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A SHORT-TYPE DECOMPOSITION OF FORMS

ZOLTAN SEBESTYEN, ZSIGMOND TARCSAY AND TAMAS TITKOS

(Communicated by B. Jacob)

Abstract. The main purpose of this paper is to present a decomposition theorem for nonnegative
sesquilinear forms. The key notion is the short of a form to a linear subspace. This is a gener-
alization of the well-known operator short defined by M. G. Krein. A decomposition of a form
into a shorted part and a singular part (with respect to an other form) will be called short-type
decomposition. As applications, we present some analogous results for bounded positive opera-
tors acting on a Hilbert space; for additive set functions on a ring of sets; and for representable
positive functionals on a * -algebra.

1. Introduction

To begin with we give a brief survey of the required definitions and results from
[8], which is our constant reference where the omitted details of this section can be
found.

Let X be a complex linear space and let t be a nonnegative sesquilinear form on
it. That is, t is a mapping from the Cartesian product X x X to C, which is linear in
the first argument, antilinear in the second argument, and the corresponding quadratic
formt[-]: X — R

VxeX: tx]:=t(xx)

is nonnegative. In this paper all sesquilinear forms are assumed to be nonnegative,
hence we write shortly form. The quadratic form of a form fulfills the parallelogram
law

Vx,ye X tx+y] 4+t —y| =2(tx] +t)y]).

According to the Jordan—von Neumann theorem [27, Satz 1.3], a form is uniquely de-
termined via its quadratic form, namely

1 3

Z x+ly

Vx,yeX: tlx,y)=

-lk |

Mathematics subject classification (2010): Primary 47A07, Secondary 47B65, 28A12, 46L51.
Keywords and phrases: Lebesgue decomposition, nonnegative forms, positive operators, absolute con-
tinuity, singularity, generalized short.

© depay, Zagreb 815
Paper OaM-09-47


http://dx.doi.org/10.7153/oam-09-47

816 7. SEBESTYEN, ZS. TARCSAY AND T. TITKOS

The set % (X) of forms is partially ordered with respect to the ordering
t<w << WxeX: <.

If there exists a constant ¢ such that t < cto then we say that t is dominated by to
(t <4 1, in symbols). Since the square root of the quadratic form defines a seminorm
on X, then the kernel of t

kert:={xe X | tlx] =0}

is a linear subspace of X. The Hilbert space 7% denotes the completion of the inner
product space X /kert equipped with the natural inner product

Vx,y € X:  (x+kert|y+kert)e :=t(x,y).
We say that the form t is strongly o -absolutely continuous (t < w), if
V(% )nery € XN ((tltn —2xm] = 0) A (w[x,] —0)) = t[x,] — 0.

Remark that this notion is called closability in [8]; cf. also [19]. The singularity of t
and tv (denoted by t L tv) means that

Ve Z.(X): ((s<t) A(s<w)) = s=o.

The parallel sum t: to of t and tv, and the strongly absolutely continuous (or closable)
part Dyt of t with respect to tv are defined by

VxeX: (t:w)] :=yié13f€{t[x—y}+m[y}}

and

Dyt :=sup(t: nt).
neN

The following decomposition theorem of S. Hassi, Z. Sebestyén, and H. de Snoo simul-
taneously generalizes the operator decomposition of T. Ando [3, 24], the Lebesgue de-
composition of finitely additive set functions [4] (see also [16, 23, 26]), and the canon-
ical decomposition of densely defined forms [19].

THEOREM 1.1. Let t and v be forms on the complex linear space X. Then the
decomposition

is a (K5, L)-type decomposition of the form t with respect to vw. That is, Dyt is
strongly vo-absolutely continuous, (t—Dyt) is w-singular. Furthermore, this decom-
position is extremal in the following sense:

Vse Z.(X): ((s<t) A (s<sw)) = s < Dpt.

The decomposition is unique precisely when Dyt is dominated by 1o.
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For the proof see [8, Theorem 2.11, Theorem 3.8, Theorem 4.6] or [16, Theorem
2.3]. See also [18, Theorem 3].

