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C∗–ALGEBRAS OF BERGMAN TYPE OPERATORS WITH
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Abstract. Given α ∈ (0,2] , the C∗ -algebra AKα generated by the identity operator and by the
Bergman and anti-Bergman projections acting on the Lebesgue space L2(Kα) over the open
sector

Kα =
{
z = reiθ : r > 0, θ ∈ (0,πα)

}
is studied. Then, for any bounded polygonal domain U , the C∗ -algebra BU generated by the
operators of multiplication by continuous functions on the closure U of U and by the Bergman
and anti-Bergman projections acting on the Lebesgue space L2(U) is investigated. Symbol cal-
culi for the C∗ -algebras AKα and BU are constructed and an invertibility criterion for operators
A ∈ AKα and a Fredholm criterion for the operators B ∈ BU in terms of their symbols are es-
tablished.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators acting on a
Hilbert space H , and let K (H) be the ideal of compact operators on H . Operator
A∈B(H) is called Fredholm if the coset Aπ := A+K (H) is invertible in the quotient
C∗ -algebra Bπ (H) := B(H)/K (H) (see, e.g., [2]).

Let U be a domain in C equipped with the Lebesgue area measure dA(z) = dxdy ,
and let A 2(U) and Ã 2(U) denote the Hilbert subspaces (see, e.g., [5], [9]) of L2(U) =
L2(U,dA) that consist of differentiable functions such that, respectively, ∂z f = 0 and
∂z f = 0, where

∂z :=
1
2

(
∂
∂x

+ i
∂
∂y

)
, ∂z :=

1
2

(
∂
∂x

− i
∂
∂y

)
.

These spaces are related by the anti-linear norm one operator

C : L2(U) → L2(U), C f = f . (1.1)

Obviously, C(A 2(U)) = Ã 2(U) because ∂z f = ∂z f .
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The Bergman projection BU and anti-Bergman projection B̃U are the orthogo-
nal projections of the Lebesgue space L2(U) onto its subspaces A 2(U) and Ã 2(U) ,
respectively. Clearly, B̃U = CBUC .

According to [5, Chapter 2], for a bounded multiply connected domain U ⊂ C

with sufficiently smooth boundary, the Bergman and anti-Bergman projections are rep-
resented in the form

BU = I−SUS∗U +K, B̃U = I−S∗USU + K̃, (1.2)

where SU and S∗U are two-dimensional singular integral operators bounded on the space
L2(U) [17] and given for z ∈U by

(SU f )(z) = − 1
π

∫
U

f (w)
(w− z)2 dA(w),

(S∗U f )(z) = − 1
π

∫
U

f (w)
(w− z)2 dA(w),

(1.3)

and K, K̃ are compact operators on the space L2(U) . Clearly, S∗U =CSUC is the adjoint
operator for SU .

If U is the upper half-plane Π = {z ∈ C : Imz > 0} , then K = K̃ = 0 and hence
(1.2) takes the form (see [28, Lemma 7.5]):

BΠ = I−SΠS∗Π, B̃Π = I−S∗ΠSΠ. (1.4)

On the other hand, if the boundary of a domain U admit angles different of π , then
formulas (1.2) and (1.4), in general, are violated. For example, this happens for the
open sectors

Kα =
{
z = reiθ : r > 0, θ ∈ (0,πα)

}
(α ∈ (0,2]) (1.5)

if α ∈ {1/2,1/3, . . .} (see [10, Theorem 5.3]).
The Fredholmness for the C∗ -algebra generated by the Bergman projection of

a bounded multi-connected domain G with a smooth boundary ∂G and by piecewise
continuous coefficients having one-sided limits at the points of the finite union of curves
intersecting ∂G at distinct points was investigated in [25]. A generalization of this
work to piecewise continuous coefficients admitting more than two one-sided limits at
the points of ∂G was elaborated in [13] (also see [14] and [15]). The C∗ -algebras gen-
erated by the Bergman and anti-Bergman projections (as well as by n poly-Bergman
and m anti-poly-Bergman projections) with piecewise continuous coefficients admit-
ting finite numbers of one-sided limits at the points of ∂G were studied in the papers
[8]–[11]. C∗ -algebras of Toeplitz operators on the Bergman space were studied in [28],
[29] (also see references therein). In all these works it was assumed that the boundary
of a domain G is sufficiently smooth.

The present paper deals with studying the invertibility and Fredholmness in the
C∗ -algebras of Bergman type operators acting on the space L2(U) over domains U
whose boundaries admit angles. The invertibility in the C∗ -algebra generated by the
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operators of multiplication by piecewise constant functions and by the Bergman and
anti-Bergman projections on the space L2 over sectors K1/m for m = 2,3, . . . was re-
cently studied in [6]. The obtained results essentially depend on the values of the sector
angles.

In the present paper, making use of another approach, we study the invertibility of
operators in the C∗ -algebra

AKα := alg{I,BKα , B̃Kα} ⊂ B(L2(Kα)) (1.6)

generated by the identity operator I , by the Bergman projection BKα and by the anti-
Bergman projection B̃Kα for any α ∈ (0,2] . Further, applying the Allan-Douglas lo-
cal principle (see [4, Theorem 7.47] and [2, Theorem 1.35]) and the limit operators
techniques (see, e.g., [21, Chapter 1], we study the Fredholmness of operators in the
C∗ -algebras

BU := alg{aI,BU , B̃U : a ∈C(U)} ⊂ B(L2(U)) (1.7)

generated by the operators aI of multiplication by all complex-valued functions a ∈
C(U) , by the Bergman projection BU and by the anti-Bergman projection B̃U , where
U is the closure of a bounded polygonal domain U whose angles admit values πα
with α ∈ (0,2] .

The paper is organized as follows. In Section 2, following [7] and [6], we expound
the Plamenevsky decomposition for the two-dimensional Fourier transform and give
its application to convolution type operators with homogeneous data. In Section 3,
for any α ∈ (0,2] , we construct a C∗ -algebra isomorphism of the C∗ -algebra AKα

given by (1.6) into a C∗ -algebra Ω̃α of bounded norm-continuous operator functions
R → B(L2(T)) . In Section 4, for all λ ∈ R , we calculate the images of the operators
Bα(λ ) and B̃α(λ ) related to the projections BKα and B̃Kα according to Section 3.

In Section 5, modifying the symbol calculus constructed in [8, Theorem 8.1], we
describe an abstract symbol calculus for a C∗ -algebra generated by the identity I and
by a finite number of one-dimensional self-adjoint idempotents that are not pairwise
orthogonal. Given α ∈ (0,2] and λ ∈ R , we check in Section 6 the fulfillment of all
conditions of the abstract symbol calculus from Section 5 for the C∗ -algebras

Aα ,λ := alg{I,Bα(λ ), B̃α(λ )} (1.8)

generated by the operators I , Bα(λ ) and B̃α(λ ) . Applying results of Sections 5 and 6,
we construct in Section 7 symbol calculi for the C∗ -algebras Aα ,λ and AKα (see (1.6))
for all α ∈ (0,2] and all λ ∈ R , and establish an invertibility criterion for the operators
A ∈ AKα in terms of their symbols.

Finally, in Section 8, making use of the Allan-Douglas local principle and the limit
operators techniques, for any polygonal domain U we construct a Fredholm symbol
calculus for the C∗ -algebra BU given by (1.7) and obtain a Fredholm criterion for the
operators A ∈ BU in terms of their Fredholm symbols.



776 Y. I. KARLOVICH

2. C∗ -algebras of convolution type operators with homogeneous data

The results of this section are essentially due to Plamenevsky’s decomposition of
the multidimensional Fourier transform [19]. Such technique was also applied in [7],
where the Plamenevsky results were extended in the two-dimensional case. Here we
specify some results of [7] on the basis of [6].

Let PC(T) be the C∗ -algebra of all complex-valued piecewise continuous func-
tions on the unit circle T , and let H(PC(T)) denote the C∗ -algebra of all homogeneous
of order zero functions in L∞(C) whose restrictions on T belong to PC(T) and, for all
τ ∈ T and all t > 0,

lim
θ→+0

a(teiθ τ) = lim
θ→+0

a(eiθ τ), lim
θ→−0

a(teiθ τ) = lim
θ→−0

a(eiθ τ).

We also apply the C∗ -algebra H(C(T)) consisting of functions a ∈ H(PC(T)) such
that a|T ∈C(T) . Let R stand for the C∗ -subalgebra of B(L2(R2)) generated by the
multiplication operators

A = aI (a ∈ H(PC(T)))

and by the two-dimensional singular integral operators

F−1bF (b ∈ H(C(T))).

Here F : L2(R2) → L2(R2) is the Fourier transform defined by

(Fu)(x) =
1
2π

∫
R2

u(t)e−ix·t dt, x ∈ R
2, (2.1)

where x · t is the scalar product of vectors x,t ∈ R2 , and F−1 is the inverse Fourier
transform.

We also consider the Mellin transform and its inverse given by

M : L2(R+,rdr) → L2(R), (Mv)(λ ) =
1√
2π

∫
R+

v(r)r−iλ dr,

M−1 : L2(R) → L2(R+,rdr), (M−1u)(r) =
1√
2π

∫
R

u(λ )riλ−1dλ .

Following [19] and [7], for λ ∈ C such that Imλ > 0 and λ �= ik, k = 1,2, . . . ,
we define the operators E(λ ) ∈ B(L2(T)) on functions u ∈C∞(T) by

(E(λ )u)(τ) = γ(λ )
∫

T

(−τ ·ω + i0)−iλ−1u(ω)dω , τ ∈ T, (2.2)

where dω is the length measure on T ,

γ(λ ) =
1
2π

Γ(1+ iλ )eπ(i−λ )/2 (2.3)
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and the expression (t ± i0)μ for t ∈ R and μ ∈ C is understood in the sense of distri-
butions:

(t ± i0)μ =

⎧⎨⎩
tμ
+ + e±iπμ tμ

− if μ �= −1,−2, . . . ,

tμ ± (−1)μ iπ
(−μ −1)!

