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ON EXTENSIONS OF J–SKEW–SYMMETRIC
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(Communicated by V. V. Peller)

Abstract. In this paper it is proved that each densely defined J -skew-symmetric operator (or
each J -isometric operator with D(A) = R(A) = H ) in a separable Hilbert space H has a J -
skew-self-adjoint (respectively J -unitary) extension in a separable Hilbert space H̃ ⊇ H . We
follow the ideas of Galindo in [A. Galindo, On the existence of J -self-adjoint extensions of
J -symmetric operators with adjoint, Comm. Pure Appl. Math., Vol. XV, 423–425 (1962)] with
necessary modifications.

1. Introduction

Last years an increasing number of papers was devoted to the investigations of
operators related to a conjugation in a Hilbert space, see, e.g. [2], [3], [6], [5] and
references therein. A conjugation J in a separable Hilbert space H is an antilinear
operator on H such that J2x = x , x ∈ H , and (Jx,Jy)H = (y,x)H , x,y ∈ H . The
conjugation J generates the following bilinear form:

[x,y]J := (x,Jy)H , x,y ∈ H.

For J there always exists an orthonormal basis { fk} in H such that J fk = fk for all k ,
see, e.g., [2, Lemma 1]. We shall say that such a basis is corresponding to J . A linear
operator A in H is said to be J -symmetric (J -skew-symmetric) if

[Ax,y]J = [x,Ay]J, x,y ∈ D(A), (1)

or, respectively,
[Ax,y]J = −[x,Ay]J, x,y ∈ D(A). (2)

A linear operator A in H is said to be J -isometric if

[Ax,Ay]J = [x,y]J, x,y ∈ D(A). (3)

If D(A) = H , then conditions (1), (2) and (3) are equivalent to the following conditions:

JAJ ⊆ A∗, (4)
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JAJ ⊆−A∗, (5)

and
JA−1J ⊆ A∗, (6)

respectively. A linear operator A in H is called J -self-adjoint (J -skew-self-adjoint, or
J -unitary) if

JAJ = A∗, (7)

JAJ = −A∗, (8)

or
JA−1J = A∗, (9)

respectively.
We shall prove that each densely defined J -skew-symmetric operator (each J -

isometric operator with D(A) = R(A) = H ) in a separable Hilbert space H has a J -
skew-self-adjoint (respectively J -unitary) extension in a separable Hilbert space H̃ ⊇
H . We shall follow the ideas of Galindo in [1] with necessary modifications. In partic-
ular, Lemma in [1] can not be applied in our case, since its assumptions can never be
satisfied with T : T 2 = I , if H �= {0} . In fact, in this case T would be a conjugation
in H . Choosing an element f ∈ H of an orthonormal basis in H corresponding to T
we would get ( f ,T f ) = ( f , f ) = 1 �= 0. Moreover, an exit out of the original space can
appear in our case.

We notice that under stronger assumptions on a J -skew-symmetric operator the
existence of a J -skew-self-adjoint extension was proved by Kalinina in [4].

NOTATIONS. As usual, we denote by R,C,N,Z,Z+ , the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respectively.
Set 0,d = {0,1, ...,d} , if d ∈ N ; 0,∞ = Z+ . If H is a Hilbert space then (·, ·)H and
‖ ·‖H mean the scalar product and the norm in H , respectively. Indices may be omitted
in obvious cases. For a linear operator A in H , we denote by D(A) its domain, by
R(A) its range, and A∗ means the adjoint operator if it exists. If A is invertible then
A−1 means its inverse. For a set M ⊆ H we denote by M the closure of M in the norm
of H . By LinM we denote the set of all linear combinations of elements of M , and
spanM := LinM . By EH we denote the identity operator in H , i.e. EHx = x , x ∈ H .
In obvious cases we may omit the index H . All appearing Hilbert spaces are assumed
to be separable.

2. Extensions of J -skew-symmetric and J -isometric operators

We shall make use of the following lemma.

LEMMA 1. Let H be a separable Hilbert space with a positive even or infinite
dimension, and J be a conjugation on H . Then there exists a subspace M in H such
that

M⊕ JM = H.
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Proof. Let { fn}2d+1
n=0 be an orthonormal basis in H corresponding to J , i.e. such

that J fn = fn , 0 � n � 2d +1; d ∈ Z+ ∪{+∞} (2d +2 = dimH ). Set

f +
2k,2k+1 =

1√
2
( f2k + i f2k+1), f−2k,2k+1 =

1√
2
( f2k − i f2k+1), k ∈ 0,d.

