(U).
Thus, by Lemma 8.1, the operators By, By, and therefore all operators in the C*-
algebra By = alg {al By,By:acC(U } are of local type.

Let us denote by Ay the set of all operators of local type in % := Z(L*(U)). It
is easily seen that Ay is a C*-subalgebra of 4, and By C Ay .

Repeating literally the proof of [8, Lemma 2.6], we obtain the following.

LEMMA 8.2. Forabounded polygonal domain U C C, the C* -algebra By given
by (1.7) contains all compact operators acting on the space L*(U).

8.2. An application of the Allan-Douglas local principle

By Lemma 8.2, the C*-algebra By contains the ideal .# = % (L*(U)) of all
compact operators in the C*-algebra % = %(L*(U)). Hence, the quotient C*-algebra
BT, := By /. is well defined. To obtain a Fredholm criterion for the operators A €
By we need to study the invertibility of the cosets A" := A+ % in the quotient C*-
algebra B, . To this end we will apply the Allan-Douglas local principle to the algebra
%7’[

It follows from Lemma 8.1 that 27 := {cI+.# : ¢ € C(U)} is a central subal-
gebra of the C*-algebra Bf; . Obviously, the commutative C* - algebra Z™ is (isomet-
rically) *-isomorphic to the C*-algebra C(U), and therefore the maximal ideal space
of 2™ can be identified with U. For every point z € U, let J¥ denote the closed
two-sided ideal of the quotient C*-algebra AJ, := Ay /% generated by the maximal
ideal

i {cl—i—% cec), c(z) = }cff”

By [1, Proposition 8.6] and [23, Proposition 2.2.5], the ideal J has the form

Jf:{(cA)”:cec(U), c(z)zo,AeAU}. 8.1)
Hence, with every z € U we associate the quotient C* -algebra (Ay)T := AT, /JT.

The Allan-Douglas local principle (see [4, Theorem 7.47] and [2, Theorem 1.35])
implies the following invertibility criterion.

THEOREM 8.3. An operator A € By is Fredholm on the space L>(U) if and
only if for every z € U the coset AT := A" +JT is invertible in the quotient C* -algebra

(Av)Z.
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The set (By)F := {AF : A € By} is a C*-subalgebra of (Ay)F (see, e.g., [2,
1.26(g)]), and hence a coset AT associated with A € By is invertible in both the C* -
algebras (Ay)T and (By )7 only simultaneously.

We say that cosets A", B™ € BT, are locally equivalent at a point z € U if A" —
B™ € JF, and in that case we write A™ ~ BT,

Similarly to [8, Lemma 3.3], we get the following.

LEMMA 8.4. The cosets Bf, and E,’j are locally equivalent to zero at every point
zeU.

8.3. Local study and Fredholmness for the C*-algebra %5

Let C" denote the C*-algebra of complex-valued vectors x = (xj,...,x,) with
usual operations of addition and multiplication by complex scalars, with the entry-wise
multiplication, the adjoint x* = (x1,...,X,), and the norm [lx|| = max {|x|,...,[x,|} .

If two C*-algebras 7] and @ are (isometrically) *-isomorphic, we will write
/| =2 o . For every corner z € 7, we denote by o € (0,1)U(1,2] the value of the
inner angle of U at z, which is divided by 7.

Let us characterize the local algebras (By )" for z € U. One can see from the
lemma below that there are three types of such local algebras.

LEMMA 8.5. Forthe C*-algebra By given by (1.7), the following holds:
(i) if z€ U, then (By)F =C;
(ii) if z€ AU\ T, then (By)T = C3;
(iii) if z€ T, then (By)I =AUk, with o = o.
Proof. (i) Let z€ U. If a € C(U), then (al)* ~ a(z)I*. From Lemma 8.4 it

follows that BY, ~ 0, B}, ~ 0. Hence, the generators of the C*-algebra (By )7 have
the form (al)T, where a € C(U), and therefore the map given by

(ah)} —a(z) (a€C(U))

extends to a C*-algebra isomorphism of (By)F onto C.