δ (−μ−1)(t) if μ = −1,−2, . . . ,

tμ
+ = 0 for t � 0, tμ

+ = eμ logt for t > 0, and tμ
− = (−t)μ

+ .
For Imλ � 0 the integral (2.2) is understood in the sense of analytic continuation,

since for every u ∈C∞(T) the function λ �→ E(λ )u(t) admits analytic continuation in
the complex plane minus the poles λ = ik (k = 1,2, . . .) of the Γ-function in (2.3) (see
[19]). The inverse operator E(λ )−1 is given by

(E(λ )−1v)(ω) = γ(−λ )
∫

T

(ω · τ + i0)iλ−1v(τ)dτ, λ �= −ik, k = 1,2, . . . .

By [19, Proposition 4.4], the operators E(λ ) are unitary for all λ ∈ R .
Consider the reflection operator

V : L2(R) → L2(R), (V f )(λ ) = f (−λ ), λ ∈ R. (2.4)

Passing to polar coordinates in the plane, we obtain the decomposition

L2(R2) = L2(R+,rdr)⊗L2(T). (2.5)

The tensor product M⊗ I will be taken relatively to the decomposition (2.5). For an
operator-valued function

R → B(L2(T)), λ �→ L(λ ),

we denote by I⊗λ L(λ ) the operator in B
(
L2(R)⊗L2(T)

)
given by the formula

[(I⊗λ L(λ )) f ](λ ,t) = [L(λ ) f (λ , ·)](t), (λ ,t) ∈ R×T. (2.6)

Given λ ∈R , we introduce the C∗ -algebra Ωλ ⊂B(L2(T)) generated by the operators

aI and E(λ )−1bE(λ ) (a ∈ PC(T), b ∈C(T)).

Consider the orthogonal basis in the space L2(T) :{
hm/

√
2π
}

m∈Z
, where h(t) = t for all t ∈ T. (2.7)

The following result corrects [7, Proposition 2.2 and (2.15)].

LEMMA 2.1. [6, Lemma 2.1] For every m ∈ Z ,

E(λ )hm = μ(|m|,λ )hm if λ ∈ C\ {ik : k ∈ N},
E(λ )−1hm = (−1)mμ(|m|,−λ )hm if λ ∈ C\ {−ik : k ∈ N}, (2.8)

where h is given by (2.7) and, for λ ∈ C\ {ik : k ∈ N} ,

μ(m,λ ) = (−i)m2iλ Γ
(

m+iλ+1
2

)
Γ
(

m−iλ+1
2

) (m = 0,1,2, . . .). (2.9)
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Although the operator functions λ �→ E(λ )±1 are not norm-continuous, we have
the following result.

LEMMA 2.2. [6, Lemma 2.2] For every b ∈C(T) , the operator-valued function

R → B(L2(T)), λ �→ E(λ )−1bE(λ )

is bounded and norm-continuous.

Let Ω be the C∗ -algebra of bounded norm-continuous operator-valued functions

U : R → B(L2(T)), λ �→U(λ ) ∈ Ωλ , (2.10)

with the norm ‖U‖ = sup
λ∈R

‖U(λ )‖ .

According to [7, Proposition 2.4] (see also [19, Proposition 2.1]) we have the
decomposition

F = (M−1⊗ I)(V ⊗ I)(I⊗λ E(λ ))(M⊗ I).

Let a ∈ H(PC(T)) and b ∈ H(C(T)) . Taking in account the equalities

(M⊗ I)(a(x)I)(M−1⊗ I) = I⊗a(t)I,

(M⊗ I)(F−1b(ξ )F)(M−1 ⊗ I) = I⊗λ (E(λ )−1b(w)E(λ )),
(2.11)

where t,w ∈ T and the operator function λ �→ E(λ )−1b(w)E(λ ) is norm-continuous
by Lemma 2.2, and using the notation (U(λ ))λ∈R for the operator-valued function
(2.10), one can obtain the following.

LEMMA 2.3. [7, Proposition 2.5] The C∗ -algebra R is ∗ -isomorphic to a C∗ -
subalgebra of Ω , and the isomorphism is given on the generators aI (a ∈ H(PC(T)))
and F−1bF (b ∈ H(C(T))) of R by

a(x)I �→ (a(t)I)λ∈R, F−1b(ξ )F �→ (E(λ )−1b(w)E(λ ))λ∈R.

3. Study of the C∗ -algebra AKα

Given α ∈ (0,2] , consider the representations of the Bergman projection BKα and
the anti-Bergman projection B̃Kα over the open sectors Kα =

{
z = reiθ : r > 0, θ ∈

(0,πα)
}

via the two-dimensional singular integral operators SΠ and S∗Π given by (1.3)
with U = Π . Obviously, K1 coincides with the upper half-plane Π , and then such
representations are given by (1.4).

We define the unitary shift operator

Wα : L2(Kα) → L2(Π), (Wα f )(z) = αzα−1 f (zα ) (z ∈ Π). (3.1)

Identifying BKα and B̃Kα with the operators χKα BKα χKα I and χKα B̃Kα χKα I acting
on the space L2(C) , we immediately obtain the following assertion (cf. [10, Theo-
rem 5.3]).
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LEMMA 3.1. For every α ∈ (0,2] , the Bergman and anti-Bergman projections of
the space L2(Kα) are self-adjoint projections having, respectively, the form

BKα = W−1
α BΠWα = I−W−1

α SΠS∗ΠWα , (3.2)

B̃Kα = CW−1
α BΠWαC = I−CW−1

α SΠS∗ΠWαC. (3.3)

where the unitary shift operator Wα is given by (3.1) and the operator C is given by
(1.1) for U = Kα .

According to [28, Theorem 3.14], we have the following.

LEMMA 3.2. For the upper half-plane Π , B̃ΠBΠ = 0 and BΠB̃Π = 0 .

Note that such assertion fails for the sectors Kα with α ∈ (0,1)∪ (1,2) (see Re-
mark 4.5 below).

Consider the arc γα := {eiτ : τ ∈ [0,απ ]} of the unit circle T , and the upper
semicircle T+ := γ1 . Let χB be the characteristic function of a set B ⊂ C , and let
χ+ := χT+ .

LEMMA 3.3. If α ∈ (0,2] , then

(M⊗ I)(χΠWα χKα I)(M−1 ⊗ I) = U1/α ⊗ (χ+Ũα χγα I), (3.4)

where U1/α ∈ B(L2(R)) and Ũα : L2(γα) → L2(T+) are unitary operators given, re-
spectively, by

[U1/αψ ](λ ) = (1/α)1/2ψ(λ/α) for all λ ∈ R,

[Ũαφ ](t) = α1/2tα−1φ(tα ) for all t ∈ T+.
(3.5)

Proof. Obviously, the operator equalities

χΠWα χKα I = Wα χKα I = χΠWα , χ+Ũα χγα I = Ũα χγα I = χ+Ũα , (3.6)

are fulfilled on the spaces L2(C) and L2(T) , respectively, and

(M⊗ I)χKα (M−1 ⊗ I) = I⊗ χγα I. (3.7)

Given a function f ∈ L2(R)⊗L2(T) , for (λ ,t) ∈ R×T we then obtain[
(M⊗ I)(χΠWα χKα I)(M−1 ⊗ I) f

]
(λ ,t)

=
χΠ(t)√

2π

∫
R+

[
Wα χγα (M−1 ⊗ I) f

]
(r,t)r−iλ dr

=
χ+(t)√

2π

∫
R+

αrα−1tα−1[(M−1 ⊗ I) f
]
(rα ,tα)r−iλ dr

=
χ+(t)tα−1

√
2π

∫
R+

[
(M−1 ⊗ I) f

]
(ρ ,tα)ρ−iλ/αdρ

=
χ+(t)tα−1

√
2π

∫
R+

(
1√
2π

∫
R

f (μ ,tα )ρ iμ−1dμ

)
ρ−iλ/αdρ

= χ+(t)tα−1 f (λ/α,tα) =
[(

U1/α ⊗ (χ+Ũα χγα I)
)
f
]
(λ ,t),
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which gives (3.4). �

LEMMA 3.4. If C : L2(C) → L2(C) is the anti-linear operator (1.1), then

(M⊗ I)C(M−1⊗ I) = ĈV ⊗ C̃, (3.8)

where V ∈ B(L2(R)) is the reflection operator defined by (2.4), and the anti-linear
operators Ĉ : L2(R) → L2(R) and C̃ : L2(T) → L2(T) act by Ĉ f = f and C̃ f = f .

Proof. For f ∈ L2(R)⊗L2(T) and (λ ,t) ∈ R×T , we obtain[
(M⊗ I)C(M−1⊗ I) f

]
(λ ,t) =

1√
2π

∫
R+

[
C(M−1⊗ I) f

]
(r,t)r−iλ dr

=
1√
2π

∫
R+

[
(M−1 ⊗ I) f

]
(r,t)riλ dr

= f (−λ ,t) =
[
(ĈV ⊗ C̃) f

]
(λ ,t),

which gives (3.8). �
From the formula for the Fourier transform of the kernels of multidimensional

singular integral operators (see, e.g., [17, Chapter X, p. 249]) it follows that

SC = F−1h̃−1F, S∗C = F−1h̃F, (3.9)

where F is the two-dimensional Fourier transform acting on L2(C) by the formula
(2.1), and h̃ is given by

h̃(z) := z/z for all z ∈ C. (3.10)

Let Ω̃ be the C∗ -algebra of all bounded norm-continuous operator functions

Y : R → B(L2(T)), λ �→ Y (λ ),

with the norm ‖Y‖ = sup
λ∈R

‖Y (λ )‖B(L2(T)) .