It is a natural idea to consider the following notion of absolute continuity: we say
that t is w -absolutely continuous (t < o) if kerto C kert, that is to say,

VxeX: wix]=0= t}x]=0

in analogy with the well-known measure case. Remark that tv-strong absolute con-
tinuity implies w-absolute continuity. To see this consider e.g. constant sequences
(%n)nen, X, = x € kerto in the definition of 1o -strong absolute continuity.

The setup of this paper is the following. Our main purpose is to present an (<, 1 )-
type decomposition theorem for forms which we shall call a short-type decomposition.
More precisely, for every pair of forms t and tv we shall show that t splits into abso-
lutely continuous and singular parts with respect to 1o, where the absolutely continuous
part is extremal in a certain sense. This will be done in Section 2. The key notion is
the short of a form, which is motivated by [2, Theorem 6] of W. N. Anderson and G. E.
Trapp.

In Section 3 we shall see that this is a generalization of the well-known operator
short defined by M. G. Krein [ 1]. Moreover, we present a factor decomposition for the
shorted operator. As an application, we gain also a short-type decomposition on the set
of bounded positive operators (analogous results for matrices can be found in [1, 13]).
That is, for every A,B € B, () there exist S,T € B () such that

A=S+T,
where
ranSCranB and ranT'/?NranB'/? = {0}.

Furthermore, we prove the following characterization: the range of the bounded pos-
itive operator B is closed if and only if for every A € B4 () the short-type decom-
position above is unique. In this case, the shorted part of A is closable with respect to
B.

Another important application can be found in Section 4. Using our main result,
we will prove a decomposition theorem for additive set functions. In the o -additive
case this decomposition coincides with the well-known Lebesgue decomposition of
measures, but in the finitely additive case it differs from the Lebesgue-Darst decompo-
sition [4]. This fact will demonstrate that the Lebesgue-type decomposition, and the
short-type decomposition are different in general, and hence, absolute continuity does
not implies strong absolute continuity (see also [7, Example 2]).

Finally, in Section 5, we will apply our result to present a short-type decomposition
for representable positive functionals of a *-algebra. We emphasize that we do not
make any assumptions for the algebra, neither the commutativity, nor the existence of
unit element.
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2. A short-type decomposition theorem for forms

Let t and tv be forms on the complex linear space X. The purpose of this section
is to show that t has a decomposition into a tv -absolutely continuous and a tv -singular
part. This type decomposition will be called short-type decomposition, or (<, L) -type
decomposition. The concept of the short of a form, which is introduced in the following
lemma, will play an essential role in our further considerations.

LEMMA 2.1. Let 9 C X be a linear subspace, and let t € F,.(X). Then the
following formula defines a form on X

VxeX: ty[x] ::yiég the—y].

Furthermore, ty is the maximum of the set

{s€Z(X)|(s<t) A (Y Ckers)}.

Proof. Let )¢ be the following subspace of 7}
D¢ = {y+kert } yE Qj}

and consider the orthogonal projection P from .74 onto )¢ (the closure of 2)¢). Then
forallx e X

H(I—P)(x—i—kert)”f = dist®(x + kert,9)¢) = inf [|(x—y) +kert||f = inf t[x—y].
e e

Consequently, t,, is a form and ) C kert, . To show the maximality, assume that the
quadratic form of s vanishes on 2) and s < t. According to the triangle inequality we
have

sx] < sfx—y] < tx—y]
for all y € %), and hence,

slx] < yiég tr—y =tylx]. O

The form ty is called the short of the form t to the subspace %) .
It follows from the definition that if t and tv are forms and ) and 3 are linear
subspaces, then

(t<w) A (DC3) = t3<wy.

Now, we are in position to state and prove the main result of this section.
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THEOREM 2.2. Let t,1v € ., (X) be forms. Then there exists a (<,L)-type
decomposition of t with respect to vo. Namely,

t: tkerm + (t_tkerm>7

where the first summand is 1o -absolutely continuous and the second one is o -singular.
Furthermore, t,_  is the maximum of the set

{seZ, (%) (s<t) A (s <)},

The decomposition is unique precisely when t,_  is dominated by 1.