It is easy to see that { f +
2k,2k+1, f−2k,2k+1}d

k=0 is an orthonormal basis in H . Set M :=
span{ f +

2k,2k+1}d
k=0 . It remains to notice that JM = span{ f−2k,2k+1}d

k=0 . �

THEOREM 1. Let H be a separable Hilbert space and J be a conjugation on H .
Let A be a J -skew-symmetric (J -isometric) operator in H . Suppose that D(A) = H
(respectively D(A) = R(A) = H ). Then there exists a J -skew-self-adjoint (respectively
J -unitary) extension of A in a separable Hilbert space H̃ ⊇ H (with an extension of J
to a conjugation on H̃ ).

Proof. Let A be such an operator as that in the statement of the theorem. The
operator A admits the closure which is J -skew-symmetric (respectively J -isometric)
(see, e.g. [6, p. 18]). Thus, without loss of generality we shall assume that A is closed.
In what follows, in the case of a J -skew-symmetric (J -isometric) A , we shall say
about case (a) (respectively case (b)). Set H2 = H ⊕H , and consider the following
transformations on H2 :

J2{x,y} = {Jx,Jy}, V{x,y} = {y,−x}, U{x,y} = {y,x}, ∀{x,y} ∈ H2,

and R := UJ2 = J2U , K := VR . Observe that R and K are conjugations on H2 . The
graph of an arbitrary linear operator C in the Hilbert space H will be denoted by GC

(⊆ H2 ). Observe that
J2GC = GJCJ , RGC = UGJCJ . (10)

If D(C) = H , then
GC∗ = H2�VGC. (11)

In the case (a) we may write:

({x,Ax},{JAJy,y}) = (x,JAJy)+ (Ax,y) = 0, ∀x ∈ D(A),y ∈ D(JAJ).

Then
GA ⊥ RGA. (12)

In the case (b), we have

({x,Ax},{JA−1Jy,−y}) = 0, ∀x ∈ D(A),y ∈ D(JA−1J),

and therefore
GA ⊥ KGA. (13)

Set D =
{

H2� [GA⊕RGA] in the case (a)
H2� [GA ⊕KGA] in the case (b)

. If D = {0} then it means that A is J -

skew-self-adjoint (respectively J -unitary), see considerations for the operator B below.
In the opposite case, we have RD = D (respectively KD = D).
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At first, suppose that D has a positive even or infinite dimension. By Lemma 1
we obtain that there exists a subspace X ⊆ D such that X ⊕ RX = D (respectively
X ⊕KX = D). Since each element of X is orthogonal to RGA = VG−JAJ (KGA =
VGJA−1J ), by (11) it follows that

X ⊆ G−JA∗J (respectively X ⊆ GJ(A−1)∗J). (14)

Set G′ = GA ⊕X . Suppose that {0,y} ∈ G′ . Then there exist {x,Ax} ∈ GA such that
{0,y}− {x,Ax} = {−x,y− Ax} ∈ X . By (14) we get y− Ax = JA∗Jx (respectively
y−Ax = −J(A−1)∗Jx ), and therefore y = 0. Thus, G′ is a graph GB of a densely
defined linear operator B . Moreover, we have

GB ⊕RGB = H2 (respectively GB ⊕KGB = H2).

In the case (a) we get
UGB ⊕URGB = H2;

G(−B)∗ = H2�VG−B = H2�UGB = URGB = J2GB = GJBJ .

In the case (b) we get
VGB ⊕VKGB = H2;

GB∗ = H2�VGB = VKGB = −RGB = GJB−1J .

Suppose now that D has a positive odd dimension. In this case we consider a linear
operator A = A⊕A , with D(A ) = D(A)⊕D(A) , in a Hilbert space H = H⊕H with
a conjugation J = J ⊕ J . Observe that A is a closed J -skew-symmetric (J -
isometric) operator with D(A ) = H (respectively D(A ) = R(A ) = H ). Its graph
GA in a Hilbert space H2 = H ⊕H may be identified with GA ⊕GA in H2 ⊕H2 :

GA = {{( f ,A f ),(g,Ag)}, f ,g ∈ D(A)}.

Let R , K be constructed for A as R and K for A . In the case (a) we see that

H2 � [GA ⊕RGA ] = (H2� [GA⊕RGA])⊕ (H2� [GA⊕RGA]),

has a positive even dimension. In the case (b), H2� [GA ⊕K GA ] has a positive even
dimension. Thus, we may apply the above construction with A instead of A . �

REMARK 1. In the proof of the last theorem one may choose various subspaces
X to construct required extensions. However, we do not know whether all possible
extensions can be constructed on this way. We think that it is an interesting question
for further investigations.
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