THEOREM 3.5. For every α ∈ (0,2] , the C∗ -algebra AKα given by (1.6) is ∗ -iso-
morphic to the C∗ -subalgebra Ω̃α of Ω̃ generated by the bounded norm-continuous
operator functions R → B(L2(T)) of the form

λ �→ χγα I, λ �→ Bα(λ ), λ �→ B̃α(λ ), (3.11)

where for every λ ∈ R ,

Bα(λ ) = Ũ−1
α B1(λ α)Ũα , (3.12)

B̃α(λ ) = (C̃Ũ−1
α C̃)B̃1(λ α)(C̃ŨαC̃), (3.13)

B1(λ ) = χ+I− χ+S(λ )χ+S∗(λ )χ+I, (3.14)

B̃1(λ ) = χ+I− χ+S∗(λ )χ+S(λ )χ+I, (3.15)
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χ+ is the characteristic function of T+ , the operator Ũα : L2(γα )→ L2(T+) is given by
(3.5), C̃ f = f on the subspaces of L2(T) , and the operators S(λ ),S∗(λ ) ∈ B(L2(T))
for λ ∈ R are defined by

S(λ ) := E(λ )−1h−2E(λ ), S∗(λ ) := E(λ )−1h2E(λ ), (3.16)

with h(t) = t for all t ∈ T .

Proof. Since h̃±1 ∈ H(C(T)) , we infer from (3.9), (3.10) and (2.11) that

(M⊗ I)SC(M−1 ⊗ I) = I⊗λ S(λ ),

(M⊗ I)S∗C(M−1 ⊗ I) = I⊗λ S∗(λ ),
(3.17)

where S(λ ) and S∗(λ ) are given by (3.16). Hence, applying the equality

(M⊗ I)χΠ(M−1 ⊗ I) = I⊗ χ+I,

we conclude from (1.4), (3.17) and (3.14)–(3.15) that

(M⊗ I)BΠ(M−1 ⊗ I) = I⊗λ
(
χ+S(λ )χ+S∗(λ )χ+I

)
= I⊗λ B1(λ ),

(M⊗ I)B̃Π(M−1 ⊗ I) = I⊗λ
(
χ+S∗(λ )χ+S(λ )χ+I

)
= I⊗λ B̃1(λ ).

(3.18)

Fix α ∈ (0,2] . Taking into account (3.6), (3.18) and the equality (3.7), we infer
from (3.5) and (2.6) that

(U1/α ⊗Ũα)−1(I⊗λ B1(λ ))(U1/α ⊗Ũα) = I⊗λ (Ũ−1
α B1(λ α)Ũα). (3.19)

Indeed, for f ∈ L2(R)⊗L2(T) and (λ ,t) ∈ R×T , we obtain

[(U1/α ⊗Ũα)−1 f ](λ ,t) = α1/2[Ũ−1
α f (λ α, ·)](t),

[(I⊗λ B1(λ )) f ](λ α,t) = [B1(λ α) f (λ α, ·)](t),
[(U1/α ⊗Ũα) f ](λ α,t) = α−1/2[Ũα f (λ , ·)](t),

which gives (3.19). Hence, taking into account (3.6), we deduce from (3.2), (3.18),
(3.4) and (3.19) that

I⊗λ Bα(λ ) := (M⊗ I)BKα (M−1⊗ I)

= (M⊗ I)(W−1
α BΠWα)(M−1 ⊗ I)

= (U1/α ⊗Ũα)−1(I⊗λ B1(λ ))(U1/α ⊗Ũα)

= I⊗λ (Ũ−1
α B1(λ α)Ũα), (3.20)

which implies (3.12).
Since for f ∈ L2(R)⊗L2(T) and (λ ,t) ∈ R×T we have

[(V ⊗ I) f ](λ ,t) = f (−λ ,t),
[(I⊗λ Bα(λ )) f ](−λ ,t) = [Bα(−λ ) f (−λ , ·)](t),

[(V ⊗ I) f ](−λ ,t) = f (λ ,t),
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it follows that
(V ⊗ I)

(
I⊗λ Bα(λ )

)
(V ⊗ I) = I⊗λ (Bα(−λ )).

Hence

(ĈV ⊗ C̃)(I⊗λ Bα(λ ))(ĈV ⊗ C̃) = (Ĉ⊗ C̃)(I⊗λ Bα(−λ ))(Ĉ⊗ C̃)

= I⊗λ (C̃Bα(−λ )C̃). (3.21)

Applying now (3.3), (3.8), (3.20) and (3.21), we obtain

I⊗λ B̃α(λ ) := (M⊗ I)B̃Kα (M−1 ⊗ I)

= (M⊗ I)(CBKαC)(M−1 ⊗ I)

= (ĈV ⊗ C̃)(M⊗ I)BKα (M−1 ⊗ I)(ĈV ⊗ C̃)

= (ĈV ⊗ C̃)(I⊗λ Bα(λ ))(ĈV ⊗ C̃)

= I⊗λ (C̃Bα(−λ )C̃), (3.22)

which means that
B̃α(λ ) = C̃Bα(−λ )C̃. (3.23)

Making use of (3.12), we deduce from (3.23) that

B̃α(λ ) = C̃Ũ−1
α B1(−λ α)ŨαC̃ = (C̃Ũ−1

α C̃)B̃1(λ α)(C̃ŨαC̃),

which gives (3.13).
Thus, by the first equalities in (3.20) and (3.22), we conclude that

(M⊗ I)BKα (M−1 ⊗ I) = I⊗λ Bα(λ ),

(M⊗ I)B̃Kα (M−1 ⊗ I) = I⊗λ B̃α(λ ),
(3.24)

where the operators Bα(λ ), B̃α(λ ) ∈ B(L2(T)) for every λ ∈ R are given by (3.12)–
(3.15). From Lemma 2.2 and (3.12)–(3.15) it follows that the operator functions λ �→
Bα(λ ) and λ �→ B̃α(λ ) are norm-continuous, which completes the proof according to
(3.24). �

Fix α ∈ (0,2] . By Theorem 3.5, the C∗ -algebra

AKα := alg{I,BKα , B̃Kα} ⊂ B(L2(Kα))

is ∗ -isomorphic to the C∗ -algebra Ω̃α generated by the bounded norm-continuous op-
erator functions R → B(L2(γα )) given by (3.11). On the other hand, the C∗ -algebra
Ω̃α can be considered as

Ω̃α ⊂
⊕
λ∈R

Aα ,λ , (3.25)

where the C∗ -algebras Aα ,λ ⊂ B(L2(γα)) are defined by (1.8). By (3.7) and (3.24),
for every A ∈ AKα and every λ ∈ R there exists an operator Aα(λ ) ∈ Aα ,λ such that

(M⊗ I)A(M−1⊗ I) = I⊗λ Aα(λ ) (3.26)
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and the operator function λ �→ Aα(λ ) is norm-continuous. Theorem 3.5 in view of
(3.25) and (3.26) immediately imply the following invertibility criterion.

THEOREM 3.6. Given α ∈ (0,2] , an operator A ∈AKα is invertible on the space
L2(Kα) if and only if the operators Aα(λ ) ∈ Aα ,λ are invertible on the space L2(γα )
for all λ ∈ R and

sup
λ∈R

∥∥(Aα(λ ))−1
∥∥

B(L2(γα )) < ∞. (3.27)

4. The images of the operators Bα(λ ) and B̃α(λ )

To calculate the images of the operators Bα(λ ) and B̃α(λ ) for any α ∈ (0,2] ,
we partially follow the scheme of [13] and [8], [9]. By [12, Chapter 1, Lemma 4.10],
if P(t) is a family of projections on a Hilbert space H continuously depending, in the
norm topology, on the real parameter t running through a connected set of R , then all
the spaces P(t)H are isomorphic; in particular, all the images of P(t) have the same
dimensions. Thus, taking into account that the projections Bα(λ ) and B̃α(λ ) norm-
continuously depend on λ ∈ R in view of Theorem 3.5, we get

dimBα(λ ) = dimBα(0), dim B̃α(λ ) = dim B̃α(0).

We are going to show that Bα(0) and B̃α(0) are one-dimensional projections and then
all the projections Bα(λ ) and B̃α(λ ) are one-dimensional.

LEMMA 4.1. Let α ∈ (0,2] and let h(t) = t for all t ∈ T . Then

ImBα(0) = span

{
χγα h−1

√
πα

}
, Im B̃α(0) = span

{
χγα h√

πα

}
,

where χγα is the characteristic function of the arc γα ⊂ T .

Proof. Since the function Γ is analytic on the set C \ {0,−1,−2, . . .} and has
poles of order one at the points 0,−1,−2, . . . , we deduce from (2.8) and (2.9) that

E(0)hn = (−i)|n|hn, E(0)−1hn = i|n|hn (n ∈ Z), (4.1)

where h(t) = t for all t ∈ T . Then, in view of (3.16) and (4.1), we obtain

S(0)hn = E(0)−1h−2E(0)hn = (−i)|n|i|n−2|hn−2,

S∗(0)hn = E(0)−1h2E(0)hn = (−i)|n|i|n+2|hn+2,

which implies that, for every n ∈ Z ,

S(0)hn =

{
−hn−2, n �= 1,

hn−2, n = 1,
S∗(0)hn =

{
−hn+2, n �= −1,

hn+2, n = −1.
(4.2)
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Given f ∈ L2(T) , let us calculate Bα(0) f , where, by (3.12) and (3.14),

Bα(0) = χγα I− χγαŨ−1
α χ+S(0)χ+S∗(0)χ+Ũα χγα I.