Proof. It follows from the previous lemma that t, < tvo, and that t__ is maxi-
mal. Let s be a form such that s <w and s <t—t . Since t <t . +s<tand
the quadratic form of t_ =+ vanishes on kertv, the maximality of t_ _ implies that
§=o0.

It remains only to prove that the decomposition is unique if and only if t  is

dominated by tv. Let ¢ be a constant such that t, =~ < cto (we may assume that ¢ > 1)
and let t = t; 4+t be an (<, L)-type decomposition. Since ¢, is maximal, we have

erto

1 1 1
b=toti>t,, >, —t) >0 and w> b > —(f,, —t)>o.
Since t; L to, one concludes that t, —t; = 0. Since tv-strong absolute continuity
implies t-absolute continuity, every (<, L)-type decomposition is a (<, L)-type
decomposition as well. If the (<, L)-type decomposition is unique, then ¢ = Dyt,
and t = <qw according to Theorem 1.1. [J

erm

Observe that (tg))g) = ty for each subspace 2), i.e., shortening to a subspace is
an idempotent operation. Furthermore, t < v precisely when t, =~ =1t.

REMARK 2.3. Let o/ be a complex algebra, let .# C o7 be a left ideal, and let t
be a representable form on o7 . That is, a nonnegative sesquilinear form, which satisfies

Vae o) (TN, >0) (Vbe ).  tlab] < At[b].
A simple observation shows that t ~ is representable

_inf A< inf ax < inf Autlb —x] = A, '
t.s[ab] Xlenjt[ab x] xlenyt[ab ax] xlenyl tb —x] = Agt.s [B]

If v is a representable form on </ as well, then kertv is obviously a left ideal, and
hence we have the following decomposition

t: tkerm + (t_tkerm)

where t, < 1o, (t—t_ ) Lto,and t_  isrepresentable. Fora (<, L) decompo-
sition of representable forms we refer the reader to [21].
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Finally, we show that the shorted form tg) possesses an extremal property. In fact,
we prove that ty) is a disjoint part of t for every subspace ), or equivalently, ty) is a
so-called t-quasi unit. After recalling the corresponding definitions, in Lemma 2.4 we
give a characterization of the extremal points of the convex set

t]={we.Z.(X)|w<t].

We say that u is a t-quasi-unit if D, t =u. The form u is a disjoint part of t if u
and t—u are singular. The set of extremal points of a convex set C is denoted by exC.
For the terminology see [0, 12, 17].

LEMMA 2.4. Let t and u be forms on 9 such that u < t, and let A > 0 and
> 0 be arbitrary real numbers. Then the following statements are equivalent.

(i) wisa t-quasi-unit, i.e., Dyt =u. (iv) u€ex|o,4.
(ii) There exists v such that u = Dyt. (v) (Au):(ut)= lﬂlu

(iif) u is a disjoint part of t. (vi) (Au):t=u:(At).

Proof. Here we prove only (i) = (v) = (vi) = (i). The remainder can be found
in [17, Theorem 11]. Assume that u is a t-quasi unit, and observe that

A
()= (1) = (A) (D (1)) = (A) : (D) = ()« () = 57w
according to the properties of the parallel sum and the following equalities
t:=Dp(t:t) =Dypt:w

(see [8, Lemma 2.3, Lemma 2.4, Proposition 2.7]). Assuming (v) it is clear that

(Au) :t= ——u=u:(At).