(ii) Let now z € JU \ 7. Take the Schwarz-Christoffel conformal mapping f; :
IT— U such that 3,(0) =z (see, e.g., [3]). Then B.(0) # 0. Making use of the unitary
operator

Wp, : L*(U) — L*(TT), f+ B.(foB.),
we deduce (see, e.g., [8, Proposition 2.2]) that

Wp.(al)Wg ' = (a0 B)I, WpBuWy ' = Bn, W BuW, ' =cBne;'l,  (8.2)

where ¢, := B!/B!.
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Fix A € By . If the coset AT € (By)T is invertible, then in view of (8.1) there
exist an operator B € By, operators D1, D, € Ay, operators Ki,K, € # (L*(U)) and
functions cy,c; € C(U) such that ¢1(z) = c2(z) =0 and

BA=I1+4+c1D1+K), AB=I1+cD>,+K>.
Hence, we obtain

(Wp.BW ') (Wp, AW, ') = I+ (c1 0 B)Dy +Ki,

. (8.3)
(W, AW, ) (Wp, BWg ) = I+ (c20 B)Dr + Ko,

where K|, K, € # (L*(I1)) and Dy,D; € W/;ZAUWﬁfl. For constants k£ > 0, we intro-
duce the unitary dilation operators

U : L*(I1) — LX(I), (Uf)(w) = kf(kw) forall w e II. (8.4)

Then, in view of (1.4) and the equality s- hmk_,o(Uka 1 = (B(0)/B.(0))I, we infer
for generators (8.2) of the C* -algebra WﬁZ%UW C %(Lz( )) that

B
s];n%l (Uk(ao B)U ) = a(2)1, (8.5)
s-lim (UxBnU; ") = B, s:lim (Ur(e:Brnel)U; ") = B (8.6)

Hence, for every A € By and every z € JU \ .7 there exists the strong limit

A, = s;{ljgn (Uk(WﬁZAWI;I)Uk_l) € alg{I,Br,Br }. (8.7)

Applying now [8, Proposition 7.5], we deduce from (8.3) that B,A, =1 and A;B, =1.
Thus, the invertibility of the coset AT € (By )T implies the invertibility of the operator
A, € alg{I,Br,Bn}.

On the other hand, the invertibility of the operator A; € alg{I, B, En} associated
with an operator A € By implies the invertibility of the operator

w-

5 AW, € By = alg{I,By,d.Byd; "I},

where d; := (B;') /([3Z 1y, Since (d.1)™ < (B.(0)/B.(0))I" and then (dzgydz’ll)” <
BF, and since (al)™ < a(z)I* for all a € C(U), we conclude that the quotient C*-
algebras (%U)” and (By )T coincide. Consequently, the invertibility of the operator
Wy 'AWp, € By implies the invertibility of the coset (WEIA W, )” =AT € (By)r.
Thus, the invertibility of the coset AT € (By )T for A € By is equivalent to the

invertibility of the operator A, € alg{/ ,Br1,Br} given by (8.7). This implies that the
map (By)F — alg{l,Bn,Bn}, given on the generators of the C* -algebra (By )T by

(al)T +— a(z)I, (By)T+ Bn, (By)F+ B, (8.8)
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is a *-isomorphism of the C*-algebra (By )T onto the C*-algebra alg {I,Br1,Br}.
Finally, the C*-algebra alg{I 7Bl-[71i371-[} is generated by the three pairwise orthogonal
projections By, En and [ — By — B}I # 1 (see Lemma 3.2 and [27, Theorem 4.5]),
which immediately implies the C* -algebra isomorphism (%8y)* = C3.

(iii) Let now z € .7 be a corner of opening mo,. Consider the conformal map
Y: : Ko, — U such that y,(0) = z, where Ky, is given by (1.5). Clearly, 7, = B, 0 (Pa ,
where the conformal map @y : IT — K, is given by @q(w) =w* for o € (0,2] and
well, B, : 1 — U is the Schwarz-Christoffel conformal map such that 3,(0) = z, and
7.(0) # 0. Taking the unitary operator