Representing a function χ+ψ ∈ L2(T) by the convergent in L2(T) series

χ+ψ =
1
2π ∑

k∈Z

〈χ+ψ ,hk〉hk, (4.3)

we infer from (4.2) and (4.3) that

S∗(0)(χ+ψ) = − 1
2π ∑

k∈Z\{−1}
〈χ+ψ ,hk〉hk+2 +

1
2π

〈χ+ψ ,h−1〉h

= − 1
2π ∑

k∈Z

〈χ+ψh2,hk+2〉hk+2 +
2
2π

〈χ+ψ ,h−1〉h

= −χ+ψh2 +
1
π
〈χ+ψ ,h−1〉h (4.4)

and, analogously,

S(0)(χ+ψ) = − 1
2π ∑

k∈Z\{1}
〈χ+ψ ,hk〉hk−2 +

1
2π

〈χ+ψ ,h〉h−1

= − 1
2π ∑

k∈Z

〈χ+ψh−2,hk−2〉hk−2 +
2
2π

〈χ+ψ ,h〉h−1

= −χ+ψh−2 +
1
π
〈χ+ψ ,h〉h−1. (4.5)

Applying (4.4), (4.5) and the equality 〈χ+h,h〉 = π , we infer from (3.14) that

B1(0)ψ = χ+ψ − χ+S(0)χ+S∗(0)χ+ψ

= χ+ψ − [χ+S(0)]
(
− χ+ψh2 +

1
π
〈χ+ψ ,h−1〉χ+h

)
= χ+ψ − χ+ψ +

1
π
〈χ+ψh2,h〉χ+h−1

+
1
π
〈χ+ψ ,h−1〉

(
χ+h−1− 1

π
〈χ+h,h〉χ+h−1

)
=

1
π
〈χ+ψ ,h−1〉χ+h−1. (4.6)

Finally, taking χγα f ∈ L2(T) and applying (3.12), we infer from (4.6) and (3.5)
that

[Bα(0)](χγα f ) = Ũ−1
α B1(0)Ũα(χγα f )

=
1
π
〈χ+Ũα f ,h−1〉Ũ−1

α (χ+h−1)

=
1
π
〈 f ,Ũ−1

α (χ+h−1)〉Ũ−1
α (χ+h−1)

=
1

πα
〈 f ,χγα h−1〉χγα h−1. (4.7)
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This means that the linear space ImBα(0) is one-dimensional, and the norm one func-
tion χγα h−1/

√
πα ∈ L2(γα) is its generator.

Taking into account (3.23), we infer from (4.7) that

[B̃α(0)](χγα f ) = [C̃Bα(0)C̃](χγα f )

=
1

πα
C̃
(〈 f ,χγα h−1〉χγα h−1)

=
1

πα
〈 f ,χγα h〉χγα h.

Thus, the linear space Im B̃α(0) also is one-dimensional and it is generated by the norm
one function χγα h/

√
πα ∈ L2(γα ) . �

LEMMA 4.2. For each α ∈ (0,2] and each λ ∈ R , the spaces ImBα(λ ) and
Im B̃α(λ ) are one-dimensional and their generators of norm one on the space L2(γα )
are given for t ∈ γα , respectively, by

gα ,λ (t) = Gα(λ )tiλ−1, (4.8)

g̃α ,λ (t) = gα ,−λ (t) = Gα(−λ )t1−iλ , (4.9)

where

Gα(λ ) :=

⎧⎪⎨⎪⎩
( 2λ

1− e−2πλ α

)1/2
if λ ∈ R\ {0},

lim
λ→0

Gα(λ ) = (πα)−1/2 if λ = 0.
(4.10)

Proof. We deduce from the equality (M⊗ I)BKα (M−1 ⊗ I) = I⊗λ Bα(λ ) that

(I⊗λ Bα(λ ))(L2(R)⊗L2(T)) = (M⊗ I)(A 2(Kα)), (4.11)

where the functions in A 2(Kα) are considered as elements of the space L2(R+,rdr)⊗
L2(T) after their extension by zero to the set C \Kα . So, if f ∈ A 2(Kα) , then by
(4.11) there exists a function g ∈ L2(R)⊗L2(T) such that

[(M⊗ I) f ](λ ,t) = [(I⊗λ Bα(λ ))g](λ ,t) = [Bα(λ )g(λ , ·)](t), t ∈ T.

Consequently, [(M⊗I) f ](λ , ·)∈ ImBα(λ ) for every f ∈A 2(Kα) . Taking the function
h0(z) = χΠ(z)(z+ i)−2 ∈ A 2(Π) , we conclude that

(W−1
α h0)(z) = χKα (z)(1/α)z1/α−1(z1/α + i)−2 ∈ A 2(Kα). (4.12)

Applying then [18, formula 2.19], we infer by analogy with [13, Proposition 3.10] that
for (λ , t) ∈ R×T ,[

(M⊗ I)(W−1
α h0)

]
(λ ,t) =

χγα (t)√
2π

∫
R+

(1/α)(rt)1/α−1(r1/α t1/α+ i)−2r−iλ dr

=
χγα (t)t1/α−1

√
2π

∫
R+

(ρt1/α + i)−2ρ−iλ α dρ

=
χγα (t)√

2π
B(1− iλ α,1+ iλ α)

i1+iλ α tiλ−1, (4.13)
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where B(·, ·) is the Beta function. Thus, the function t �→ χγα (t)tiλ−1 belongs to
ImBα(λ ) . Since the space ImBα(λ ) is one-dimensional, we conclude that

ImBα(λ ) = span
{

χγα hiλ−1},
where h(t) = t for all t ∈ T . Simple calculations give∥∥∥χγα hiλ−1

∥∥∥
L2(γα )

=

{√
(1− e−2παλ)/(2λ ), λ ∈ R\ {0},

√
πα, λ = 0.

Hence, the function (4.8) is a generator of norm one of the one-dimensional space
ImBα(λ ) .

In the same way, from the relation (M⊗ I)B̃Kα (M−1⊗ I) = I⊗λ B̃α(λ ) we get

(I⊗λ B̃α(λ ))(L2(Kα)) = (M⊗ I)(Ã 2(Kα)).

Hence, if f ∈ Ã 2(Kα) , then [(M⊗ I) f ] (λ , ·) ∈ Im B̃α(λ ) . Since the function W−1
α h0

given by (4.12) belongs to the space A 2(Kα) , we conclude that W−1
α h0 ∈ Ã 2(Kα) .

Therefore, we deduce from (4.13) that for (λ ,t) ∈ R×T ,[
(M⊗ I)(W−1

α h0)
]
(λ ,t) =

χγα (t)√
2π

∫
R+
(1/α)(rt)1/α−1(r1/α t1/α + i)−2 r−iλ dr

=
[
(M⊗ I)(W−1

α h0)
]
(−λ ,t). (4.14)

As we already proved, there exists c ∈ C\ {0} such that[
(M⊗ I)(W−1

α h0)
]
(−λ ,t) = cgα ,−λ (t).

Then we infer from (4.14) that gα ,−λ ∈ Im B̃α(λ ) . So, the function g̃α ,λ := gα ,−λ
given by (4.9) is the generator of norm one of Im B̃α(λ ) . �

REMARK 4.3. It follows from (3.12) and (3.23) that

gα ,λ (t) = [Ũ−1
α g1,λ α ](t) = α−1/2t1/α−1g1,λ α(t1/α)

= α−1/2G1(λ α)t1/α−1t(1/α)(iλ α−1) = Gα(λ )tiλ−1,

g̃α ,λ (t) = [C̃gα ,−λ ](t) = Gα(−λ )t−iλ−1 = Gα(−λ )t1−iλ .

LEMMA 4.4. For every α ∈ (0,2] and every λ ∈ R ,

〈gα ,λ , g̃α ,λ 〉 = ζα ,λ , (4.15)

where

ζα ,λ := e−πα iβα(λ )sin(πα), (4.16)

βα(λ ) := Gα(λ )Gα(−λ ) =

⎧⎨⎩
λ

sinh(παλ )
if λ ∈ R\ {0},

(πα)−1 if λ = 0,
(4.17)
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and
lim

λ→±∞
ζα ,λ = 0. (4.18)

Proof. Obviously, (4.17) follows from (4.10). Further, by (4.9), for all t ∈ T we
obtain

g̃α ,λ (t) = gα ,−λ (t) = Gα(−λ )χγα (t)t−1−iλ . (4.19)

Applying (4.8), (4.19), (4.17) and (4.16), we infer that

〈gα ,λ , g̃α ,λ 〉 =
∫ πα

0
gα ,λ (t)gα ,−λ (t) |dt| = βα(λ )

∫ πα

0
e−2iθ dθ

= βα(λ )
(
1− e−2πα i)/(2i) = ζα ,λ ,

which gives (4.15).
Finally, we infer from (4.17) that, for every α ∈ (0,2] ,

lim
λ→±∞

βα(λ ) = lim
λ→±∞

λ
sinh(παλ )

= 0,

which in view of (4.15) implies (4.18) and completes the proof. �

REMARK 4.5. One can see from (4.15) that for every λ ∈ R the one-dimensional
subspaces ImBα(λ ) and Im B̃α(λ ) of L2(γα ) are not orthogonal if α ∈ (0,1)∪ (1,2) ,
while Bα(λ )B̃α(λ ) = 0 for all λ ∈ R and α = 1,2.

5. A C∗ -algebra generated by projections

In this section we modify the symbol calculus constructed in [8] for a C∗ -algebra
A ⊂ B(H) generated by n orthogonal projections Qi giving the identity operator I
in sum and by m pairwise orthogonal one-dimensional self-adjoint projections Pk on a
Hilbert space H . In the case n ∈ N and m = 1 such isomorphism was constructed in
[22] (also see [26]). We establish a C∗ -algebra isomorphism between the C∗ -algebra
A and a C∗ -algebra of finite matrices if n = 1, m ∈ N and the self-adjoint projections
Pk are not pairwise orthogonal.

Let 〈x,y〉 mean the inner product in a Hilbert space H , let δi, j be the Kronecker
symbol, and let Ik stand for the k× k identity matrix. We will denote by H1

.
+ H2

.
+

. . .
.
+ Hn the direct sum of Hilbert spaces H1,H2, . . . ,Hn that consists of elements x1 +

x2 + . . .+xn with xk ∈ Hk (k = 1,2, . . . ,n) such that if ∑n
k=1 xk = 0, then xk = 0 for all

k = 1,2, . . . ,n .