T
Finally, since u < t, property (vi) implies that

Dyt=sup(t: (nu)) =sup((nt):u) =Deu=u. O
neN neN

THEOREM 2.5. Let t be aformon X and let ) be a linear subspace of X. Then

ty isan extremal point of the convex set

{se ZL(X)]o<s <t}
and
Dtin t= t@ .
Proof. According to the previous lemma, it is enough to show that ty) is a disjoint
part of t. Thatis, ty and t— ty are singular. Let 5 be a form such that s < ty and

s < t—ty. Then ty + s vanishes on 9 and ty + 5 < t, thus the maximality of tg)
implies that s =o0. [J
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3. Bounded positive operators

Let .7 be a complex Hilbert space with the inner product (-|-) and the norm ||-||.
The set of bounded positive operators will be denoted by B (#°). The notation A < B
stands for the usual relation

Vxe s (Ax|x) < (Bx|x).
For every A € B, (77) we set
Vx,ye :  t,(x,y):= (Ax]y)

which defines a bounded nonnegative form on .7#. Conversely, in view of the Riesz-
representation theorem, the correspondence A +— t, defines a bijection between bounded
positive operators and bounded nonnegative forms. Consequently, we can define the
domination, (strong) absolute continuity, and singularity analogously to the ones de-
fined for forms. We write A <4 B if there exists a constant ¢ such that A < c¢B. If
Bx = 0 implies that Ax =0 for all x € JZ, we say that A is B-absolutely continuous
(A < B). The operators A and B are singular (A L B) if 0 is the only positive operator
which is dominated by both A and B. Finally, A is strongly B-absolutely continuous
(A < B) if for any sequence (X, ),en € HN

((A(xn —%m) |0 —xm) = 0 A (Bxp|xs) = 0) = (Axy|x,) — 0.
Remark that
A< B < kerBCkerA and A LB <= ranAY?NranB'/? = {0},

see [3] or [24]. It was proved by Krein that if .# is a closed linear subspace of 7 and
A € B4 (J), then the set

{SeB.(H)|(S<A) A (ranSC .4)}

possesses a greatest element. This follows immediately from our previous results, and
this is why we say that the form t, is the short of t 1o the subspace ). Indeed, let
t(x,y) = (Ax|y) and consider the form t ,. . Since t ,. is a bounded form, there
exists a unique S € B (7) such that t 1 (x,y) = (Sx|y) and

XE€ M=t 1 [x] =0= (Sx|x) =0 = 4+ CkerS = ranS C /.

The maximality of S follows from the maximality of t , . . Now, since the map A — t,
is an order preserving positive homogeneous map from B, (%) into %, (5¢), the
following theorem is an immediate consequence of Theorem 2.2.

THEOREM 3.1. Let A and B be bounded positive operators on F€ . Then there is
a decomposition of A with respect to B into B-absolutely continuous and B-singular
parts. Namely,

A=A_,+A .

<.,B

The decomposition is unique, precisely when A _ , is dominated by B.
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Proof. Let A_, and A, ; be the operators corresponding to (t, )kert; and t, —
(t, )kerty » respectively. [

COROLLARY 3.2. Let B be a bounded positive operator with closed range. Then
Sforevery A€ B, ()

A=A_,+A .

<.B
is the unique decomposition of A into B-absolutely continuous and B-singular parts.

Proof. 1f ranB is closed, then the following two sets are identical according to the
well-known theorem of Douglas [5]

{SeB ()| (S<A) A (ranSCranB)} = {S€B(H#) | (S<A) A (S<aB)}.

Consequently, the uniqueness follows from Theorem 3.1. Since ranB is closed, the

inclusion ker B C kerA _ ;, implies that ranA_ ; CranB. [

Observe that if ran B is closed, then A <8 coincides with DgA in the sense of Ando
[3], and therefore it is strongly absolutely continuous (or closable) with respect to B.
Furthermore, according to [24, Theorem 7] we have the following characterization of
closed range positive operators.

COROLLARY 3.3. Let B be a bounded positive operator. Then the following are
equivalent

(i) ranB is closed,
(i) VA€BL(A): A_,<aB,
(iii) YA€eBy(H): DpA<qB.
If any of (i) — (iii) fulfills, then DpA =A_ , for all A € B, ().

COROLLARY 3.4. Let A be a bounded positive operator. Then A_, is an ex-
tremal point of the operator segment

[0,A] :={SeB. ()| S<A}
forall BEBL(5).