Wy : LP(U) = L*(Ke,), [ Y(for),
we deduce from [8, Proposition 2.2] that
Wy (al)W, ' = (aoy)l, WByW, ' =By, , WpByW, ' =c.Bg, c;'I,

where now ¢, := 7./ 7Z Applying the unitary dilation operators (8.4) considered now
on the space L*(Ky,) and [8, Proposition 2.2] again, we obtain

sclim(Uee.U; ) = ((0) /D!, sclim (Uklao U 1) = a2,

slﬂrgl (UkBKaZ U,:l) = Bx,., S];EI&] (Uk(cngazc_zl)U;;I) = §Kaz.
Then, by analogy with part (ii) we infer that the map
(Bu)F — Ag,, = alg{l,Bx,, B, },
given on the generators of the C* -algebra (By )T by
(al)] = a(2)l, (Bu); + Bxk,, , (Bu)T+ Bg,, . (8.9)

is a C*-algebra isomorphism of the C*-algebra (By )T onto the C*-algebra Ak, »
which completes the proof of part (iii). [

Combining Theorem 8.3, Lemma 8.5 and Theorem 7.2, we establish the Fred-
holm criterion for the C* -algebra By given by (1.7), where U is a bounded polygonal
domain.

THEOREM 8.6. The quotient C*-algebra

% .—alg{al,By,By :a € C(U)})# C B(L*U))|H

is *-isomorphic to the C* -subalgebra W (*B},) of the C*-algebra

(@ c) ) ( b <c2> o ( b CM>, (8.10)
zeU 2€0U\T (z,A)€T xR
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and the corresponding isomorphism

Y= (@ \PS)@( ) ‘PZ>®< ) ‘Pm> (8.11)
€U €IU\T (z,A)eT xR

is given on the generators of the C*-algebra B[, by

Y((al)") := (@ a(z)) @ ( @ (a(z),a(z))) @ ( @ a(z)12>,
(z,A)€T xR

zeU 2€QU\T

hal
e~]

<
Il

(EB 0) @ ( & (1,0)> ® ((MEB Maz()L)>’ 8.12)

zeU 2€JU\T )ET xR

W(BE): <®0>@< D (0,1)>@<W® Mazvt))’

U 2€IU\T )e T xR

where the matrices My(A), My(A) € C2*2 are defined by (1.2) for all A € R. An
operator A € By is Fredholm on the space L*(U) if and only if its symbol W(A™) is
invertible in the C* -algebra Y (BY,), that is, if

WA £0 forall z€TU,
[P (A"))k #0 forall z€ U\ T andall k=1,2,
det[W, 5 (A™)] #0 forall z€ T andall A €R,

where [V (A™)]i are the k-entries of the vector P,(A™).

Proof. By Lemma 8.5(i), for each z € U the map A¥ — W?(A™) isa *-isomorphism

of the C*-algebra (By)F onto C, while for every z € JU \ .7 from Lemma 8.5(ii)
and (8.8) it follows that the map A" — W?(A™) & W (A”) is a *-isomorphism of the
C*-algebra (By)T onto the C*-algebra C@® C? = C*. Further, by Lemma 8.5(iii),
(8.9) and Theorem 7.2, for every z € .7 the C*-algebra (By)F is *-isomorphic to
the C*-subalgebra C & &4, of C & C(R,C?*?), and this isomorphism is given by
AT — V(A™) @ (@, g ¥.1(A™)), where the homomorphisms ¥? : BF, — C for
z€U, ¥, B, —»C*forz€dU\ T and ¥, : B}, — C>? forz€ .7 and L €R
are given by (8.12). Hence, applying Theorem 8.3, we conclude that the C*-algebra
BT, is *-isomorphic to the C* -subalgebra By of

(@9):(@,c)<(@[=(2=))) o»

composed for all A* € BT, by the elements W°(A™) for z € U, W2(A™) & W, (A™) for
z2€0U\ .7 and Y2(A™) & (@, g ¥, 1(AT)) for z € 7. Itis easily then seen that
the C* -subalgebra By of the C*-algebra (8.13) is *-isomorphic to the C* -subalgebra
W(B];) of the C*-algebra (8.10), where the isomorphism ¥ is given by (8.11) and
(8.12). Thus, BF, = W(B[;), which implies the corresponding Fredholm criterion. [J
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