THEOREM 5.1. Let H be a Hilbert space and let Pk (k = 1,2, . . . ,m) be self-
adjoint projections in B(H) satisfying the conditions:

(i) Pk (k = 1,2, . . . ,m) are one-dimensional projections,

(ii)
⋂m

k=1(ImPk)⊥ �= {0} ,
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(iii) the norm one generators v1, . . . ,vm of the spaces ImP1, . . . , ImPm , respectively,
are linearly independent.

Let A be the C∗ -subalgebra of B(H) generated by the identity operator I and by the
projections Pk (k = 1,2, . . . ,m) , let S be the invertible matrix in Cm×m that transforms
the system ν = {v1,v2, . . . ,vm} of linearly independent vectors in H onto an orthonor-
mal system ν0 = {e1,e2, . . . ,em} , and let S be the C∗ -subalgebra of Cm×m generated
by the m×m identity matrix Im and by the m×m matrices

P̃k =

⎡⎢⎢⎢⎣
〈e1,vk〉〈e1,vk〉 〈e1,vk〉〈e2,vk〉 · · · 〈e1,vk〉〈em,vk〉
〈e2,vk〉〈e1,vk〉 〈e2,vk〉〈e2,vk〉 · · · 〈e2,vk〉〈em,vk〉

...
...

. . .
...

〈em,vk〉〈e1,vk〉 〈em,vk〉〈e2,vk〉 · · · 〈em,vk〉〈em,vk〉

⎤⎥⎥⎥⎦ (5.1)

(k = 1,2, . . . ,m) . Then the map σ , defined on generators of A by

I �→ 1⊕ Im, Pk �→ 0⊕ P̃k (k = 1,2, . . . ,m), (5.2)

extends to a C∗ -algebra isomorphism of the C∗ -algebra A onto the C∗ -algebra C⊕ S .

Proof. Let Lk := ImPk (k = 1,2, . . . ,m) . For every k , fix a norm one generator
vk of Lk . We divide the proof in several steps.

1) Since the projections P1, . . . ,Pm are self-adjoint, the closed subspaces

H0 := L⊥
1 ∩ . . .∩L⊥

m and M := H⊥
0

of H are invariant with respect to these projections:

PkH0 = {0}, PkM ⊂ M (k = 1, . . . ,m). (5.3)

The first equality is evident. Let us show that Lk ⊂ M for all k = 1, . . . ,m . Indeed,
representing every element lk ∈ Lk in the form lk = xk + yk where yk ∈ M and xk ∈
L⊥

1 ∩ . . .∩L⊥
m , we obtain

0 = 〈lk,xk〉 = ‖xk‖2 + 〈yk,xk〉 = ‖xk‖2.

Thus, all xk = 0 and hence lk ∈ M , which gives (5.3).
2) Consider the operator

Π := (P1 + . . .+Pm)|M.

If g ∈ M and Πg = 0, then P1g+ · · · + Pmg = 0. By (i), Pkg = ckvk for every k =
1, . . . ,m , where vk is a norm one generator of the space ImPk and ck ∈ C . Hence

c1v1 + . . .+ cmvm = 0. (5.4)

Since the vectors v1, . . . ,vm are linearly independent due to (iii), we deduce from (5.4)
that ck = 0 and hence Pkg = ckvk = 0 for every k = 1, . . . ,m . Consequently,

Π : M → L1
.
+ . . .

.
+ Lm.
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On the other hand, since Pkg = 0 for all k = 1, . . . ,m , we conclude that g ∈ L⊥
1 ∩ . . .∩

L⊥
m . Thus,

g ∈ (L⊥
1 ∩ . . .∩L⊥

m)∩M = {0},
and hence the operator Π is injective.

3) We claim that dimM = m . Indeed, since vk ∈ Lk ⊂ M for all k = 1, . . . ,m and
since the vectors v1, . . . ,vm ∈ M are linearly independent in view of (iii), we conclude
that dimM � m . On the other hand, because Π : M → L1

.
+ . . .

.
+ Lm is an injective

operator and dim(L1
.
+ . . .

.
+ Lm) = m (see (iii)), it follows that dimM � m , which

proves the claim.
4) Since dimM = m , we infer that ν = {v1,v2, . . . ,vm} is an ordered basis of M .

Applying the Gram-Schmidt orthogonalization process to the basis ν , we obtain the
orthonormal basis ν0 = {e1,e2 . . . ,em} of M , where

e1 := v1, ek :=
fk

‖ fk‖ , fk := vk −
k−1

∑
s=1

〈vk,es〉es �= 0 (k = 2,3, . . . ,m). (5.5)

Because for the self-adjoint projections P ′
k := Pk|M and all k, j,s ∈ {1,2, . . . ,m} we

have
P ′

k e j = 〈P ′
k e j,vk〉vk = 〈e j,P

′
k vk〉vk = 〈e j,vk〉vk,

and hence
〈P ′

k e j,es〉 = 〈〈e j,vk〉vk,es〉 = 〈es,vk〉〈e j,vk〉,
we conclude that

[P ′
k e1 P ′

k e2 . . . P ′
k em] = [e1 e2 . . . em] P̃k (k = 1,2, . . . ,m),

where the matrices P̃k ∈ Cm×m given by (5.1) are matrix representations of the projec-
tions P ′

k ∈ B(M) in the basis ν0 .
5) Finally, according to the decomposition

H = (L⊥
1 ∩ . . .∩L⊥

m)⊕M

where, by (ii),
⋂m

k=1(ImPk)⊥ �= {0} and M is taken with the basis ν0 , we obtain the
representations (5.2) for the generators I and Pk of the C∗ -algebra A in the C∗ -algebra
C⊕S . Thus, there exists a C∗ -algebra isomorphism of A onto the C∗ -algebra D of
C⊕S generated by the elements (5.2).

6) Since, by (5.5), vk ∈ span{e1,e2, . . . ,ek} , from the orthogonality of the basis ν0

it follows that
〈e j,vk〉 = 0 for all k, j = 1,2, . . . ,m; j > k. (5.6)

Moreover, (5.5) implies that

‖ f1‖2 = 1, ‖ fk‖2 =
∥∥∥∥vk −

k−1

∑
s=1

〈vk,es〉es

∥∥∥∥2

= 1−
k−1

∑
s=1

|〈vk,es〉|2 �= 0 (5.7)
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for k = 2,3, . . . ,m . Hence, for all k = 1,2, . . . ,m we infer from (5.5) and (5.7) that

〈ek,vk〉 =
1

‖ fk‖
(

1−
k−1

∑
s=1

〈es,vk〉〈es,vk〉
)

= ‖ fk‖ �= 0. (5.8)

Thus, if the orthogonal basis ν0 is given by (5.5), we conclude from (5.1), (5.6) and
(5.8) that

P̃k =
[

Bk 0m−k

0m−k 0m−k

]
(k = 1,2, . . . ,m), (5.9)

where
Bk =

[〈es,vk〉〈e j,vk〉
]k
s, j=1 (5.10)

and the (k,k)-entry βk := |〈ek,vk〉|2 of Bk is non-zero.
7) Then similarly to the proof of [8, Lemma 8.3] we can show that the C∗ -algebra

contains the operators Uk (k = 1,2, . . . ,m) for which

σ(Uk) = 0⊕diag
{

δk,s
}m

s=1.

Indeed, since βk �= 0, we can define by induction the operators

Uk := β−1
k

(
I−U1− . . .−Uk−1

)
Pk
(
I−U1− . . .−Uk−1

) ∈ B(H),

where k = 1,2, . . . ,m and I −U1 − . . .−Uk−1 = I for k = 1. Then we infer, again by
induction, that

Ũk := β−1
k

(
Im−Ũ1− . . .−Ũk−1

)
P̃k
(
Im−Ũ1− . . .−Ũk−1

)
= diag

{
δk,s

}m
s=1 ∈ B(M),

which leads to the desired equalities

σ(Uk) = 0⊕Ũk = 0⊕diag
{

δk,s
}m

s=1 (k = 1,2, . . . ,m).

This immediately implies that the C∗ -subalgebra D of the C∗ -algebra C⊕S coincides
with C⊕S . �

It is natural to call the matrices σ(A) ∈ C⊕S the symbols of operators A ∈ A .

COROLLARY 5.2. Any operator A ∈ A is invertible on the Hilbert space H if
and only if its symbol σ(A) ∈ C⊕S is invertible in the C∗ -algebra C⊕C

m×m .

6. Fulfillment of conditions of Theorem 5.1

Given α ∈ (0,2] and λ ∈ R , let us check the fulfillment of all conditions of The-
orem 5.1 for the C∗ -algebra Aα ,λ given by (1.8).

Let m := 2. For every λ ∈ R and all j, l = 1,2, we introduce the inner products
〈vα ,λ , j,vα ,λ ,l〉 in L2(γα) of the norm one functions in L2(γα) given by

vα ,λ ,1 := gα ,λ , vα ,λ ,2 := g̃α ,λ , (6.1)

where the functions gα ,λ and g̃α ,λ are defined by (4.8) and (4.9), respectively.
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LEMMA 6.1. For every λ ∈ R and every α ∈ (0,2] , we have

〈gα ,λ ,gα ,λ 〉L2(T+) = [Gα(λ )/G1(λ )]2 �= 0, (6.2)

〈g̃α ,λ , g̃α ,λ 〉L2(T+) = [Gα(−λ )/G1(−λ )]2 �= 0, (6.3)

〈gα ,λ , g̃α ,λ 〉L2(T+) = 0. (6.4)

Proof. By (4.8) and (4.10), for every λ ∈ R , we obtain

〈gα ,λ ,gα ,λ 〉L2(T+) =
∫

T+
gα ,λ (t)gα ,λ (t)|dt| = G2

α(λ )
∫ π

0
e−2λ θdθ

= G2
α(λ )

(
1− e−2λ π)/(2λ ) = [Gα(λ )/G1(λ )]2 �= 0, (6.5)

which gives (6.2). Further, for every λ ∈ R , we deduce from (6.5) that

〈g̃m,λ , g̃m,λ 〉L2(T+) = 〈gm,−λ ,gm,−λ 〉L2(T+) = [Gα(−λ )/G1(−λ )]2 �= 0,

which gives (6.3). Finally, applying (4.8) and (4.9), we get

〈gα ,λ , g̃α ,λ 〉L2(T+) =
∫

T+
gα ,λ (t)gα ,−λ (t)|dt| = βα(λ )

∫ π

0
e−2iθ dθ = 0,

which gives (6.4). �

LEMMA 6.2. For every λ ∈ R and every α ∈ (0,2] , the functions vα ,λ ,k (k =
1,2) given by (6.1) are linearly independent on the arc γα .