We remark that the short A_;, of A to the closed linear subspace .# of the (com-
plex) Hilbert space ¢ possesses a factorization of the form

Ay :AI/ZPJZAW,

where P - is defined to be the orthogonal projection onto the closed subspace M=

AL/ 2(/// }, see Krein [11]. This factorization can hold, of course, only if the underly-
ing space is complex. Below we offer an alternative factorization of the operator short
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that simultaneously treats the real and complex cases. In fact, we show that there exists
a (real or complex, respectively) Hilbert space .7, , associated with the positive oper-
ator A, such that A, admits a factorization of the form J4(I — P)J; where J, is the
canonical continuous embedding of 77 into 5 and P is the orthogonal projection
onto an appropriately defined subspace of .77}, associated with .# . The construction
below is taken from [15].

Let us consider the range space ranA, equipped with the inner product (-|-),

Vx,y € I : (Ax|Ay), = (Ax]y).
Note that the operator Schwarz inequality
(Ax|Ax) < [[A]|(Ax]x)

implies that (-|-), defines an inner product, indeed. Let .7, stand for the completion
of that inner product space. Consider the canonical embedding operator of ranA C J7;
into 77, defined by

Vxe Ja(Ax) := Ax.
Then J4 is well defined and continuous due to the operator Schwarz inequality above
(namely, by norm bound /||Al|). This mapping has a unique norm preserving exten-

sion from 5% to 2 which is denoted by J4 as well. An easy calculation shows that
its adjoint J; acts as an operator from ¢ to .73 possessing the canonical property

Vxe A Jix = Ax.
This yields the following useful factorization for A:

A = JuJj.

THEOREM 3.5. Let J¢ be a Hilbert space and let A € B (). For a given
subspace M C I denote by P the orthogonal projection of 7 onto the closure of
{Ax|x € A}. Then the short of A to M equals J5(I — P)J}.

Proof. It is enough to show that the quadratic forms of J4(/ — P)J; and t ,. are
equal. To verify this let x € 2. Then

(Ja(I — P)J;x|x) = ((I — P)Ax| (I — P)Ax), = dist?(Ax,ran P)
(Ax —Ay[Ax—Ay), = yien};Z(A(x—y) lx—y)

inf
yeM
= t//li [x]’

as itis claimed. [

The above construction yields another formula for the quadratic form of the shorted
operator:
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COROLLARY 3.6. Let ¢ be a Hilbert space, A € By () and M C I any
closed linear subspace. Then for any x €

(Ja(I = P)J3x|x) = (Ax|x) = sup{|(Ax[y)]* |y € .4, (Ay|y) < 1}.

Proof. For x € 7 we have

(Ja(l — P)Jjx|x) = (Ax| Av), — (P(Ax) | P(AY)),
— (Ax|x) — sup{|(Ax| Ay), ]2y € .. (Av| AY), < 1}
— (Ax]x) — sup{|(Ax[y) |y € .. (Av]y) < 1},

indeed. [

COROLLARY 3.7. If A and B are bounded positive operators on the Hilbert
space ¢ then the quadratic forms of A« g and A, p can be calculated by the fol-
lowing formulae:

(A<px|x) = inf (A(x—y)|x—y),
yekerB

(AL px|x) = sup{|(Ax|y)|*|y € ker B, (Ay|y) < 1}.

Proof. Since A< p is nothing but the short of A to the closed subspace kerB™,
Theorem 3.5 together with the above corollary implies the desired formulae. [

4. Additive set functions

In this section we apply our main theorem of finitely additive nonnegative set
functions. Our main reference is [16]. We recall first some definitions.

Let T be a non-empty set, and let % be a ring of some subsets of 7. Let u and
v be (finitely) additive nonnegative set functions (or charges, for short) on % . We say
that v is strongly absolutely continuous with respect to t (in symbols v < ) if for
any € > 0 there exists 6 > 0 such that y(R) < & implies V(R) < € forall R€ Z. Itis
important to remark that this notion is referred to as absolutely continuity in [16]. We
say that the charge v is absolutely continuous with respect to ¢ (in symbols v < 1),
if £(R) =0 implies v(R) =0 for all R € Z. Finally, v and u are singular if the only
charge which is dominated by both v and p is the zero charge.

