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A SHORT–TYPE DECOMPOSITION OF FORMS

ZOLTÁN SEBESTYÉN, ZSIGMOND TARCSAY AND TAMÁS TITKOS

Abstract. The main purpose of this paper is to present a decomposition theorem for nonnegative
sesquilinear forms. The key notion is the short of a form to a linear subspace. This is a gener-
alization of the well-known operator short defined by M. G. Krein. A decomposition of a form
into a shorted part and a singular part (with respect to an other form) will be called short-type
decomposition. As applications, we present some analogous results for bounded positive opera-
tors acting on a Hilbert space; for additive set functions on a ring of sets; and for representable
positive functionals on a ∗ -algebra.
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[16] Z. SEBESTYÉN, AND ZS. TARCSAY, AND T. TITKOS, Lebesgue decomposition theorems, Acta Sci.

Math. (Szeged), 79 (1–2) (2013), 219–233.
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