Proof. Suppose that, for some constants c1,c2 ∈ C ,

c1 gα ,λ (t)+ c2 g̃α ,λ = 0 for all t ∈ γα .

By (4.8) and (4.9), the function

ϕ(t) := c1 gα ,λ (t)+ c2 g̃α ,λ (t) (6.6)

admits an analytic extension to the whole upper half-plane Π . Since this function
identically equals zero on the arc γα ⊂ T+ , it equals zero for all t ∈ T+ in view of
its analyticity on Π . But by Lemma 6.1 the functions gα ,λ and g̃α ,λ , are orthogonal
on the space L2(T+) , while their norms in L2(T+) are different of 0. In that case it
follows from the equality (6.6) fulfilled for all t ∈T+ that c j = 0 for all j = 1,2, which
means that the functions vα ,λ ,k (k = 1,2) are linearly independent on the arc γα . �

Given α ∈ (0,2] and λ ∈ R , we now check conditions (i)–(iii) of Theorem 5.1
for P1 = P1(α,λ ) = Bα(λ ) and P2 = P2(α,λ ) = B̃α(λ ) . By Lemma 4.2, the spaces
ImPk(α,λ ) are one-dimensional for all λ ∈ R and all k = 1,2, whence condition (i)
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of Theorem 5.1 holds. Because the space L2(γα) is infinite dimensional and the spaces
ImPk(α,λ ) are one-dimensional for all k = 1,2, there is a g ∈ L2(γα ) such that

0 �= g ∈
2⋂

k=1

(ImPk(α,λ ))⊥,

and hence condition (ii) of Theorem 5.1 is also fulfilled. Finally, Lemma 6.2 implies the
fulfilment of condition (iii) of Theorem 5.1. Thus, to study the invertibility of operators
in the C∗ -algebra Aα ,λ we can apply this theorem.

Consider the direct sum M of linear subspaces of L2(γα ) generated by the norm
one functions vα ,λ , j ( j = 1,2) given by (6.1). Since dim M = 2, we infer from (iii)
that the system ν = {vα ,λ ,1,vα ,λ ,2} is an ordered basis of M . Obviously, for every
k, j = 1,2, we obtain

P ′
k (α,λ )vα ,λ , j = 〈vα ,λ , j,vα ,λ ,k〉vα ,λ ,k, (6.7)

where P ′
k (α,λ ) := Pk(α,λ )|M . From (6.7) it follows for every k = 1,2 that

[P ′
k (α,λ )vα ,λ ,1 P ′

k (α,λ )vα ,λ ,2] = [vα ,λ ,1 vα ,λ ,2]diag
{

δk, j
}2

j=1Eα(λ ),

where the m×m matrix Eα(λ ) is given by

Eα(λ ) =
[〈vα ,λ ,1,vα ,λ ,1〉 〈vα ,λ ,2,vα ,λ ,1〉
〈vα ,λ ,1,vα ,λ ,2〉 〈vα ,λ ,2,vα ,λ ,2〉

]
∈ C

2×2. (6.8)

Thus, the matrix representations of the projections P ′
k (α,λ ) ∈ B(M) relatively to the

basis ν are of the form

P̂k(α,λ ) = diag
{

δk, j
}2

j=1Eα(λ ), k = 1,2. (6.9)

By Lemma 6.2, detEα(λ ) �= 0 for all λ ∈ R . According to (6.8), Lemma 4.2 and
(4.15), we conclude that for every λ ∈ R the Gram matrix Eα(λ ) is of the form

Eα(λ ) =
[

1 ζα ,λ
ζα ,λ 1

]
, (6.10)

where ζα ,λ is given by (4.16). By (4.18), lim
λ→±∞

ζα ,λ = 0, and hence we conclude from

(6.10) that
lim

λ→±∞
Eα(λ ) = I2.

Thus, we obtain the following.

LEMMA 6.3. The matrix function Eα(·) given by (6.8) admits a continuous exten-
sion to R = [−∞,+∞] with values Eα(±∞) = I2 and a non-zero determinant detEα(λ )
on R .
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7. Symbol calculus for the C∗ -algebra AKα

Theorem 5.1 for m = 2 immediately implies the following.

THEOREM 7.1. For every α ∈ (0,2] and every λ ∈ R , the C∗ -algebra

Aα ,λ := alg
{
I,Bα(λ ), B̃α(λ )

}⊂ B(L2(γα))

is ∗ -isomorphic to a C∗ -subalgebra of C⊕C2×2 which coincides with C⊕C2×2 if
α ∈ (0,1)∪(1,2) , and this isomorphism η0⊕η is given on the generators of Aα ,λ by

I �→ 1⊕ I2, Bα(λ ) �→ 0⊕Mα(λ ), B̃α(λ ) �→ 0⊕ M̃α(λ ), (7.1)

where the matrices Mα(λ ) and M̃α(λ ) ∈ C2×2 are defined by

Mα(λ ) =
[
1 0
0 0

]
, M̃α(λ ) =

[
|ζα ,λ |2 ζα ,λ Δ1/2

α ,λ

ζα ,λ Δ1/2
α ,λ Δα ,λ

]
, (7.2)

Δα ,λ := 1−|ζα ,λ |2 and ζα ,λ is given by (4.16). For (α,λ ) ∈ {1,2}×R the matrices

Mα(λ ),M̃α(λ ) are diagonal, and (η0⊕η)(Aα ,λ ) is a C∗ -subalgebra of C⊕C2×2 .

Proof. Fix α ∈ (0,2] and λ ∈ R and apply Theorem 5.1 to the C∗ -algebra Aα ,λ .
By Lemma 6.2, for every λ ∈ R , the set{

gα ,λ , g̃α ,λ
}⊂ L2(γα), (7.3)

given by (4.8) and (4.9), is a system of linearly independent vectors in L2(γα) . Ap-
plying the Gram-Schmidt orthogonalization process to the set (7.3), we obtain the or-
thonormal set {

eα ,λ , ẽα ,λ
}⊂ L2(γα), (7.4)

where

eα ,λ = gα ,λ , ẽα ,λ =
g̃α ,λ −〈g̃α ,λ ,gα ,λ 〉gα ,λ

(1−|〈g̃α ,λ ,gα ,λ 〉|2)1/2
. (7.5)

By Lemma 4.4, 〈g̃α ,λ ,gα ,λ 〉 = ζα ,λ , where ζα ,λ is given by (4.16). Then

Δα ,λ = 1−|ζα ,λ |2 �= 0. (7.6)

Let Sα(λ ) be an invertible 2× 2 matrix that transform the system (7.3) onto the or-
thonormal system (7.4). Then we infer from (7.5) that

[eα ,λ , ẽα ,λ ] = [gα ,λ , g̃α ,λ ]Sα(λ ) (7.7)

where

Sα(λ ) =

[
1 −ζα ,λ Δ−1/2

α ,λ

0 Δ−1/2
α ,λ

]
, S−1

α (λ ) =

[
1 ζα ,λ

0 Δ1/2
α ,λ

]
. (7.8)
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Let us define the matrix functions

Mα(λ ) := P̃k(α,λ ) = S−1
α (λ )P̂k(α,λ )Sα(λ ) (λ ∈ R). (7.9)

Then, in accordance with (5.9) and (5.10), we infer from (7.9), (6.9), (6.10) and (7.8)
that

Mα(λ ) = S−1
α (λ )

[
1 0
0 0

]
Eα(λ )Sα(λ )

=

[
1 ζα ,λ

0 Δ1/2
α ,λ

][
1 ζα ,λ

0 0

][
1 −ζα ,λ Δ−1/2

α ,λ

0 Δ−1/2
α ,λ

]
=
[
1 0
0 0

]
,

M̃α(λ ) = S−1
α (λ )

[
0 0
0 1

]
Eα(λ )Sα(λ )

=

[
1 ζα ,λ

0 Δ1/2
α ,λ

][
0 0

ζα ,λ 1

][
1 −ζα ,λ Δ−1/2

α ,λ

0 Δ−1/2
α ,λ

]

=

[
|ζα ,λ |2 ζα ,λ Δ1/2

α ,λ

ζα ,λ Δ1/2
α ,λ Δα ,λ

]
,

which gives (7.2). In view of (7.6) and (4.18), we deduce from (7.2) that

lim
λ→±∞

M̃α(λ ) =
[
0 0
0 1

]
. (7.10)

By Theorem 5.1 and (7.9), the C∗ -algebra Aα ,λ is isomorphic to a C∗ -subalgebra of
C⊕C2×2 . By (7.6), Δα ,λ �= 0 for all (α,λ ) ∈ (0,2]×R . On the other hand, by (4.16),
ζα ,λ �= 0 once (α,λ ) ∈ ((0,1)∪ (1,2)

)×R . This implies that in the latter case the
image of the C∗ -algebra Aα ,λ under the map (7.1) coincides with C⊕C2×2 , while for
α ∈ {1,2} the set η(Aα ,λ ) in the image of Aα ,λ under the map η0⊕η given by (7.1)
consists of diagonal matrices in C2×2 . �

For every α ∈ (0,2] and every A ∈ AKα , we introduce in view of (7.1), (7.2) and
(7.10) the continuous matrix functions ηA,α : R → C2×2 given by

ηA,α(λ ) = η [Aα(λ )] (λ ∈ R), ηA,α(±∞) = lim
λ→±∞

ηA,α(λ ).