Let & be the complex vector space of % -step functions, and define the associated
form t, as follows:

Vo,weé&: t(o,y) :z/(p-de.
T

It was proved in [16, Theorem 3.2] that if u and v are bounded charges, then Vv is
strongly absolutely continuous with respect to u if and only if ¢, is strongly absolutely
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continuous with respect to t,, . Similarly, v and p are singular precisely when t, and
ty are singular.

Using this result, the authors proved the classical Lebesgue-Darst decomposition
theorem. Namely, if ¢t and v are bounded charges then the formula

Vo Z —R; RHDtutv[xR}

defines a charge on Z, such that v, < and (v —v,) L u. We use this argument be-
low to provide a (<, L)-type decomposition. The following lemma (see [16, Lemma
3.3]) plays an essential role in the proof and may be very useful in deciding the additiv-
ity of the correspondence R — t[xg] for a given form t.

LEMMA 4.1. Let T be a non-empty set, and let Z be a ring of subsets of T . For
a given form t on & the following statements are equivalent:

(i) The set function ¥ : # — R defined by ¥ (R) := t[xr| is additive;

(i) t[C] = t[[C]] forall €&

The main result of this section is the following short-type decomposition of charges.
Here we emphasize that, in contrast to the Lebesgue-Darst decomposition, this decom-
position holds for not necessarily bounded charges as well.

THEOREM 4.2. Let % be a ring of subsets of a non-empty set T, and let | and
v be charges on % . Then there is a decomposition

V=V, Vo,

where Ve, <U and Vi L w. Furthermore, if ¥ is a charge such that ¥ < v and

<< U, then 9 <V

<t
Proof. Let us define the set function v_ , by

VREZ: V_,(R):=(tv)kert, [Xr].

It is clear that pu(R) = 0 implies v_ , (R) = 0. Our only claim is therefore to prove
the additivity of v

- For this purpose, let ¢ € &. In accordance with the previous
lemma, it is enough to show that

(tV)kertqu)H = (tv )kert, [o].

Assume that

k
¢ = Zli'an
i=1
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where {A;}X_, are non-zero complex numbers and {R;}*_, are pairwise disjoint ele-
ments of & . Define the function y as follows

i
Xe, TX,

-

vi=

UK R;

i=1

Since |y(r)| =1 forall r € T, the multiplication with y is a bijection on &. Further-
more, for every 1) € & we have that 1 € kert,, precisely when y -1 € kert, . (Note
that v ¢ & in general.) As t,[{] = t,[|{]|] forall { € &, we have that

(tv kerty [p] = éelklgtp tylp—&] = . lklgty ty[|o—&l]

= mf tv[\wl-lqo—é\]= inf ty[||o]—w-&J]
Eek Eekerty

= lknf tv[\w\ v &l = (t)kery [ll]-
Consequently, v_ , is a charge, which is absolutely continuous with respect to (.
Since v and v_ , are charges, v, :=Vv—V_  isacharge too, which is derived from
ty — (tv)kert” . Hence, v, | and p are singular. [

The following corollary is an immediate consequence of Theorem 2.5.

COROLLARY 4.3. Let v and W be a charges on %. Then v_ , is an extremal
point of the convex set of those charges that are majorized by v.

REMARK 4.4. If % is a o-algebra, 4 and v are o-additive (i.e., 4 and v are
measures), then the notions of absolute continuity and strong absolute continuity coin-
cide, and hence

Dty tv = (tv)kerty~

In this case, the short-type decomposition coincides with the Lebesgue decomposition.
Furthermore, we have the following formula for the absolutely continuous part

VREZ: v. . (R)= inf /|1— (02 dv(o).

< ” ockerty

If Z is an algebra of sets, and we consider finitely additive charges on it, then the
involved absolute continuity concepts are different. Consequently, there exist ¢ and v
such that

Dtu ty 7é (tv)ker ty-
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5. Representable functionals

The Lebesgue-type decomposition of positive functionals were studied by several
authors, see e.g. [7, 9, 10, 21, 22, 25]. Szfcs in [21] proved that the Lebesgue-type
decomposition of representable positive functionals can be derived from their induced
sesquilinear forms. In this section we present a short-type decomposition for repre-
sentable positive functionals, which corresponds to the short type decomposition of
their induced forms.