Since the matrix functions λ �→ ηA,α(λ ) are continuous on R , we conclude from The-
orem 7.1 that the invertibility criterion for an operator A ∈ AKα , which is given by
Theorem 3.6, is equivalent to the invertibility of the matrices ηA,α(λ ) for all λ ∈ R

and the fulfillment of η0[Aα(λ )] �= 0. Hence Theorems 3.5, 3.6 and 7.1 immediately
imply the following.
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THEOREM 7.2. For every α ∈ (0,2] , the C∗ -algebra

AKα = alg
{
I,BKα , B̃Kα

}⊂ B(L2(Kα))

is ∗ -isomorphic to the C∗ -subalgebra C⊕Sα of the C∗ -algebra C⊕C(R,C2×2) , and
this isomorphism Φα = Φ0

α ⊕ (
⊕

λ∈R
Φα ,λ ) of AKα onto C⊕Sα is given by

Φ0
α(I) = 1, Φα ,λ (I) = I2,

Φ0
α (BKα ) = 0, Φα ,λ (BKα ) = Mα (λ ),

Φ0
α (B̃Kα ) = 0, Φα ,λ (B̃Kα ) = M̃α (λ ),

(7.11)

where the matrix functions Mα(·) , M̃α(·) ∈ C(R,C2×2) are defined by (7.2) for all
λ ∈ R . An operator A ∈ AKα is invertible on the space L2(Kα) if and only if its
symbol Φα(A) is invertible in the C∗ -algebra C⊕Sα , that is, if

Φ0
α (A) �= 0 and det[Φα ,λ (A)] �= 0 for all λ ∈ R.

8. C∗ -algebras BU over bounded polygonal domains U

Let U be a bounded polygonal domain with inner angles παk ∈ (0,π)∪ (π ,2π ]
(k = 1,2, . . . ,n) at corners zk , and let T = {zk : k = 1,2, . . . ,n} be the set of all corners.
As is well known, for a polygonal domain U , ∑n

k=1 παk = π(n−2) .
Let us study the C∗ -algebra BU given by (1.7).

8.1. Compact operators

Let U be the closure of the polygonal domain U , and let ∂U be the boundary of
U .

LEMMA 8.1. For a bounded polygonal domain U and any function a ∈ C(U) ,
the commutators aBU −BUaI and aB̃U − B̃UaI are compact on the space L2(U) .

Proof. Since ∂U is a Jordan curve, then by the Riemann Mapping theorem and the
Carathéodory theorem (see, e.g., [20, Sections 1.2 and 2.1]), there exists a conformal
bijection of the open unit disc D onto a bounded polygonal domain U , which extends
to a homeomorphic map of D = D∪T onto U = U ∪∂U . This result remains true for
a bounded polygonal domain U with cuts if to distinguish two sides of cuts. Moreover,
such map is given by the Schwarz-Christoffel formula (see, e.g., [16, III.9]).

Fix a ∈C(U) and consider the unitary shift operator

Wϕ : L2(U) → L2(D), f �→ ϕ ′( f ◦ϕ).

associated with a conformal map ϕ : D →U . Since the commutator

(a ◦ϕ)BD−BD(a ◦ϕ)I
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is compact on the space L2(D) (see, e.g., [29, Lemma 2.4.4]) and since BU =W−1
ϕ BDWϕ ,

it follows that the commutator

aBU −BUaI = W−1
ϕ
[
(a ◦ϕ)BD−BD(a ◦ϕ)I

]
Wϕ

is compact on the space L2(U) . This implies the compactness of the commutator aB̃U −
B̃UaI in view of the equality B̃U =CBUC , where C f = f . �

According to [24] (also see [1, Section 8.2]), an operator A ∈ B(L2(U)) is called
an operator of local type if the commutators cA−AcI are compact for every c∈C(U) .
Thus, by Lemma 8.1, the operators BU , B̃U , and therefore all operators in the C∗ -
algebra BU = alg

{
aI,BU , B̃U : a ∈C(U)

}
are of local type.

Let us denote by ΛU the set of all operators of local type in B := B(L2(U)) . It
is easily seen that ΛU is a C∗ -subalgebra of B , and BU ⊂ ΛU .

Repeating literally the proof of [8, Lemma 2.6], we obtain the following.

LEMMA 8.2. For a bounded polygonal domain U ⊂C , the C∗ -algebra BU given
by (1.7) contains all compact operators acting on the space L2(U) .

8.2. An application of the Allan-Douglas local principle

By Lemma 8.2, the C∗ -algebra BU contains the ideal K = K (L2(U)) of all
compact operators in the C∗ -algebra B = B(L2(U)) . Hence, the quotient C∗ -algebra
Bπ

U := BU/K is well defined. To obtain a Fredholm criterion for the operators A ∈
BU we need to study the invertibility of the cosets Aπ := A+K in the quotient C∗ -
algebra Bπ

U . To this end we will apply the Allan-Douglas local principle to the algebra
Bπ

U .
It follows from Lemma 8.1 that Z π :=

{
cI +K : c ∈C(U)

}
is a central subal-

gebra of the C∗ -algebra Bπ
U . Obviously, the commutative C∗ -algebra Z π is (isomet-

rically) *-isomorphic to the C∗ -algebra C(U) , and therefore the maximal ideal space
of Z π can be identified with U . For every point z ∈ U , let Jπ

z denote the closed
two-sided ideal of the quotient C∗ -algebra Λπ

U := ΛU/K generated by the maximal
ideal

Iπ
z :=

{
cI +K : c ∈C(U), c(z) = 0

}
⊂ Z π .

By [1, Proposition 8.6] and [23, Proposition 2.2.5], the ideal Jπ
z has the form

Jπ
z =

{
(cA)π : c ∈C(U), c(z) = 0, A ∈ ΛU

}
. (8.1)

Hence, with every z ∈U we associate the quotient C∗ -algebra (ΛU)π
z := Λπ

U/Jπ
z .

The Allan-Douglas local principle (see [4, Theorem 7.47] and [2, Theorem 1.35])
implies the following invertibility criterion.

THEOREM 8.3. An operator A ∈ BU is Fredholm on the space L2(U) if and
only if for every z ∈U the coset Aπ

z := Aπ +Jπ
z is invertible in the quotient C∗ -algebra

(ΛU)π
z .
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The set (BU)π
z := {Aπ

z : A ∈ BU} is a C∗ -subalgebra of (ΛU)π
z (see, e.g., [2,

1.26(g)]), and hence a coset Aπ
z associated with A ∈ BU is invertible in both the C∗ -

algebras (ΛU )π
z and (BU )π

z only simultaneously.
We say that cosets Aπ ,Bπ ∈ Bπ

U are locally equivalent at a point z ∈U if Aπ −
Bπ ∈ Jπ

z , and in that case we write Aπ z∼ Bπ .
Similarly to [8, Lemma 3.3], we get the following.

LEMMA 8.4. The cosets Bπ
U and B̃π

U are locally equivalent to zero at every point
z ∈U .

8.3. Local study and Fredholmness for the C∗ -algebra BU

Let Cn denote the C∗ -algebra of complex-valued vectors x = (x1, . . . ,xn) with
usual operations of addition and multiplication by complex scalars, with the entry-wise
multiplication, the adjoint x∗ = (x1, . . . , xn) , and the norm ‖x‖ = max

{|x1|, . . . , |xn|
}

.
If two C∗ -algebras A1 and A2 are (isometrically) *-isomorphic, we will write

A1
∼= A2 . For every corner z ∈ T , we denote by αz ∈ (0,1)∪ (1,2] the value of the

inner angle of U at z , which is divided by π .
Let us characterize the local algebras (BU )π

z for z ∈ U . One can see from the
lemma below that there are three types of such local algebras.

LEMMA 8.5. For the C∗ -algebra BU given by (1.7), the following holds:

(i) if z ∈U , then (BU )π
z
∼= C;

(ii) if z ∈ ∂U \T , then (BU )π
z
∼= C3 ;

(iii) if z ∈ T , then (BU )π
z
∼= AKα with α = αz .

Proof. (i) Let z ∈ U . If a ∈ C(U) , then (aI)π z∼ a(z)Iπ . From Lemma 8.4 it
follows that Bπ

U
z∼ 0, B̃π

U
z∼ 0. Hence, the generators of the C∗ -algebra (BU )π

z have
the form (aI)π

z , where a ∈C(U) , and therefore the map given by

(aI)π
z �→ a(z) (a ∈C(U))

extends to a C∗ -algebra isomorphism of (BU)π
z onto C .

(ii) Let now z ∈ ∂U \T . Take the Schwarz-Christoffel conformal mapping βz :
Π →U such that βz(0) = z (see, e.g., [3]). Then β ′

z(0) �= 0. Making use of the unitary
operator

Wβz : L2(U) → L2(Π), f �→ β ′
z( f ◦βz),

we deduce (see, e.g., [8, Proposition 2.2]) that

Wβz(aI)W−1
βz

= (a ◦βz)I, WβzBUW−1
βz

= BΠ, Wβz B̃UW−1
βz

= czB̃Πc−1
z I, (8.2)

where cz := β ′
z/β ′

z .



798 Y. I. KARLOVICH

Fix A ∈ BU . If the coset Aπ
z ∈ (BU )π

z is invertible, then in view of (8.1) there
exist an operator B ∈ BU , operators D1,D2 ∈ ΛU , operators K1,K2 ∈ K (L2(U)) and
functions c1,c2 ∈C(U) such that c1(z) = c2(z) = 0 and

BA = I + c1D1 +K1, AB = I + c2D2 +K2.

Hence, we obtain

(WβzBW−1
βz

)(WβzAW
−1
βz

) = I +(c1 ◦βz)D̃1 + K̃1,

(WβzAW
−1
βz

)(WβzBW−1
βz

) = I +(c2 ◦βz)D̃2 + K̃2,
(8.3)

where K̃1, K̃2 ∈ K (L2(Π)) and D̃1,D̃2 ∈WβzΛUW−1
βz

. For constants k > 0, we intro-
duce the unitary dilation operators

Uk : L2(Π) → L2(Π), (Uk f )(w) = k f (kw) for all w ∈ Π. (8.4)

Then, in view of (1.4) and the equality s-limk→0(UkczU
−1
k ) = (β ′

z(0)/β ′
z(0))I , we infer

for generators (8.2) of the C∗ -algebra WβzBUW−1
βz

⊂ B(L2(Π)) that

s-lim
k→0

(
Uk(a ◦βz)U−1

k

)
= a(z)I, (8.5)

s-lim
k→0

(
UkBΠU−1

k

)
= BΠ, s-lim

k→0

(
Uk(czB̃ΠczI)U−1

k

)
= B̃Π. (8.6)

Hence, for every A ∈ BU and every z ∈ ∂U \T there exists the strong limit

Az := s-lim
k=0

(
Uk(WβzAW

−1
βz

)U−1
k

) ∈ alg{I,BΠ, B̃Π}. (8.7)

Applying now [8, Proposition 7.5], we deduce from (8.3) that BzAz = I and AzBz = I .
Thus, the invertibility of the coset Aπ

z ∈ (BU )π
z implies the invertibility of the operator

Az ∈ alg{I,BΠ, B̃Π} .
On the other hand, the invertibility of the operator Az ∈ alg{I,BΠ, B̃Π} associated

with an operator A ∈ BU implies the invertibility of the operator

W−1
βz

AzWβz ∈ B̂U := alg{I,BU ,dzB̃Ud−1
z I},

where dz := (β−1
z )′/(β−1

z )′ . Since (dzI)π z∼ (β ′
z(0)/β ′

z(0))Iπ and then (dzB̃Ud−1
z I)π z∼

B̃π
U , and since (aI)π z∼ a(z)Iπ for all a ∈ C(U) , we conclude that the quotient C∗ -

algebras (B̂U)π
z and (BU )π

z coincide. Consequently, the invertibility of the operator
W−1

βz
AzWβz ∈ B̂U implies the invertibility of the coset

(
W−1

βz
AzWβz

)π
z = Aπ

z ∈ (BU )π
z .

Thus, the invertibility of the coset Aπ
z ∈ (BU )π

z for A ∈ BU is equivalent to the
invertibility of the operator Az ∈ alg{I,BΠ, B̃Π} given by (8.7). This implies that the
map (BU )π

z → alg{I,BΠ, B̃Π} , given on the generators of the C∗ -algebra (BU)π
z by

(aI)π
z �→ a(z)I, (BU)π

z �→ BΠ, (B̃U )π
z �→ B̃Π, (8.8)
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is a ∗ -isomorphism of the C∗ -algebra (BU)π
z onto the C∗ -algebra alg{I,BΠ, B̃Π} .

Finally, the C∗ -algebra alg{I,BΠ, B̃Π} is generated by the three pairwise orthogonal
projections BΠ , B̃Π and I −BΠ − B̃Π �= I (see Lemma 3.2 and [27, Theorem 4.5]),
which immediately implies the C∗ -algebra isomorphism (BU)π

z
∼= C

3 .
(iii) Let now z ∈ T be a corner of opening παz . Consider the conformal map

γz : Kαz →U such that γz(0) = z , where Kα is given by (1.5). Clearly, γz = βz ◦ϕ−1
αz

,
where the conformal map ϕα : Π → Kα is given by ϕα(w) = wα for α ∈ (0,2] and
w ∈ Π , βz : Π →U is the Schwarz-Christoffel conformal map such that βz(0) = z , and
γ ′z(0) �= 0. Taking the unitary operator

Wγz : L2(U) → L2(Kαz), f �→ γ ′z( f ◦ γz),

we deduce from [8, Proposition 2.2] that

Wγz(aI)W−1
γz

= (a ◦ γz)I, WγzBUW−1
γz

= BKαz
, Wγz B̃UW−1

γz
= czB̃Kαz

c−1
z I,

where now cz := γ ′z/γ ′z . Applying the unitary dilation operators (8.4) considered now
on the space L2(Kα) and [8, Proposition 2.2] again, we obtain

s-lim
k→0

(UkczU
−1
k ) = (γ ′z(0)/γ ′z(0))I, s-lim

k→0

(
Uk(a ◦ γz)U−1

k

)
= a(z)I,

s-lim
k→0

(
UkBKαz

U−1
k

)
= BKαz

, s-lim
k→0

(
Uk(czB̃Kαz

czI)U−1
k

)
= B̃Kαz

.

Then, by analogy with part (ii) we infer that the map

(BU)π
z → AKαz

= alg{I,BKαz
, B̃Kαz

},

given on the generators of the C∗ -algebra (BU )π
z by

(aI)π
z �→ a(z)I, (BU)π

z �→ BKαz
, (B̃U )π

z �→ B̃Kαz
, (8.9)

is a C∗ -algebra isomorphism of the C∗ -algebra (BU )π
z onto the C∗ -algebra AKαz

,
which completes the proof of part (iii). �

Combining Theorem 8.3, Lemma 8.5 and Theorem 7.2, we establish the Fred-
holm criterion for the C∗ -algebra BU given by (1.7), where U is a bounded polygonal
domain.

THEOREM 8.6. The quotient C∗ -algebra

Bπ
U := alg{aI,BU , B̃U : a ∈C(U)}/K ⊂ B(L2(U))/K

is ∗ -isomorphic to the C∗ -subalgebra Ψ(Bπ
U) of the C∗ -algebra(⊕

z∈U

C

)
⊕
( ⊕

z∈∂U\T
C

2

)
⊕
( ⊕

(z,λ )∈T ×R

C
2×2

)
, (8.10)
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and the corresponding isomorphism

Ψ =

(⊕
z∈U

Ψ0
z

)
⊕
( ⊕

z∈∂U\T
Ψz

)
⊕
( ⊕

(z,λ )∈T ×R

Ψz,λ

)
(8.11)

is given on the generators of the C∗ -algebra Bπ
U by

Ψ((aI)π) :=

(⊕
z∈U

a(z)

)
⊕
( ⊕

z∈∂U\T

(
a(z),a(z)

))⊕
( ⊕

(z,λ )∈T ×R

a(z)I2

)
,

Ψ(Bπ
U) :=

(⊕
z∈U

0

)
⊕
( ⊕

z∈∂U\T

(
1,0

))⊕
( ⊕

(z,λ )∈T ×R

Mαz(λ )

)
, (8.12)

Ψ(B̃π
U) :=

(⊕
z∈U

0

)
⊕
( ⊕

z∈∂U\T

(
0,1

))⊕
( ⊕

(z,λ )∈T ×R

M̃αz(λ )

)
,

where the matrices Mα(λ ) , M̃α(λ ) ∈ C2×2 are defined by (7.2) for all λ ∈ R . An
operator A ∈ BU is Fredholm on the space L2(U) if and only if its symbol Ψ(Aπ) is
invertible in the C∗ -algebra Ψ(Bπ

U ) , that is, if

Ψ0
z (A

π) �= 0 for all z ∈U ,

[Ψz(Aπ)]k �= 0 for all z ∈ ∂U \T and all k = 1,2,

det[Ψz,λ (Aπ)] �= 0 for all z ∈ T and all λ ∈ R,

where [Ψz(Aπ)]k are the k -entries of the vector Ψz(Aπ) .

Proof. By Lemma 8.5(i), for each z∈U the map Aπ
z �→Ψ0

z (Aπ) is a ∗ -isomorphism
of the C∗ -algebra (BU)π

z onto C , while for every z ∈ ∂U \T from Lemma 8.5(ii)
and (8.8) it follows that the map Aπ

z �→ Ψ0
z (A

π)⊕Ψz(Aπ) is a ∗ -isomorphism of the
C∗ -algebra (BU )π

z onto the C∗ -algebra C⊕C2 ∼= C3 . Further, by Lemma 8.5(iii),
(8.9) and Theorem 7.2, for every z ∈ T the C∗ -algebra (BU)π

z is ∗ -isomorphic to
the C∗ -subalgebra C⊕Sαz of C⊕C(R,C2×2) , and this isomorphism is given by
Aπ

z �→ Ψ0
z (Aπ)⊕ (⊕λ∈R

Ψz,λ (Aπ)
)
, where the homomorphisms Ψ0

z : Bπ
U → C for

z ∈U , Ψz : Bπ
U → C2 for z ∈ ∂U \T and Ψz,λ : Bπ

U → C2×2 for z ∈ T and λ ∈ R

are given by (8.12). Hence, applying Theorem 8.3, we conclude that the C∗ -algebra
Bπ

U is ∗ -isomorphic to the C∗ -subalgebra B̃U of(⊕
z∈U

C

)
⊕
( ⊕

z∈∂U\T

(
C⊕C

2))⊕
(⊕

z∈T

(
C⊕

(⊕
λ∈R

C
2×2

)))
(8.13)

composed for all Aπ ∈ Bπ
U by the elements Ψ0

z (Aπ) for z ∈U , Ψ0
z (Aπ)⊕Ψz(Aπ) for

z ∈ ∂U \T and Ψ0
z (A

π)⊕ (⊕λ∈R
Ψz,λ (Aπ)

)
for z ∈ T . It is easily then seen that

the C∗ -subalgebra B̃U of the C∗ -algebra (8.13) is ∗ -isomorphic to the C∗ -subalgebra
Ψ(Bπ

U ) of the C∗ -algebra (8.10), where the isomorphism Ψ is given by (8.11) and
(8.12). Thus, Bπ

U
∼= Ψ(Bπ

U) , which implies the corresponding Fredholm criterion. �
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