Let </ be a complex *-algebra and let f : </ — C be a positive linear functional
on it (thatis, f(a*a) >0 forall a € &/). The form induced by f will be denoted by tf

tp: o/ x o —C, (a,b) — f(b*a).

For positive functionals f < g means that ty < t,. The positive functional f is called
representable, if there exists a Hilbert space ,%”f ,a *-representation T, of o into S,
and a cyclic vector & ; €, such that

Vae o : fla)=(m (a)§, |&,),

Such a triple (,%?,77,}7 éf) is provided by the classical GNS-construction (see [14] for

the details): namely, denote by Ny the set of those elements a such that f (a*a) =0,
and let 7} stand for the Hilbert space completion of the inner product space

(%/Nf,(- \ -)f); Va,be o/ : (a+Ny|b+Ny)s:=ts(a,b)= f(b*a).
For a € o/ let ms(a) be the left multiplication by a:
Vxe o/ ms(a)(x+Ny):=ax+Ny.

The cyclic vector &y is defined as the Riesz-representing vector of the continuous linear
functional

%’}Qﬂ/NInHC; a+Ny— f(a).
Note also that
mp(a)Sy = a+Ny.

We define the absolute continuity and singularity as for forms. Singularity means that
the zero functional is the only representable functional which is dominated by both f
and g. According to [20, Theorem 2], this is equivalent with the singularity of the
forms t; and t,. We say that f is g-absolutely continuous ( f < g), if

Vae o/ : gla*a)=0 = f(a*a)=0.

A decomposition of f into representable g-absolutely continuous and g-singular parts
is called short-type decomposition.

Now, the short-type decomposition for representable functionals can be stated as
follows.
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THEOREM 5.1. Let f and g be representable positive functionals on the * -algebra
o/ . Then f admits a decomposition

f=feotfi,

to a sum of representable functionals, where f_ , is g-absolutely continuous, f i and
g are singular. Furthermore, f_ , is the greatest among all of the representable func-
tionals h such that h < f and h < g.

Proof. Let .# be the following closed subspace of ¢}

4 =Tat Ny [g(@a) =0}

and let P be the orthogonal projection from .%#; onto .#. Then .# and .#" are
Tty -invariant subspaces. Since 7y is a *-representation, it is enough to prove that .Z
is 7y invariant. Let a,x € &/ and assume that g(a*a) = 0. Then

mg(x)(a+Ny) =xa+ Ny A
because
gla*x"xa) = | mg(x)(a+Np) |3 < | 7e(x)|3 - g(a*a) = 0.

Consequently,

wp(x) (M) S mp(x)({a+ Ny | gla*a) =0}) € A,
as it is stated. Now, let us define the functionals

fegl@) = (mp(a)(I=P)&s [ (1= P)Gy)s-

I (@)= (mp(a)PEy | PEy) s

Clearly, f_, and f,  are representable positive functionals. On the other hand, since
M* is mp-invariant we find that

np(a)(I = P)&y = (I = P)rs(a)(I—P)Ey,
and using 7y invariance of ./ one has
(I =P)ms(a)PSy = (I - P)Pry(a)PE =0,
and thus
(I =P)ms(a)(I = P)&p = (I = P)ms(a)cy.
This gives

feslaa) = mp(a)(I = P)Es |7 = (1= P)mp(@)sl|F = (1 = P)a+Np) |7 =ty [a].



A SHORT-TYPE DECOMPOSITION OF FORMS 829

Similarly,

f (@)= [P+ N3 =t [a]

Since ty_ is tg-absolutely continuous, and tr, is tg-singular, we infer that f_ , < g

and f, , L g. The maximality of f_ follows from the maximality of b ]

COROLLARY 5.2. Let f and g be representable positive functionals on the

*-algebra /. Then f._, is an extremal point of the convex set of those representable
functionals that are majorized by f.
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